Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary

Homomorphisms of pseudo-Riemannian calculi and noncommutative minimial submanifolds

Joakim Arnlind Linköping University

Workshop on Quantum Geometry, Field Theory and Gravity Corfu, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction ●000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
Refere	nces				

- Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi (arXiv:1906:03885)
 J.A. and A. Tiger Norkvist
- Riemannian curvature of the noncommutative 3-sphere (J. Noncommut. Geom. 2017) J.A. and M. Wilson

• On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere (J. Geom. Phys. 2016) *J.A. and M. Wilson*

Introduction ○●○○	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00

Introduction

- For a number of years, we've been interested in connections and curvature of noncommutative manifolds and, initially, we wanted to better understand the concept of a torsion-free and metric (Levi-Civita) connection in NCG.
- We start from data consisting of a *-algebra, a module ("vector fields") and a Lie algebra of derivations. Whatever approach to a derivation based calculus one takes, these object will probably appear.
- Given this data, we asked the question: What kind of assumptions give the uniqueness of a Levi-Civita connection?
- We collected these assumptions into the concept of "pseudo-Riemannian caluli".
- We considered several examples that fit into the framework (e.g. noncommutative torus, noncommutative spheres) and explicitly constructed the Levi-Civita connection and computed its curvature.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		00000000	00
Introd	uction				

- Moreover, for the noncommutative 4-sphere, we could prove a Chern-Gauss-Bonnet type theorem by constructing the Pfaffian of the curvature form and computing its integral.
- Moreover, we recently started to study these objects from a more algebraic perspective, starting by considering morphisms of real calculi.
- The concept of a morphism opened up for defining noncommutative embeddings, and we showed that there exists a nice theory of embeddings containing analogues of classical objects such as the second fundamental form, Weingarten's map and Gauss' equations.
- We propose a definition of mean curvature and, consequently, of minimal embeddings. As an example of the new concepts we show that the noncommutative torus can be minimally embedded into the noncommutative 3-sphere.

Introduction 000●	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
A few	references				

This work is in the tradition of derivation based differential calculus on noncommutative algebras.

Dérivations et calcul différentielle non commutatif. M. Dubois-Violette. C. R. Acad. Sci. Paris Sér. I Math. 1988

Metrics and pairs of left and right connections on bimodules. L. Dabrowski, P. M. Hajac, G. Landi, P. Siniscalco. *J. Math. Phys. 1996.*

On curvature in noncommutative geometry. M. Dubois-Violette, J. Madore, T. Masson, J. Mourad. *J. Math. Phys. 1996*

Supersymmetric quantum theory and non-commutative geometry. J. Fröhlich, O. Grandjean, A. Recknagel. *Commun. Math. Phys. 1999*

A gravity theory on noncommutative spaces. P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, J. Wess. *Class. Quantum Grav. 2005.*

*-compatible connections in noncommutative Riemannian geometry. E. J. Beggs, S. Majid. *J. Geom. Phys. 2011.*

Levi-Civita's theorem for noncommutative tori. J. Rosenberg. SIGMA 2013.

				00000000	00
0000	●0000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00

Let us now recall the concept of a real calculus as well as pseudo-Riemannian calculi.

The idea is to naively copy the basic algebraic structures of Riemannian geometry to the noncommutative case:

• A – noncommutative *-algebra (complex valued functions)

- *M* projective (right) *A*-module (vector fields)
- h A-bilinear map $h: M \times M \rightarrow A$ (metric)
- $\nabla : \mathsf{Der}(\mathcal{A}) \times \mathcal{M} \to \mathcal{M}$ (connection)
- $\varphi : \mathsf{Der}(\mathcal{A}) \to M$

Introduction 0000	Pseudo-Riemannian calculi ●0000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
Pseudo	-Riemannian	calculi			

Let us now recall the concept of a real calculus as well as pseudo-Riemannian calculi.

The idea is to naively copy the basic algebraic structures of Riemannian geometry to the noncommutative case:

- A noncommutative *-algebra (complex valued functions)
- *M* projective (right) *A*-module (vector fields)
- h A-bilinear map $h: M \times M \rightarrow A$ (metric)

•
$$\nabla$$
 : $\mathsf{Der}(\mathcal{A}) \times \mathcal{M} \to \mathcal{M}$ (connection)

• $\varphi : \mathsf{Der}(\mathcal{A}) \to M$

In differential geometry, if one chooses M to be the vector fields, φ is the isomorphism between derivations and vector fields; in this context we only require that each derivation corresponds to a vector field (but not necessarily the other way around). Let us now make these concepts more precise.

