
On Non-Supersymmetric String Model Building

Ioannis Rizos
Physics Department, University of Ioannina

Workshop on Recent Developments in Strings and Gravity, Sept 10-16, 2019
Corfu Summer Institute
Hellenic School and Workshops on Elementary Particle Physics and Gravity
Corfu, Greece

I. R, I. Florakis and K. Violaris-Gkountonis,
arXiv:1608.04582 [hep-th], Nucl. Phys. B 913 (2016) 495
arXiv:1703.09272 [hep-th], Nucl. Phys. B 921 (2017) 1, work in progress



The Standard Model

The Standard Model of particle interactions has been proved
remarkably successful in interpreting the results of recent
experiments. However, it is considered as a low energy
effective theory as it leaves a number of unanswered
questions:
Mass origin, dark matter, charge quantization, hierarchy
problem, gravity...)

Supersymmetry is a well studied, compelling Standard Model
extension that could help to resolve some of the above SM
problems. The introduction of SUSY at a few TeV leads also to
coupling unification.

However, to date, experiments have not provided any evidence
for supersymmetry.
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Non-supersymmetric strings

String theory provides a unified framework of all interactions
including the Standard Model.

Space-time supersymmetry is not required for consistency in
string theory.

From the early days of the first string revolution it was known
that heterotic strings include both the supersymmetric E8 × E8
and SO(32) models and the non-supersymmetric tachyon free
SO(16)× SO(16) theory.

However, non-supersymmetric string phenomenology has not
received much attention until recently.
see e.g.
S. Abel, K. R. Dienes and E. Mavroudi (2015,2017) , J. R. and I. Florakis (2016,2017) , Y.
Sugawara, T. Wada (2016) , A. Lukas, Z. Lalak and E. E. Svanes (2015) , S.G. Nibbelink,
O. Loukas, A. Mütter, E. Parr, P. K. S. Vaudrevange (2017)
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SUSY breaking in String Theory

Any scenario of supersymmetry breaking in the context of
string theory has to address some important issues, as

• Resolve MW/MP hierarchy
• Compatibility with gauge coupling evolution (“unification”)
• Account for the smallness of the cosmological constant
• Resolve possible instabilities (tachyons)
• Moduli field stabilisation
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Coordinate dependent compactifications

The Scherk–Schwartz compactification provides an elegant
mechanism break SUSY in the context of String Theory. The
implementation of a stringy Scherk–Schwartz mechanism
requires an extra dimension X5 and a conserved charge Q.
Upon compactification

Φ
(
X5 + 2πR

)
= eiQΦ

(
X5
)

we obtain a shifted tower of Kaluza–Klein
states for charged fields, starting at
MKK = |Q|

2πR

Φ(X5) = e
i QX5
2πR
∑
n∈Z

Φn ei nX
5/R
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Coordinate dependent compactifications

Q = Fermion number⇒ leads to different masses for
fermions-bosons (lying in the same supermultiplet) and thus
to spontaneous breaking of supersymmetry.

SUSY breaking related to the compactification radius M ∼ 1
R

We consider the implementation of this mechanism in a class
of phenomenologically interesting SO(10) heterotic string
models.

see e.g. J. Scherk and J. H. Schwarz (1978,1979) , R. Rohm (1984) , C. Kounnas and
M. Porrati (1988) , S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner (1989) , C. Kounnas
and B. Rostand, (1990)
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Gravitino mass

We consider compactifications of the six internal dimensions in
three separate two-tori parametrised by the T(i),U(i), i = 1, 2, 3
moduli. For simplicity, we will consider realising the
Scherk–Schwartz mechanism utilising the T(1),U(1) torus.
At tree level the gravitino receives a
mass

m3/2 =
|U(1)|√
T(1)2 U(1)

2

=
1
R1

for a square torus: T = ıR1 R2,U = ıR2/R1
All T(i),U(i) moduli remain massless.

