Mathematical Institute

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Jiří Nárožný

joint work with Branislav Jurčo, Christian Sämann and Martin Wolf

Simplicial principal bundles and higher connections

Workshop on quantum geometry, 22. 9. 2019, Corfu

- Flight through the simplicial geometry
- Reminder of the Atiyah's approach to connections
- Introduction to higher connections

Basic ingredients of the simplicial (super)geometry are simplicial (super)manifolds and smooth/super simplicial morphisms

<u>Definition</u>: The **simplicial (super)manifold** is a simplicial object in the category (S)Mfd of (super)manifolds, i.e. a contravariant functor $\mathcal{K}: \Delta^{op} \to (S)Mfd$.

<u>Definition</u>: A simplicial (super)manifold is called **Kan simplicial** (super)manifold when it fullfils *Kan property*:

 $\forall i \leq n \in \mathbb{N}_0$ the natural morphism hom $(\Delta^n, \mathcal{K}) \to \text{hom}(\Lambda^n_i, \mathcal{K})$ of manifolds is a surjective submersion

3/20~ Jiří Nárožný, joint work with Branislav Jurčo, Christian Sämann and Martin Wolf

Simplicial principal bundles and higher connections

<u>Definition</u>: The **smooth/super simplicial morphism** is a natural transformation between simplicial (super)manifolds which is smooth/super

These ingredients combined give a category of

smooth/super simplicial manifolds s(S)Mfd and Kan simplicial

manifolds form its sub-category

This category generalizes the category of supermanifolds in the sense of an embedding functor $\mathcal{F} : SMfd \hookrightarrow sSMfd$ given on objects as $\mathcal{F}(X) = \mathbf{X}_c$, where $\mathbf{X}_c([n]) = X$ for all $[n] \in \Delta^{op}$ and all $X \in SMfd$.

Thus, we may define and generalize any concept witnessed in ordinary differential geometry – we will focus on the theory of fiber bundles

<u>Definition</u>: A **simplicial super Lie group** \mathscr{G} is a group object internalized in the category sSMfd.

<u>Definition</u>: A **simplicial principal bundle** is a pair of simplicial maps (π, α) , where $\pi : \mathscr{P} \to \mathscr{M}$ is a *fibration* and $\alpha : \mathscr{P} \times \mathscr{G} \to \mathscr{P}$ the *right action* such that the following is satisfied:

- $\pi_n : \mathscr{P}_n \to \mathscr{M}_n$ is the surjective submersion for all $n \in \mathbb{N}_0$
- $\alpha_n: \mathscr{P}_n \times \mathscr{G}_n \to \mathscr{P}_n$ is principal for all $n \in \mathbb{N}_0$
- Categorical quotient \mathscr{P}/\mathscr{G} (equalizer of mappings $\alpha, \pi_1 : \mathscr{P} \times \mathscr{G} \to \mathscr{P}$) is isomorphic to \mathscr{M}

Considerably large class of examples of simplicial principal bundles are **principal twisted cartesian products**

<u>Definition</u>: Let \mathscr{X} be a Kan simplicial super manifold and \mathscr{G} a simplicial Lie super group. Then, a **twisting function** $\tau : \mathscr{X} \to \mathscr{G}$ is a family of super maps $\{\tau^n : \mathscr{X}_n \to \mathscr{G}_{n-1} \mid n \in \mathbb{N}\}$ subject to

$$\begin{aligned} (\mathbf{f}_{i}^{n-1} \circ \tau^{n})(x) &= \begin{cases} (\tau^{n-1} \circ \mathbf{f}_{1}^{n})(x) ((\tau^{n-1} \circ \mathbf{f}_{0}^{n})(x))^{-1} & \text{for } i = 0\\ (\tau^{n-1} \circ \mathbf{f}_{i+1}^{n})(x) & \text{else} \end{cases} , \\ (\tau^{n+1} \circ \mathbf{d}_{i}^{n})(x) &= \begin{cases} \mathbf{1}_{\mathscr{G}_{n}} & \text{for } i = 0\\ (\mathbf{d}_{i-1}^{n-1} \circ \tau^{n})(x) & \text{else} \end{cases} \end{aligned}$$

for all $x \in \mathscr{X}_n$.