0000	00000	00000	0000000	0000000	00
Real (r	metric) calculi	JS			

Definition

Let \mathcal{A} be a *-algebra, M be a (right) \mathcal{A} -module, $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ be a (real) Lie algebra of hermitian derivations and let $\varphi : \mathfrak{g} \to M$ be a \mathbb{R} -linear map. The data $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is called a *real calculus* if the image $M_{\varphi} = \varphi(\mathfrak{g})$ generates M as a (right) \mathcal{A} -module,

0000		00000	00000000	00
Real (metric) calculi	IS		

Definition

Let \mathcal{A} be a *-algebra, M be a (right) \mathcal{A} -module, $\mathfrak{g} \subseteq \text{Der}(\mathcal{A})$ be a (real) Lie algebra of hermitian derivations and let $\varphi : \mathfrak{g} \to M$ be a \mathbb{R} -linear map. The data $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is called a *real calculus* if the image $M_{\varphi} = \varphi(\mathfrak{g})$ generates M as a (right) \mathcal{A} -module,

Definition

Let $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is a real calculus and let h be a nondegenerate hermitian form on M. If

 $h(E_1, E_2)^* = h(E_1, E_2)$

for all $E_1, E_2 \in Im(\varphi)$, then (C_A, h) is called a *real metric calculus*.

・ロト・日本・日本・日本・日本

We think of elements in $Im(\varphi)$ as "real" vector fields.

Real co	onnection calc	ndus			
Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00●00	00000		00000000	00

Let us now add a connection to the previous data.

Definition

Let (C_A, h) be a real metric calculus and let $\nabla : \mathfrak{g} \times M \to M$ denote an affine connection on M. If it holds that

$$h(\nabla_d E_1, E_2) = h(\nabla_d E_1, E_2)^*$$

for all $E_1, E_2 \in M_{\varphi}$ and $d \in \mathfrak{g}$ then (C_A, h, ∇) is called a *real* connection calculus.

We think of this condition as a reality condition on ∇ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Levi-Civita connection is metric and torsionfree, so let us introduce these concepts in our framework.

Pseudo	-Riemannian	calcul	us		
Introduction 0000	Pseudo-Riemannian calculi 000●0	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00

The Levi-Civita connection is metric and torsionfree, so let us introduce these concepts in our framework.

Definition

Let (C_A, h, ∇) be a real connection calculus over M. The calculus is *metric* if

$$d(h(U,V)) = h(\nabla_d U, V) + h(U, \nabla_d V)$$

for all $d \in \mathfrak{g}$, $U, V \in M$, and *torsionfree* if

$$abla_{d_1}arphi(d_2) -
abla_{d_2}arphi(d_1) - arphiigl([d_1,d_2]igr) = 0$$

for all $d_1, d_2 \in \mathfrak{g}$. A metric and torsionfree real connection calculus over M is called a *pseudo-Riemannian calculus over* M.

Given a real metric calculus, there is no guarantee that one may find a torsionfree and metric connection. The metric is assumed to be non-degenerate, but not in general invertible.

However, if such a connection exists, it is unique:

Uniqueness of the pseudo-Riemannian calculus

Given a real metric calculus, there is no guarantee that one may find a torsionfree and metric connection. The metric is assumed to be non-degenerate, but not in general invertible.

However, if such a connection exists, it is unique:

Theorem

Let (C_A, h) be a real metric calculus over M. Then there exists at most one connection ∇ on M, such that (C_A, h, ∇) is a pseudo-Riemannian calculus (i.e., such that ∇ is a real, torsionfree and metric connection).

(This result is obtained by deriving a Koszul formula for the connection.)

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples ●0000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
The no	oncommutativ	a toru	c		

I he noncommutative torus

The noncommutative torus T_{θ}^2 is defined via two unitary generators U, V satisfying $VU = e^{i\theta}UV$. Introduce

$$X^{1} = \frac{1}{2\sqrt{2}}(U^{*} + U) \qquad X^{2} = \frac{i}{2\sqrt{2}}(U^{*} - U)$$
$$X^{3} = \frac{1}{2\sqrt{2}}(V^{*} + V) \qquad X^{4} = \frac{i}{2\sqrt{2}}(V^{*} - V)$$

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples ●0000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
The no	ncommutativ	e toru	ç		

The noncommutative torus T_{θ}^2 is defined via two unitary generators U, V satisfying $VU = e^{i\theta}UV$. Introduce

$$X^{1} = \frac{1}{2\sqrt{2}}(U^{*} + U) \qquad X^{2} = \frac{i}{2\sqrt{2}}(U^{*} - U)$$
$$X^{3} = \frac{1}{2\sqrt{2}}(V^{*} + V) \qquad X^{4} = \frac{i}{2\sqrt{2}}(V^{*} - V)$$

Let \mathfrak{g} be the Lie algebra generated by the two canonical derivations δ_1, δ_2 on T^2_{θ} .