At R1 → ∞ we have m3/2 = 0 and the supersymmetry is
restored.
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One loop potential

The effective potential at one loop, as a function moduli
tI = T(i),U(i), is obtained by integrating the string partition
function Z(τ1, τ2; tI) over the worldsheet torus Σ1

Vone−loop(tI) = − 1
2(2π)4

∫
F

d2τ
τ 32

Z(τ, τ̄ ; tI) ,

where τ = τ1 + iτ2 and F is the
fundamental domain .

For given values of the moduli

Z =
∑
n∈Z/2
n≥−1/2

∑
m∈Z

Zn,m qnr qmi =
∑
n∈Z/2
n≥−1/2

 [n]+2∑
m=−[n]−1

Zn,m qmi

 qnr .
where qr = e−2πτ2 and qi = e2πiτ1
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One loop moduli potentials
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Typical one-loop potential as a function of the modulus T2 = R2 .

Undesirable features: SUSY breaking at the string scale, huge
cosmological constant, ...

8



One loop potential: Analytic results

Z =
1
28

1
η12η̄24

∑
H1,G1=0,1

Γshift2,2

[
H1
G1

](
T(1),U(1)

)
×
∑

h2,H=0,1
g2,G=0,1

∑
k,ρ,γ2,γ3=0,1
ℓ,σ,δ3,δ4=0,1

(−1)Φ̂′ × ϑ

[
1+ H1 + h2
1+ G1 + g2

]2
ϑ

[
1+ H1
1+ G1

]2

× ϑ̄

[
k
ℓ

]6
ϑ̄

[
k+ h2
ℓ+ g2

]2
ϑ̄
[ρ
σ

]4
ϑ̄

[
ρ+ H
σ + G

]4
ϑ

[
γ2
δ2

]
ϑ

[
γ2 + h2
δ2 + g2

]
× ϑ̄

[
γ2
δ2

]
ϑ̄

[
γ2 + h2
δ2 + g2

]
ϑ

[
γ3
δ3

]
ϑ

[
γ3 − h3
δ3 − g3

]
ϑ̄

[
γ3
δ3

]
ϑ̄

[
γ3 − h3
δ−g3

]
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One loop potential: Asymptotic limit R→ ∞

The asymptotic behaviour of the one loop potential is

lim
R→∞

Vone-loop(R) = −(nB − nF)
24π7R4

∑
m1,m2∈Z

U32∣∣m1 +
1
2 + Um2

∣∣6 +O
(
e−

√
2πR
)

lim
R→∞

Vone-loop(R) = ξ
(nB − nF)

R4 + exponentially supressed

where ξ is a constant and nB,nF stand for the number of
bosonic and fermionic degrees of freedom respectively.

Super no scale models nB = nF. Cosmological constant is
exponentially small for large R.

C. Kounnas and H. Partouche (2016), T. Coudarchet and H. Partouche (2018)
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A class of models

Consider a big class of semi-realistic Z2 × Z2 heterotic string
vacua for explicit realisations of the Scherk–Schwarz scenario.
Study chirality, moduli potential and thresholds.

To this end we utilise both the free fermionic formulation and
orbifold formulation. In the former we have full control of the
spectrum in the latter we have explicit moduli dependence.

In the free fermionic formulation we use the model
classification techniques developed in
A. Gregori, C. Kounnas and J. R. (1999)
A. E. Faraggi, C. Kounnas, S. E. M. Nooij and J. R. (2004)
A. E. Faraggi, C. Kounnas and J. R. (2007)
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The class of SO(10) models

We consider a class of four dimensional N = 1 heterotic
models spontaneously broken to N = 0 via the Scherk–Schwarz
mechanism. At technical level, this class is generated by 9
basis vectors in the free fermionic formulation and is
parametrised by a set of 36 phases associated with generalised
GSO projections. It comprises 29(9−1)/2+1 ∼ 1011 (a priori)
distinct models.