<u>Definition</u>: Let \mathscr{X} and \mathscr{Y} be Kan simplicial manifolds and let \mathscr{G} be a simplicial Lie group. Furthermore, let $\lhd : \mathscr{Y} \times \mathscr{G} \to \mathscr{Y}$ be a right-action of \mathscr{G} on \mathscr{Y} and let $\tau : \mathscr{X} \to \mathscr{G}$ be a twisting function. Then, the **twisted cartesian product**, denoted by $\mathscr{Y} \times_{\tau} \mathscr{X}$, is the simplicial set

$$(\mathscr{Y} imes_{ au} \mathscr{X})_n := \mathscr{Y}_n imes \mathscr{X}_n$$

with face and degeneracy maps defined by

$$\begin{split} \mathbf{f}_i^n(y,x) \ := \ \begin{cases} \left(\mathbf{f}_0^n(y) \lhd \tau(x), \mathbf{f}_0^n(x)\right) & \text{for } i = 0\\ \left(\mathbf{f}_i^n(y), \mathbf{f}_i^n(x)\right) & \text{else} \end{cases} \\ \mathbf{d}_i^n(y,x) \ := \ \left(\mathbf{d}_i^n(y), \mathbf{d}_i^n(x)\right) \end{split}$$

for all $x \in \mathscr{X}_n$, $y \in \mathscr{Y}_n$, and $n \in \mathbb{N}_0$.

8/20 Jiří Nárožný, joint work with Branislav Jurčo, Christian Sämann and Martin Wolf

Simplicial principal bundles and higher connections

<u>Definition</u>: A twisted cartesian product is called **principal** if and only if $\mathscr{Y} = \mathscr{G}$ and the right \mathscr{G} -action is just group multiplication.

This class of simplicial principal bundles has also prominent position in another sense – exactly these bundles can be constructed as categorial pullbacks along classifying maps. [May; Goers & Jardine]

This is why these bundles arise naturally in the construction of 1-jets of Kan simplicial manifolds

Reminder of the Atiyah's approach to connections

In the sense of Ehresmann, connections on principal fiber bundle $P \rightarrow M$ can be globally given by horizontal distribution on tangent bundle *TP*, i.e. by a morphism of vector bundles $H \rightarrow TP$, such that $TP \cong H \oplus V$

Sir M. Atiyah proposed a method of encoding the Ehreshmann connection into the sections of the following exact sequence of Lie algebroids

$$0 \to P \times_G \mathfrak{g} \to TP/\mathsf{G} \xrightarrow{\rho} TM \to 0.$$

Reminder of the Atiyah's approach to connections

This exact sequence of Lie algebroids can be derived by differentiating the exact sequence of Lie groupoids

$$0 \to P \times_{\mathsf{G}} \mathsf{G} \to P \times_{\mathsf{G}} P \xrightarrow{r} \mathsf{Pair}(M) \to 0$$

The Lie groupoid $P \times_{G} P$ is the **Atiyah-Lie groupoid**

The aim is to reproduce the same construction, but in the different category, category **sSMfd**.

<u>Definition</u>: Let \mathscr{G} be a simplicial Lie group and \mathscr{X} a Kan simplicial manifold. Furthermore, let $\mathscr{P} \to \mathscr{X}$ be a simplicial principal \mathscr{G} -bundle over \mathscr{X} . The **simplicial Atiyah-Lie groupoid** of \mathscr{P} , denoted by At(\mathscr{P}), is the simplicial Lie groupoid

 $\mathsf{At}(\mathscr{P}) := \left\{ \begin{array}{cccc} \mathscr{P}_2 \times_{\mathscr{G}_2} \mathscr{P}_2 & \mathscr{P}_1 \times_{\mathscr{G}_1} \mathscr{P}_1 & \mathscr{P}_0 \times_{\mathscr{G}_0} \mathscr{P}_0 \\ \cdots \rightrightarrows & \downarrow & \rightrightarrows & \downarrow & \Rightarrow & \downarrow \\ \mathscr{X}_2 & & \mathscr{X}_1 & & \mathscr{X}_0 \end{array} \right\}$

with \mathcal{G}_n acting diagonally. Face and degeneracy maps are defined

$$\begin{split} & f_i^n([(p_0,p_1)]) \ := \ \left([(f_i^n(p_0),f_i^n(p_1))]\right) \ , \\ & d_i^n([(p_0,p_1)]) \ := \ \left([(d_i^n(p_0),d_i^n(p_1))]\right) \ , \end{split}$$

for all $n \in \mathbb{N}_0$, $0 \le i \le n$, and $p_{0,1} \in \mathscr{P}_n$.