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	●0000		00000000	00
The no	ncommutativ	e toru	c		

The noncommutative torus T_{θ}^2 is defined via two unitary generators U, V satisfying $VU = e^{i\theta}UV$. Introduce

$$X^{1} = \frac{1}{2\sqrt{2}}(U^{*} + U) \qquad X^{2} = \frac{i}{2\sqrt{2}}(U^{*} - U)$$
$$X^{3} = \frac{1}{2\sqrt{2}}(V^{*} + V) \qquad X^{4} = \frac{i}{2\sqrt{2}}(V^{*} - V)$$

Let \mathfrak{g} be the Lie algebra generated by the two canonical derivations δ_1, δ_2 on T^2_{θ} . *M* is the submodule of $(T^2_{\theta})^4$ generated by

$$E_1 = \partial_1(X^1, X^2, X^3, X^4) = (-X^2, X^1, 0, 0)$$

$$E_2 = \partial_2(X^1, X^2, X^3, X^4) = (0, 0, -X^4, X^3)$$

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples •0000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
The no	ncommutativ	e toru	c		

The noncommutative torus T_{θ}^2 is defined via two unitary generators U, V satisfying $VU = e^{i\theta}UV$. Introduce

$$X^{1} = \frac{1}{2\sqrt{2}}(U^{*} + U) \qquad X^{2} = \frac{i}{2\sqrt{2}}(U^{*} - U)$$
$$X^{3} = \frac{1}{2\sqrt{2}}(V^{*} + V) \qquad X^{4} = \frac{i}{2\sqrt{2}}(V^{*} - V)$$

Let \mathfrak{g} be the Lie algebra generated by the two canonical derivations δ_1, δ_2 on T^2_{θ} . *M* is the submodule of $(T^2_{\theta})^4$ generated by

$$E_1 = \partial_1(X^1, X^2, X^3, X^4) = (-X^2, X^1, 0, 0)$$

$$E_2 = \partial_2(X^1, X^2, X^3, X^4) = (0, 0, -X^4, X^3)$$

Define $\varphi : \mathfrak{g} \to M$ by $\varphi(\delta_i) = E_i$ for i = 1, 2. This defines a real calculus over the noncommutative torus. Furthermore, one can prove that M is a free module of rank 2.

We consider the 3-sphere as defined by K. Matsumoto: Let S^3_{θ} be the *-algebra generated by two normal elements Z, W satisfying

$$WZ = qZW$$
 $W^*Z = \bar{q}ZW^*$ $WW^* + ZZ^* = \mathbb{1},$

We consider the 3-sphere as defined by K. Matsumoto: Let S^3_{θ} be the *-algebra generated by two normal elements Z, W satisfying

$$WZ=qZW \qquad W^*Z=ar qZW^* \qquad WW^*+ZZ^*=\mathbb{1},$$

and introduce

$$\begin{aligned} X^{1} &= \frac{1}{2} \big(Z + Z^{*} \big) & X^{2} &= \frac{1}{2i} \big(Z - Z^{*} \big) \\ X^{3} &= \frac{1}{2} \big(W + W^{*} \big) & X^{4} &= \frac{1}{2i} \big(W - W^{*} \big), \end{aligned}$$

implying $(X^1)^2 + (X^2)^2 + (X^3)^2 + (X^4)^2 = \mathbb{1}$. Normality of Z, W is equivalent to $[X^1, X^2] = [X^3, X^4] = 0$.

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00●00	Homomorphisms and embeddings	Minimal embeddings	Summary 00
The no	ncommutativ	e 3-sn	here		

Let ${\mathfrak g}$ be the Lie algebra generated by the derivations

$$\begin{array}{ll} \partial_1(Z) = iZ & \partial_1(W) = 0 \\ \partial_2(Z) = 0 & \partial_2(W) = iW \\ \partial_3(Z) = Z|W|^2 & \partial_3(W) = -W|Z|^2, \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

giving $[\partial_a, \partial_b] = 0$ for a, b = 1, 2, 3.

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00●00	Homomorphisms and embeddings	Minimal embeddings	Summary 00
The no	ncommutativ	e 3-sn	here		

Let ${\mathfrak g}$ be the Lie algebra generated by the derivations

$$\begin{array}{ll} \partial_1(Z) = iZ & \partial_1(W) = 0 \\ \partial_2(Z) = 0 & \partial_2(W) = iW \\ \partial_3(Z) = Z|W|^2 & \partial_3(W) = -W|Z|^2, \end{array}$$

giving $[\partial_a, \partial_b] = 0$ for a, b = 1, 2, 3. Let M be the submodule of $(S^3_{\theta})^4$ generated by

$$\begin{split} E_1 &= (-X^2, X^1, 0, 0) \\ E_2 &= (0, 0, -X^4, X^3) \\ E_3 &= (X^1 |W|^2, X^2 |W|^2, -X^3 |Z|^2, -X^4 |Z|^2) \end{split}$$

where $|Z|^2 = ZZ^*$ and $|W|^2 = WW^*$. One easily proves that M is a free module with basis E_1, E_2, E_3 . Furthermore, set $\varphi(\partial_a) = E_a$.