The E8×E8 gauge symmetry is reduced to

SO(10)×SO(8)2 × U(1)2

We select models using the following criteria

• absence of tachyons
• SO(10) chirality
• compatibility with Scherk–Schwarz breaking of N = 1 SUSY 12



Class of models: Basis vectors

The free fermions in the light-cone gauge are:
left: ψµ, χ1,...,6, y1,...,6, ω1,...,6

right: ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8

The class of vacua under consideration is defined by
β1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, ϕ̄1,...,8}
β2 = S = {ψµ, χ1,...,6}
β3 = T1 = {y12, ω12|ȳ12, ω̄12}
β4 = T2 = {y34, ω34|ȳ34, ω̄34}
β5 = T3 = {y56, ω56|ȳ56, ω̄56}
β6 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, ψ̄1,...,5, η̄1}
β7 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, ψ̄1,...,5, η̄2}
β8 = z1 = {ϕ̄1,...,4}
β9 = z2 = {ϕ̄5,...,8}
and a variable set of 9(9− 1)/2+ 1 = 37 phases c

[
βi
βj

]
. 13



Chirality

Fermion generations, transforming as SO(10) spinorials, arise
from BIpq = S+ bIpq, I = 1, 2, 3 where b1pq = b1 + p T2 + q T3,
b2pq = b2 + p T1 + q T2, b3pq = x+ b1 + b2 + p T1 + q T2, with
p,q ∈ {0, 1}, and x = 1+ S+

∑3
i=1 Ti +

∑2
k=1 zk.

Number of generations N =
∑

I=1,2,3 χ
I where

χ1pq = −4 c
[

B1pq
S+ b2 + (1− q)T3

]
P1pq ,

χ2pq = −4 c
[

B2pq
S+ b1 + (1− q)T3

]
P2pq ,

χ3pq = −4 c
[

B3pq
S+ b1 + (1− q)T1

]
P3pq ,

and

PIpq =
1
23

(
1− c

[
BIpq
TI

])(
1− c

[
BIpq
z1

])(
1− c

[
BIpq
z2

])
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Orbifold Partition function

The one-loop partition function at the generic point reads

Z =
1

η12η̄24
1
23
∑
h1,h2,H
g1,g2,G

1
23
∑
a,k,ρ
b,ℓ,σ

1
23

∑
H1,H2,H3
G1,G2,G3

(−1)a+b+HG+Φ

× ϑ[ab]ϑ[
a+h1
b+g1 ]ϑ[

a+h2
b+g2 ]ϑ[

a−h1−h2
b−g1−g2 ]

× Γ
(1)
2,2[

H1
G1 |

h1
g1 ](T

(1),U(1)) Γ
(2)
2,2[

H2
G2 |

h2
g2 ](T

(2),U(2)) Γ
(3)
2,2 [

H3
G3 |

h1+h2
g1+g2 ](T

(3),U(3))

× ϑ̄[kℓ ]
5 ϑ̄[k+h1ℓ+g1 ] ϑ̄[

k+h2
ℓ+g2 ] ϑ̄[

k−h1−h2
ℓ−g1−g2 ] ϑ̄[

ρ
σ]
4 ϑ̄[ρ+Hσ+G]

4

Where T(i) = T(i)1 + iT(i)2 , U(i) = U(i)
1 + iU(i)

2 are the moduli of the
three two tori, η(τ) is the Dedekind eta function and ϑ[αβ ](τ)
stand for the Jacobi theta functions.

Connection with fermionic formulation
Fermionic point T = ı and U = (1+ ı)/2
Phase Φ

(
c
[
βi
βj

])
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Twisted/shifted lattices

Γ2,2[
Hi
Gi |

h
g](T,U) =


∣∣ 2η3
ϑ[1−h
1−g]

∣∣2 , (Hi,Gi) = (0, 0) or (Hi,Gi) = (h,g)

Γshift
2,2 [

Hi
Gi ](T,U) , h = g = 0

0 , otherwise

,

Γshift
2,2 [

Hi
Gi ](T,U) =

∑
m1,m2
n1,n2

(−1)G(m1+n2) q
1
4 |PL|

2 q̄
1
4 |PR|

2
,

with

PL =
m2 +

Hi
2 − Um1 + T(n1 + Hi

2 + Un2)√
T2U2

,

PR =
m2 +

Hi
2 − Um1 + T̄(n1 + Hi

2 + Un2)√
T2U2

.
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Typical partition functions

Some typical expansions of partition functions (fermionic point)

Z(A) =
2qi

qr
− 16qi√qr

+ (−312+ 32qi + 56q2i )

+

(
4064+ 6144

qi
+ 512qi − 416q2i

)
√
qr

+

(
12288+ 16384

q2i
+
103680
qi

− 12320qi − 256q2i + 792q3i
)
qr + . . .