12/20 Jiří Nárožný, joint work with Branislav Jurčo, Christian Sämann and Martin Wolf

Simplicial principal bundles and higher connections

To obtain a sequence of L_{∞} algebroids analogical to original Atiyah sequence, we need some tool to differentiate simplicial groupoids

<u>Theorem</u> [Ševera '06]: Let us have \mathscr{K} Kan simplicial manifold. Then the **1-jet functor** hom(N($Y \times_X Y \rightrightarrows Y$), \mathscr{K}) : SSM^{op} \rightarrow Set is a representable presheaf

If we moreover restrict this functor on the subcategory of surjective submersions of type $\mathbb{R}^{0|n} \times X \to X$, the 1-jet functor turns out to be naturally identifiable with hom $(\mathbb{R}^{0|n}, \mathbb{R}^{0|n})$ -equivariant presheaf on SMfd

How does it provide us a method of differentiating simplicial groupoids?

<u>Claim</u>: A representative of a presheaf hom(N($Y \times_X Y \Rightarrow Y$), *N*BG) is an NQ manifold corresponding to the Lie algebra of G.

We can generalise this claim to the category of simplicial groupoids since there is a generalization of the classifying functor B, also known as delooping functor \bar{W} : sGrpd \rightarrow sSMfd

Thus we are interested in finding representatives for 1-jets of presheaves of type hom(N($Y \times_X Y \rightrightarrows Y$), $\overline{W}(\mathscr{G})$) for \mathscr{G} being the simplicial Atiyah-Lie groupoid

<u>Definition</u>: Let \mathscr{G} be a simplicial Lie group and $\mathscr{P} \to \mathscr{X}$ a simplicial principal \mathscr{G} -bundle over a Kan simplicial manifold \mathscr{X} . A **higher connection** on \mathscr{P} is a section of the anchor map

 $\rho: J^1(\overline{W}(\operatorname{At}(\mathscr{P}))) \to J^1(\overline{W}(\operatorname{Pair}(\mathscr{X}))).$

Example: 2-Connection on principal twisted cartesian product

Let us have a crossed module $\partial: H \to G$ as a structure 2-group

and a simplicialy constant base X

As a simplicial Atiyah-Lie groupoid we get the nerve of the double groupoid

$$(\mathcal{P} \times_{\mathcal{G}} \mathcal{P} \rightrightarrows \mathcal{X}) = \left(\left(\begin{array}{cc} \mathscr{P}_{1} & \mathscr{P}_{1} \\ \prod & \times_{\mathcal{G}} & \prod \\ \mathscr{P}_{0} & \mathscr{P}_{0} \end{array} \right) \begin{array}{c} X \\ \rightrightarrows & \prod \\ X \end{array} \right)$$

After applying the delooping functor \bar{W} on simplicial Atiyah-Lie algebroid we get

$$\begin{split} &\overline{\mathsf{W}}_{0}(\mathsf{At}(\mathscr{P})) \cong X , \\ &\overline{\mathsf{W}}_{1}(\mathsf{At}(\mathscr{P})) \cong \mathscr{P}_{0} \times_{\mathscr{G}_{0}} \mathscr{P}_{0} , \\ &\overline{\mathsf{W}}_{2}(\mathsf{At}(\mathscr{P})) \cong (\mathscr{P}_{1} \times_{\mathscr{G}_{1}} \mathscr{P}_{1})_{\mathsf{f}_{0}^{\mathsf{h}} \cap \mathsf{f}_{0}^{\mathsf{h}}} \times_{\mathsf{f}_{1}^{\mathsf{h}}} (\mathscr{P}_{0} \times_{\mathscr{G}_{0}} \mathscr{P}_{0}) \end{split}$$

Differentiation procedure gives categorified Atiyah sequence

- Interpreting morphisms in dual picture CE(At(P)) → CE(TX) as well known fields
- Simplicial Atiyah sequences for non-strict cases
- Computing Atiyah algebroids for higher groups
- Generalisation the notion of higher connection to all simplicial principal bundles (not only PTCP)

Thank you :-)