,

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	000●0		00000000	00

The noncommutative 3-sphere

Define

$$h(U,V) = (U^a)^* h_{ab} V^b$$

where

$$h_{ab} = \sum_{k=1}^{4} (E_a^k)^* E_b^k = egin{pmatrix} |Z|^2 & 0 & 0 \ 0 & |W|^2 & 0 \ 0 & 0 & |Z|^2 |W|^2 \end{pmatrix}.$$

The above data defines a real metric calculus, and one may compute the (unique) Levi-Civita connection as

$$\begin{split} \nabla_{\partial_1} E_1 &= -E_3 \quad \nabla_{\partial_2} E_2 = E_3 \qquad \nabla_{\partial_3} E_3 = E_3 (|W|^2 - |Z|^2) \\ \nabla_{\partial_1} E_2 &= 0 \qquad \nabla_{\partial_1} E_3 = E_1 |W|^2 \quad \nabla_{\partial_2} E_3 = -E_2 |Z|^2. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

0000	OOOOO	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
Curvat	ure of the 3-s	phere			

One may proceed to compute the curvature operators

$$R(\partial_a,\partial_b)U = \nabla_{\partial_a}\nabla_{\partial_b}U - \nabla_{\partial_b}\nabla_{\partial_a}U - \nabla_{[\partial_a,\partial_b]}U$$

$$R(\partial_1,\partial_2) = egin{pmatrix} 0 & |W|^2 & 0 \ -|Z|^2 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

$$R(\partial_1, \partial_3) = \begin{pmatrix} 0 & 0 & |Z|^2 |W|^2 \\ 0 & 0 & 0 \\ -|Z|^2 & 0 & 0 \end{pmatrix}$$

$$R(\partial_2, \partial_3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & |Z|^2 |W|^2 \\ 0 & -|W|^2 & 0 \end{pmatrix}$$

Introduction 0000	Pseudo-Rier	mannian c	alculi	Exam 0000	ples O	Homomorphisms and embeddings •000000	Minimal embeddings	Summary 00
		~						

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Morphisms of real calculi

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		00000000	00
N / I	· c i	1 12			

Morphisms of real calculi

Definition

Let $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, \mathcal{M}, \varphi)$ and $C_{\mathcal{A}'} = (\mathcal{A}', \mathfrak{g}', \mathcal{M}', \varphi')$ be real calculi and assume that $\phi : \mathcal{A} \to \mathcal{A}'$ is a *-algebra homomorphism. If there is a Lie algebra homomorphism $\psi : \mathfrak{g}' \to \mathfrak{g}$ such that

$$\delta(\phi({\sf a}))=\phi(\psi(\delta)({\sf a}))$$
 for all $\delta\in {\mathfrak g}',{\sf a}\in {\mathcal A}$

and a map $\hat{\psi}: M_\Psi o M'$ such that

•
$$\hat{\psi}(m_1 + m_2) = \hat{\psi}(m_1) + \hat{\psi}(m_2)$$
 for all $m_1, m_2 \in M$
• $\hat{\psi}(ma) = \hat{\psi}(m)\phi(a)$ for all $m \in M$ and $a \in \mathcal{A}$
• $\hat{\psi}(\Psi(\delta)) = \varphi'(\delta)$ for all $\delta \in \mathfrak{g}'$,
then $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is called a morphism of real calculing
where $\Psi = \varphi \circ \psi$ and $M_{\Psi} \subseteq M$ is the image of Ψ .

Let us illustrate the above definition with a picture.

"Commuting" diagram of a morphism of real calculi

 $\Psi = \varphi \circ \psi : \mathfrak{g}' \to M$

Compare the above diagram with a manifold Σ' embedded in Σ . ψ – Extension of vector fields on Σ' to vector fields on Σ $\hat{\psi}$ – Restriction of vector fields on Σ tangent to Σ'_{α} , $\beta \in \Sigma$

Morphims of real metric calucli

Definition

Let (C_A, h) and $(C_{A'}, h')$ be real metric calculi and assume that $(\phi, \psi, \hat{\psi}) : C_A \to C_{A'}$ is a real calculus homomorphism. If

$$h'(\varphi'(\delta_1),\varphi'(\delta_2)) = \phi(h(\Psi(\delta_1),\Psi(\delta_2)))$$

for all $\delta_1, \delta_2 \in \mathfrak{g}'$ then $(\phi, \psi, \hat{\psi})$ is called a *real metric calculus homomorphism*.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		00000000	00