Z(B) =
2qi

qr
− 32qi√qr

+
(
8+ 224qi + 56q2i

)
+

(
1984+ 2048

qi
− 1024qi − 832q2i

)
√
qr

+

(
30720+ 10240

q2i
+
92160
qi

+ 1760qi + 5376q2i + 792q3i
)
qr + . . .

Z(C) =
2qi

qr
− 16qi√qr

+
(
40+ 64qi + 56q2i

)
+

(
224+ 6912

qi
+ 768qi − 672q2i

)
√
qr

+

(
14336+ 9216

q2i
+
118656
qi

− 10144qi + 3072q2i + 792q3i
)
qr + . . .
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Classification

A comprehensive computer scan results in 7× 104 models that
satisfy all criteria.

We expand the partition function in powers of qr = e−2πτ2

Z =
∑
n∈Z/2
n≥−1/2

Wn qnr

The constant term at the fermionic point W0 or the generic
point WG

0 is proportional to nB − nF.

W0 < 0 W0 = 0 W0 > 0
WG
0 < 0 3560 0 1856

WG
0 = 0 96 0 8848

WG
0 > 0 0 0 62192
Total 3656 0 72896

Table 1: Number of chiral models for the subclasses of models with
WG
0 positive/negative/zero and W0 positive/negative.
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Numerical calculation

n Model A Model B
−1 24.4 24.4
− 1
2 −9.87 −19.7
0 172. 2.11
1
2 −29.6 −17.7
1 3.13 −2.73
3
2 9.71 8.18

Total +170. −5.47

Contributions to the one-loop potential 2(2π)4V1−loop arranged
according to energy level for two models (A and B) at the fermionic
point.
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Chiral super no-scale models

A comprehensive scan shows that a number of approximately
7× 104 models in the class under consideration satisfy all
criteria. Among them we have 9× 103 super no-scale models. A
tedious numerical calculation leads to 1792 models with V0 > 0.

net chirality
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One loop potentials: Super no scale model potentials
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One loop potentials: Super no scale model potentials
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One loop potential as a function of the T2,U2 moduli.
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One loop potentials: Super no scale models

T2

U2

V

One loop potential as a function of the T2,U2 moduli.
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Gauge coupling Running - Thresholds

The gauge coupling running is calculable in the context of
string theory. It turns out that they depend on the
compactification moduli. At one loop level

16π2

g2i (µ)
= ka

16π2

g2s
+ ba log

M2s
µ2

+∆a

where Ms = gsMP , MP = 1/
√
32GN.

ba ↔ Massless modes ∆a ↔ Massive modes

∆a = ∆′
a(ti) + ∆̂a

see e.g. L. J. Dixon, V. Kaplunovsky and J. Louis (1991) , I. Antoniadis, E. Gava , K.S.
Narain (1992) , C. Angelantonj, I. Florakis and M. Tsulaia (2014) , Florakis (2015)
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Decompactification problem

∆′
a −∆′

b =
∑
i

{
−αiab log

[
Ti2Ui2 |η(Ti) η(Ui)|4

]
−βiab log

[
Ti2Ui2 |ϑ4(Ti)ϑ2(Ui)|4

]
−γiab log

[
|̂j2(Ti/2)− ĵ2(Ui)|4|j2(Ui)− 24|4

]}
,

αiab, β
i
ab, γ

i
ab model dependent coefficients. The dominant

growth at Ti2 ≫ 1

∆′
a = αia

(π
3 T

i
2 − log Ti2

)
+ . . . ,

Solutions ? : aia = 0, . . .
Antoniadis (1990)
E. Kiritsis , C. Kounnas, P.M. Petropoulos, J. R. (1996)
C. Angelantonj and I. Florakis (2019)
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Computation of the thresholds