Embeddings

Definition

A homomorphism of real calculi $(\phi, \psi, \hat{\psi}) : C_{\mathcal{A}} \to C_{\mathcal{A}'}$ is called an *embedding* if ϕ is surjective and there exists a submodule $\tilde{M} \subseteq M$ such that $M = M_{\Psi} \oplus \tilde{M}$. A homomorphism of real metric calculi $(\phi, \psi, \hat{\psi}) : (C_{\mathcal{A}}, h) \to (C_{\mathcal{A}'}, h')$ is called an *isometric embedding* if $(\phi, \psi, \hat{\psi})$ is an embedding and $M = M_{\Psi} \oplus M_{\Psi}^{\perp}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

IntroductionPseudo-Riemannian calculiExamplesHomomorphisms and embeddingsMinimal embeddingsSummary000

In analogy with classical Riemannian submanifold theory, one decomposes the Levi-Civita connection of the embedded manifold in its tangential and normal parts.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In analogy with classical Riemannian submanifold theory, one decomposes the Levi-Civita connection of the embedded manifold in its tangential and normal parts. Let (C_A, h, ∇) and $(C_{A'}, h', \nabla')$ be psuedo-Riemannian calculi and assume that $(\phi, \psi, \hat{\psi}) : (C_A, h) \to (C_{A'}, h')$ is an isometric embedding and write

$$\nabla_{\psi(\delta)} m = L(\delta, m) + \alpha(\delta, m) \tag{1}$$

$$\nabla_{\psi(\delta)}\xi = -A_{\xi}(\delta) + D_{\delta}\xi \tag{2}$$

for $\delta \in \mathfrak{g}'$, $m \in M_{\Psi}$ and $\xi \in M_{\Psi}^{\perp}$, with

In analogy with classical Riemannian submanifold theory, one decomposes the Levi-Civita connection of the embedded manifold in its tangential and normal parts. Let (C_A, h, ∇) and $(C_{A'}, h', \nabla')$ be psuedo-Riemannian calculi and assume that $(\phi, \psi, \hat{\psi}) : (C_A, h) \to (C_{A'}, h')$ is an isometric embedding and write

$$\nabla_{\psi(\delta)} m = L(\delta, m) + \alpha(\delta, m) \tag{1}$$

$$\nabla_{\psi(\delta)}\xi = -A_{\xi}(\delta) + D_{\delta}\xi \tag{2}$$

for $\delta \in \mathfrak{g}'$, $m \in M_\Psi$ and $\xi \in M_\Psi^\perp$, with

$$\begin{split} L(\delta,m) &= P(\nabla_{\psi(\delta)}m) \qquad \alpha(\delta,m) = \Pi(\nabla_{\psi(\delta)}m) \\ A_{\xi}(\delta) &= -P(\nabla_{\psi(\delta)}\xi) \qquad D_{\delta}\xi = \Pi(\nabla_{\psi(\delta)}\xi), \end{split}$$

where $P: M \to M$ denotes the projection of $M = M_{\Psi} \oplus M_{\Psi}^{\perp}$ onto M_{Ψ} . The map $\alpha: \mathfrak{g}' \times M_{\Psi} \to M_{\Psi}^{\perp}$ is called the *second* fundamental form and $A: \mathfrak{g}' \times M_{\Psi}^{\perp} \to M_{\Psi}$ the Weingarten map.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
			0000000		

Proposition

 $L(\delta, m) = P(\nabla_{\psi(\delta)}m)$ is the Levi-Civita connection of the embedded manifold. (Or, more precisely, an extension of it to the ambient manifold.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Proposition

 $L(\delta, m) = P(\nabla_{\psi(\delta)}m)$ is the Levi-Civita connection of the embedded manifold. (Or, more precisely, an extension of it to the ambient manifold.)

Proposition

If $\delta_1, \delta_2 \in \mathfrak{g}'$, $a_1, a_2 \in \mathcal{A}$ and $\lambda_1, \lambda_2 \in \mathbb{R}$ then

$$\begin{aligned} &\alpha(\delta_1, \Psi(\delta_2)) = \alpha(\delta_2, \Psi(\delta_1)) \\ &\alpha(\lambda_1\delta_1 + \lambda_2\delta_2, m_1) = \lambda_1\alpha(\delta_1, m_1) + \lambda_2\alpha(\delta_2, m_1) \\ &\alpha(\delta_1, m_1a_1 + m_2a_2) = \alpha(\delta_1, m_1)a_1 + \alpha(\delta_1, m_2)a_2 \end{aligned}$$

for $m_1, m_2 \in M_{\Psi}$.

Proposition

If
$$\delta \in \mathfrak{g}'$$
, $m \in M_{\Psi}$ and $\xi \in M_{\Psi}^{\perp}$ then $h(A_{\xi}(\delta), m) = h(\xi, \alpha(\delta, m))$

Gauss' equation relates the curvature of the embedded manifold to the curvature of the ambient manifold via the second fundamental form.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary 00
Gauss'	equation				

Gauss' equation relates the curvature of the embedded manifold to the curvature of the ambient manifold via the second fundamental form.

Proposition

Let
$$\delta_i \in \mathfrak{g}', \ \partial_i = \psi(\delta_i) \in \mathfrak{g}, \ E_i = \Psi(\delta_i) \in M_{\Psi}$$
 and $E'_i = \varphi'(\delta_i) \in M'$ for $i = 1, 2, 3, 4$. Then

 $\phi(h(E_1, R(\partial_3, \partial_4)E_2)) = h'(E'_1, R'(\delta_3, \delta_4)E'_2)$ $+ \phi(h(\alpha(\delta_4, E_1), \alpha(\delta_3, E_2))) - \phi(h(\alpha(\delta_3, E_1), \alpha(\delta_4, E_2))).$ (3)

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		●0000000	00
Minim	al embeddings	5			

• Recall that a minimal embedding (i.e. an embedding such that the induced metric minimizes the area of the embedded manifold) can be characterized by *zero mean curvature*. The mean curvature, is in it simplest form (codimension 1) the trace of the second fundamental form.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		●0000000	00
Minim	al embeddings	5			

- Recall that a minimal embedding (i.e. an embedding such that the induced metric minimizes the area of the embedded manifold) can be characterized by *zero mean curvature*. The mean curvature, is in it simplest form (codimension 1) the trace of the second fundamental form.
- Having the second fundamental form at hand in noncommutative geometry suggests a natural definition of a noncommutative minimal embedding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		●0000000	00
Minim	al embeddings	5			

- Recall that a minimal embedding (i.e. an embedding such that the induced metric minimizes the area of the embedded manifold) can be characterized by *zero mean curvature*. The mean curvature, is in it simplest form (codimension 1) the trace of the second fundamental form.
- Having the second fundamental form at hand in noncommutative geometry suggests a natural definition of a noncommutative minimal embedding.
- Let us present a general construction as well as an example where the noncommutative torus is minimally embedded in the noncommutative 3-sphere.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddir

Free real metric calculi

Definition

A real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is called *free* if there exists a basis $\partial_1, ..., \partial_m$ of \mathfrak{g} such that $\varphi(\partial_1), ..., \varphi(\partial_m)$ is a basis of M as a (right) \mathcal{A} -module.

Definition

A real metric calculus (C_A, h) is called *free* if C_A is free and *h* is invertible.

Invertible implies that $h_{ij} = h(\varphi(\partial_i), \varphi(\partial_j))$ is invertible as a matrix whenever $\partial_1, \ldots, \partial_m$ is a basis of \mathfrak{g} .

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and em

eddings

Summary 00

Free real metric calculi

Definition

A real calculus $C_{\mathcal{A}} = (\mathcal{A}, \mathfrak{g}, M, \varphi)$ is called *free* if there exists a basis $\partial_1, ..., \partial_m$ of \mathfrak{g} such that $\varphi(\partial_1), ..., \varphi(\partial_m)$ is a basis of M as a (right) \mathcal{A} -module.

Definition

A real metric calculus (C_A, h) is called *free* if C_A is free and *h* is invertible.

Invertible implies that $h_{ij} = h(\varphi(\partial_i), \varphi(\partial_j))$ is invertible as a matrix whenever $\partial_1, \ldots, \partial_m$ is a basis of \mathfrak{g} .

Proposition

Let (C_A, h) be a free real metric calculus. Then there exists a unique affine connection ∇ such that (C_A, h, ∇) is a pseudo-Riemannian calculus.

uli Examples 00000 Homomorphisms and embeddings

Mean curvature and minimal embeddings

Definition

Let $(C_{\mathcal{A}}, h)$ and $(C_{\mathcal{A}'}, h')$ be free real metric calculi and let $(\phi, \psi, \hat{\psi}) : (C_{\mathcal{A}}, h) \to (C_{\mathcal{A}'}, h')$ be an isometric embedding. Given a basis $\{\delta_i\}_{i=1}^{m'}$ of \mathfrak{g}' , the *mean curvature* $H_{\mathcal{A}'} : M \to \mathcal{A}'$ of the embedding is defined as

$$H_{\mathcal{A}'}(m) = \phi\left(h(m, \alpha(\delta_i, \Psi(\delta_j)))\right) h'^{ij}, \tag{4}$$

giving trivially $H_{\mathcal{A}'}(m) = 0$ for $m \in M_{\Psi}$. An embedding is called *minimal* if $H_{\mathcal{A}'}(\xi) = 0$ for all $\xi \in M_{\Psi}^{\perp}$.