The full moduli dependent threshold part takes the form

∆a = −ka48 Y+ β̂a∆ , where

∆ =

∫
F

d2τ
τ2

Γ2,2(T,U) = − log
[
T2U2 |η(T) η(U)|4

]
.

and the universal part Y is defined as

Y =

∫
F

d2τ
τ2

Γ2,2(T,U)
(
ˆ̄E2Ē4Ē6 − Ē34

∆̄
+ 1008

)
,

At the limit T2 ≫ 1

Y = 48πT2 +O(T−12 ) , ∆ =
π

3 T2 − log T2 +O(e−2πT2)

and finally

∆a =

(
β̂a
3 − ka

)
πT2 +O(log T2) . 26



Computation of the thresholds

A comprehensive scan over a class of 7× 104 models with
SO(10)× SO(8)2 × U(1)2 gauge symmetry yields for the
non-abelian gauge couplings

b̂10 b̂8 b̂8′ # of models %
3 3 3 29456 38.5
9 -3 -3 15840 20.7
-3 9 9 14000 18.3
. . . ... 22.5

In a big class of vacua we have β̂a = 3ka (decompactification
condition) , hence there is no decompactification problem for
the gauge couplings g10,g8,g′8

∆a =
������HHHHHH

(
β̂a
3 − ka

)
πT2 +O(log T2)
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Gauge coupling running

For models satisfying the decompactification condition
β̂a = 3ka the coupling running is

16π2

g2a(µ)
= ka

16π2

g2s
+ βa log

M2s
µ2

+ β′a log

(
2e1−γ

3π
√
3
M2KK
M2s

)
+ . . .

Here, γ is the Euler-Mascheroni constant, MKK = 1/
√
T2 is the

Kaluza-Klein scale. βa = b(1)a + b(2)a + b(3)a and β′a = b(1)a + b(2)a
with b(1)a = β̂a
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A Standard Model scenario

k2 + kY
αs

=
1
αem

− β2 + βY
4π log

M2s
M2Z

−
β′2 + β′Y
4π log

(
2e1−γ

3π
√
3
M2KK
M2s

)

sin2 θW =
k2

k2 + kY
+
αem
4π

[
kYβ2 − k2βY
k2 + kY log

M2s
M2Z

+

kYβ′2 − k2β′Y
k2 + kY log

(
2e1−γ

3π
√
3
M2KK
M2s

)]
1

α3(MZ)
=

k3
αem(k2 + kY)

+
1
4π

[(
β3 −

k3(β2 + βY)

k2 + kY

)
log

M2s
M2Z

+

(
β′3 −

k3(β′2 + β′Y)

k2 + kY

)
log

(
2e1−γ

3π
√
3
M2KK
M2s

)]
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A Standard Model scenario

For (βY, β2, β3) = (−7,− 19
6 ,

41
6 ) , (kY, k2, k3) = ( 53 , 1, 1) and

(β′Y, β
′
2, β

′
3) = (− 15

2 ,−
43
6 ,−

23
3 ).
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Towards realistic model building

The Pati–Salam model SU(4)× SU(2)L × SU(2)R can be easily
implemented in this framework.

In the free fermionic language it requires the introduction of
one additional vector

β10 = α =
{
ψ̄45
}

This would allow for the study of more realistic scenarios both
from the point of view of the spectrum and gauge coupling
thresholds.

We have constructed a few consistent models. The full
classification is under investigation.
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Conclusions

We have analysed a class of non supersymmetric heterotic
vacua where SUSY is spontaneously broken via the
Scherk–Schwartz mechanism. In this context we have
constructed semi-realistic models with the following
interesting characteristics

• Fermion chirality
• Exponentially small cosmological constant
• Models where the SUSY breaking scale Msusy ∼ 1

R ≪ MPlanck
• Finite gauge coupling running (no decompactification
problem)

• These developments pave the way for
non-supersymmetric string phenomenology (consider
more realistic models e.g. Pati–Salam)

32