(One easily prove that the above definition is independent of the basis chosen.)

Minimal embedding of the torus in S^3

As an example of the concepts introduced, let us construct a minimal embedding of the noncommutative torus in the noncommutative 3-sphere, in analogy with the classical case. In this context we shall consider a slightly more general metric on the 3-sphere:

$$h_{ab} = H \begin{pmatrix} |Z|^2 & 0 & 0 \\ 0 & |W|^2 & 0 \\ 0 & 0 & |Z|^2 |W|^2 \end{pmatrix} H^*.$$

with $H \in S^3_{\theta}$ such that HH^* is invertible.

Furthermore, we localize the algebra of the 3-sphere to include the inverses of $|Z|^2$ and $|W|^2$.

Minimal embedding of the torus in S^3

Let us now construct the embedding $(\phi, \psi, \hat{\psi})$ of the noncommutative torus into the noncommutative 3-sphere. Set

$$\phi(Z) = \lambda U$$
 and $\phi(W) = \mu V$,

where λ and μ are complex nonzero constants such that $|\lambda|^2 + |\mu|^2 = 1$. It is easy to verify that with these conditions ϕ is a *-algebra homomorphism. Moreover, since λ and μ are chosen to be nonzero it means that ϕ is surjective as well.

Minimal embedding of the torus in S^3

Let us now construct the embedding $(\phi, \psi, \hat{\psi})$ of the noncommutative torus into the noncommutative 3-sphere. Set

$$\phi(Z) = \lambda U$$
 and $\phi(W) = \mu V$,

where λ and μ are complex nonzero constants such that $|\lambda|^2 + |\mu|^2 = 1$. It is easy to verify that with these conditions ϕ is a *-algebra homomorphism. Moreover, since λ and μ are chosen to be nonzero it means that ϕ is surjective as well. With this choice of ϕ it follows that a Lie algebra homomorphism $\psi:\mathfrak{g}'\to\mathfrak{g}$ compatible with ϕ is given by

$$\psi(\delta_1) = \partial_1$$
 and $\psi(\delta_2) = \partial_2$,

Furthermore, with

$$\hat{\psi}(\mathsf{E}_1) = \mathsf{e}_1$$
 and $\hat{\psi}(\mathsf{E}_2) = \mathsf{e}_2$

(日)((1))

 $(\phi,\psi,\hat{\psi})$ is a real calculus homomorphism.

Minimal embedding of the torus in S^3

Recall that $(\phi, \psi, \hat{\psi})$ is an *embedding* if M (with basis E_1, E_2, E_3) splits into a direct sum $M = M_{\Psi} \oplus \tilde{M}$, where M_{Ψ} is the image of $\varphi \circ \psi$. In this case M_{Ψ} is the module generated by E_1, E_2 and \tilde{M} is the module generated by E_3 . Morphism Note that for any diagonal metric on M, the decomposition above is orthogonal.

Minimal embedding of the torus in S^3

Recall that $(\phi, \psi, \hat{\psi})$ is an *embedding* if M (with basis E_1, E_2, E_3) splits into a direct sum $M = M_{\Psi} \oplus \tilde{M}$, where M_{Ψ} is the image of $\varphi \circ \psi$. In this case M_{Ψ} is the module generated by E_1, E_2 and \tilde{M} is the module generated by E_3 . Morphism Note that for any diagonal metric on M, the decomposition above is orthogonal.

Next, we proceed to compute second fundamental form and the mean curvature of the embedding.

(日)(1)

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		000000●0	00
The m	ean curvature				

The second fundamental form of the embedding is be computed as

$$\begin{aligned} \alpha(\delta_1, \Psi(\delta_1)) &= -E_3(|W|^{-2}H_3 + \mathbb{1})\\ \alpha(\delta_1, \Psi(\delta_2)) &= \alpha(\delta_2, \Psi(\delta_1)) = 0\\ \alpha(\delta_2, \Psi(\delta_2)) &= E_3(\mathbb{1} - |Z|^{-2}H_3), \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

with $H_a = \frac{1}{2}(HH^*)^{-1}\partial_a(HH^*)$ for a = 1, 2, 3, giving

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		000000●0	00
The m	ean curvature				

The second fundamental form of the embedding is be computed as

$$\begin{aligned} \alpha(\delta_1, \Psi(\delta_1)) &= -E_3(|W|^{-2}H_3 + \mathbb{1})\\ \alpha(\delta_1, \Psi(\delta_2)) &= \alpha(\delta_2, \Psi(\delta_1)) = 0\\ \alpha(\delta_2, \Psi(\delta_2)) &= E_3(\mathbb{1} - |Z|^{-2}H_3), \end{aligned}$$

with
$$H_a = \frac{1}{2}(HH^*)^{-1}\partial_a(HH^*)$$
 for $a = 1, 2, 3$, giving
 $H_{T^2_{\theta}}(m) = \phi \left(h(m, \alpha(\delta_1, \Psi(\delta_1)))\right) (h')^{11} + \phi \left(h(m, \alpha(\delta_2, \Psi(\delta_2)))\right) (h')^{22}$
 $= \phi \left(h(m, -E_3(|W|^{-2}H_3 + \mathbb{1}))\right) |\lambda|^{-2} (\tilde{H}\tilde{H}^*)^{-1}$
 $+ \phi \left(h(m, E_3(\mathbb{1} - |Z|^{-2}H_3))\right) |\mu|^{-2} (\tilde{H}\tilde{H}^*)^{-1}$
 $= \phi \left(h(m, E_3)\right) \left(|\mu|^{-2} - |\lambda|^{-2} - 2|\lambda|^{-2}|\mu|^{-2}\tilde{H}_3\right) (\tilde{H}\tilde{H}^*)^{-1},$

(ロ)、(型)、(E)、(E)、 E) の(()

where $\tilde{H} = \phi(H)$.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
0000	00000	00000		0000000●	00
Minima	al embedding				

The mean curvature:

$$H_{T_{\theta}^{2}}(m) = \phi\left(h(m, E_{3})\right)\left(|\mu|^{-2} - |\lambda|^{-2} - 2|\lambda|^{-2}|\mu|^{-2}\tilde{H}_{3}\right)(\tilde{H}\tilde{H}^{*})^{-1}$$

Hence, the (noncommutative) embedding of the torus into the 3-sphere is minimal if and only if

$$\phi(\partial_3(HH^*)) = (|\lambda|^2 - |\mu|^2)\phi(HH^*).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

0000	00000	00000	0000000	0000000	00		
Minimal embedding							

The mean curvature:

$$H_{T_{\theta}^{2}}(m) = \phi\left(h(m, E_{3})\right)\left(|\mu|^{-2} - |\lambda|^{-2} - 2|\lambda|^{-2}|\mu|^{-2}\tilde{H}_{3}\right)(\tilde{H}\tilde{H}^{*})^{-1}$$

Hence, the (noncommutative) embedding of the torus into the 3-sphere is minimal if and only if

$$\phi(\partial_3(HH^*)) = (|\lambda|^2 - |\mu|^2)\phi(HH^*).$$

In the special case where $\phi(\partial_3(HH^*)) = 0$, the embedding is minimal if $|\lambda| = |\mu| = 1/\sqrt{2}$ (in analogy with the classical case).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary ●0
Summ	ary				

• One can develop a noncommutative submanifold theory much in analogy with classical differential geometry, giving the Weingarten's map, the second fundamental form as well as Gauss' equation (relating the curvature of the ambient manifold to the curvature of the embedded manifold).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary ●0
Summa	ary				

- One can develop a noncommutative submanifold theory much in analogy with classical differential geometry, giving the Weingarten's map, the second fundamental form as well as Gauss' equation (relating the curvature of the ambient manifold to the curvature of the embedded manifold).
- With the help of the second fundamental form, one can define the mean curvature and, consequently, a noncommutative minimal embedding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary ●0
Summ	ary				

- One can develop a noncommutative submanifold theory much in analogy with classical differential geometry, giving the Weingarten's map, the second fundamental form as well as Gauss' equation (relating the curvature of the ambient manifold to the curvature of the embedded manifold).
- With the help of the second fundamental form, one can define the mean curvature and, consequently, a noncommutative minimal embedding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• As an example of these new concepts, we constructed a noncommutative minimal embedding of the torus into the 3-sphere.

Introduction 0000	Pseudo-Riemannian calculi 00000	Examples 00000	Homomorphisms and embeddings	Minimal embeddings	Summary ●0			
Summary								

- One can develop a noncommutative submanifold theory much in analogy with classical differential geometry, giving the Weingarten's map, the second fundamental form as well as Gauss' equation (relating the curvature of the ambient manifold to the curvature of the embedded manifold).
- With the help of the second fundamental form, one can define the mean curvature and, consequently, a noncommutative minimal embedding.
- As an example of these new concepts, we constructed a noncommutative minimal embedding of the torus into the 3-sphere.
- We hope that our (naive) considerations shed light on Riemannian submanifolds in noncommutative geometry, and what kind of results to expect.

Introduction	Pseudo-Riemannian calculi	Examples	Homomorphisms and embeddings	Minimal embeddings	Summary
					00

Thanks for listening!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @