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Introduction

String Theory: UV complete framework for addressing questions

pertinent to quantum gravity → many formal developments.

A traditional goal: Unification of all interactions, including gravity.

(String pheno) String vacua as phenomenological extensions of

SM, e.g. N = 1, SUSY breaking, . . .

+ Necessary to incorporate quantum corrections
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Introduction

Best studied: F 2 in heterotic effective action at 1-loop (in gs)

• running of gauge couplings

• String Unification: MU =?, gU =? (compare MGUT , gGUT )

Compute 2-point function of gauge bosons on Σ2 and split into

• massless contributions → logarithmic (field theory)

• heavy string states → threshold correction ∆a
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Introduction

Running coupling ga(µ) for gauge group factor Ga in DR

16π2

g2
a (µ)

= ka
16π2

g2
s

+ ba log

(
ξ

4π2
M2

s

µ2

)
+ ∆a

and ξ ≡ 8πe1−γ/3
√
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String scale data: Ms , gs not independent

MP does not renormalise at any loop!

Ms = gs
MP√
32π

Moduli dependence in ∆a via KK/winding masses
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Gauge thresholds and Universality in N = 2

Calculating ∆a even at one loop is non-trivial.

Properties best visible in N = 2 vacua: e.g. K3×T 2

• One-loop exact in gs

• Realised as T 4/ZN × T 2 orbifold, N = 2, 3, 4, 6

• For simplicity W = 0: factorised T 2 and Kac-Moody lattices

• Only T 2 moduli appear: T ,U

With these assumptions, N = 2 universality
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Gauge thresholds and Universality in N = 2

∆a decomposes into

∆N=2
a = −kaŶ + ba∆̂

Ŷ known as the “Universal part”

• due to presence of gravitational sector

• independent of charges under Ga

∆̂ known as the “Running part”

• multiplied by N = 2 beta function

• charged heavy states running in the loop
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Gauge thresholds and Universality in N = 2

Modularity, holomorphy and 6d gravitational anomalies uniquely fix

Ŷ =
1

12

∫
F

d2τ

τ22
Γ2,2(T ,U)

(
ˆ̄E2Ē4Ē6 − Ē 3

4

η̄24
+ 1008

)

∆̂ =

∫
F

d2τ

τ22
(Γ2,2(T ,U)− τ2)

With some work, these modular integrals can be computed

Ŷ =
1

2
log |j(T )− j(U)|4 +

4π

3T2
E (2;U) + O(e−2πT2)

∆̂ = − log
[
ξT2U2|η(T )η(U)|4

]
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Gauge thresholds and Universality in N = 2

Decomposition ∆N=2
a = −kaŶ + ba∆̂ has physical consequences

Natural unification of all gauge couplings

MU =
ξMP

2π
gs exp(∆̂/2) , gs = gU

(
1 +

g2
U

16π2
Ŷ

)−1/2

• All couplings automatically unify at µ = MU

• Common coupling ga(MU) = gU/
√
ka

• Moduli dependent values for MU and gU (via Ŷ , ∆̂)
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Gauge thresholds and Universality in N = 2

Question
Assuming Desert, how do we choose T ,U such that String

Unification MU , gU match corresponding GUT values?

MU = MGUT ∼ 2× 1016GeV , g2
U = g2

GUT = 4π/25

Explicit expressions for Ŷ , ∆̂ reveals no value in (T ,U) compatible

with this requirement

• What is the origin of this discrepancy?
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Gauge thresholds and Universality in N = 2

Inspect ratio of String Unification to GUT scale

MU

MGUT
=

ξ

4(2π)3/2
MP

MGUT

gGUT√
1 +

g2
GUT
16π2 Ŷ

exp(∆̂/2)

MP/MGUT ∼ 6.1× 102, so we need suitable values for Ŷ , ∆̂ to

lower string unification scale down to GUT scale

This turns out to be impossible due to unbroken O(2, 2)

O(2, 2;Z) = SL(2;Z)T × SL(2;Z)U n Z2

• T-duality symmetry in both Ŷ and ∆̂

• Thresholds have extrema at fixed points

• Minimum at T = U = e2πi/3 gives Ŷ ∼ 27.6, ∆̂ ∼ 0.068
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Gauge thresholds and Universality in N = 2

In N = 2 universality with O(2, 2;Z)

String Unification overshoots GUT scale by factor ∼ 20

This is a well known story but the role of unbroken O(2, 2;Z) was

not fully appreciated in the past
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GUT scale Mismatch and the Decompactification problem

Let’s forget SU-GUT scale mismatch for a moment

A related problem arises at large volume

T2 = ImT = vol(T 2)� M−2s

KK scale MKK ∼ 1/
√
T2 : much lower than Ms or even MGUT

MU is pushed above MP exponentially fast

Effectively 6d physics: gauge coupling has dimensions of length

∆̂ ∼ π

3
T2 , Ŷ ∼ 4πT2

Thresholds grow linearly with T 2 volume

Depending on sgn(ba), either decoupling or non-perturbative
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GUT scale Mismatch and the Decompactification problem

Non-perturbative regime: theory loses predictability

“Decompactification problem”

Technically, linear growth arises from Dedekind and Klein functions

η(T ) = q1/24
∏
n>0

(1− qn) , j(T ) =
1

q
+ 196884q + . . .

where q = exp(2πiT )

• T2|η(T )|4 and j(T ) are automorphic functions of SL(2;Z)T

• They enter Ŷ and ∆̂ and reflect T-duality symmetry
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GUT scale Mismatch and the Decompactification problem

One (obvious) solution:
Keep moduli close to string scale: M2

s T2 ∼ 1

• SU-GUT scale mismatch persists

• In N = 1, large volume is necessary

(cf. Ibanez-Luest, Nilles-Stieberger,. . . )

• SUSY breaking: potential may lead to large volume

So this won’t do. . .
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GUT scale Mismatch and the Decompactification problem

Look at these two different problems:

SU/GUT mismatch vs. Decompactification

At first sight, they look uncorrelated

• one is related to extrema of Ŷ , ∆̂, i.e. small volume

• the other arises at large volume
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GUT scale Mismatch and the Decompactification problem

Closer look: both problems share a common origin

It all goes back to unbroken SL(2;Z)T ⊂ O(2, 2;Z)

Technically, symmetry implies ∆̂, Ŷ ∼
∫
F Γ2,2(T ,U)× stuff

The Narain lattice reflects O(2,2) and asymptotically

Γ2,2(T ,U) =
∑

m,n∈Z2

qP
2
L/4q̄P

2
R/4 → T2 + . . .
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GUT scale Mismatch and the Decompactification problem

Both problems can be solved simultaneously
(Angelantonj, I.F., 2019)

provided T-duality group is broken such that

SL(2;Z)T → Γ1(N)T

via the congruence subgroup

Γ1(N) =

{(
a b

c d

)
∈ SL(2;Z)

∣∣∣∣ a, d = 1 (modN), b = 0 (modN)

}

K3 and T 2 no longer factorise, rather elliptic fibration

Exactly solvable CFT realisation: freely acting ZN orbifolds

Twists in K3 and shifts along non-trivial cycles of T 2
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GUT scale Mismatch and the Decompactification problem

How does it look like?

Morally:

∫
F

Γ2,2 ×

 1

N

∑
h,g∈ZN

A[hg ]

→ ∫
F

 1

N

∑
h,g∈ZN

Γ2,2[hg ]A[hg ]


• h : orbifold sectors

• g : projection

• momentum shift Γ2,2[hg ]↔ geometric X (not X̃ )

• T-duality SL(2;Z)T → Γ1(N)T
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GUT scale Mismatch and the Decompactification problem

Partial unfolding (cf. Angelantonj, I.F., Pioline)

∆a =

∫
F

1

N
Γ2,2 ×A[00] +

∫
FN

1

N
Γ2,2[01]×A[01]

here FN = H+/Γ0(N) fundamental domain of Hecke congruence

subgroup Γ0(N)τ ⊂ SL(2;Z)τ

Γ0(N) =

{(
a b

c d

)
∈ SL(2;Z)

∣∣∣∣ c = 0 (modN)

}

Also: helicity supertrace in A[00] vanishes (N = 4)

∆̂ =

∫
FN

d2τ

τ22
Γ2,2[01] , Ŷ =

∫
FN

d2τ

τ22
Γ2,2[01](T ,U) ΦN(τ)

Momentum shift X → X + (λ1 + λ2U)/N with λi ∈ ZN selects

residual Γ1(N)T factor 19



GUT scale Mismatch and the Decompactification problem

Large volume behavior at most logarithmic

∆̂ ∼ − log (ξfN(U)T2) + O(e−2πT2) , Ŷ ∼ O(T−12 )

fN : automorphic function of U w.r.t. residual T-duality group

O(2, 2;Z)→ Γ1(N)T × G (N)U

MKK ∼ MSUSY ∼ 1/
√
T : effectively N = 4 above KK scale

and eliminates linear growth in gauge thresholds

This solves the Decompactification problem

(Kiritsis, Kounnas, Petropoulos, Rizos 1996)
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GUT scale Mismatch and the Decompactification problem

However, the breaking to Γ1(N)T also makes ∆̂ unbounded from

below.

Independently of new extrema of ∆̂, one can always choose T2

such that MU = MGUT

T2 '
g2
GUT

128π3 fN(U)

(
MP

MGUT

)2

Assuming fN(U) = O(1) as in typical orbifolds, we find T2 ∼ 50

This also resolves the SU/GUT scale mismatch!
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N = 1 and Chirality

So far, we assumed unbroken N = 2 SUSY → universality

We now want to apply this to chiral N = 1 vacua

∆a = da +
∑
i

(
−kaŶ (i) + βa,i∆̂

(i)
)

• da moduli independent N = 1 constants

• i labels N = 2 subsectors

• βa,i beta function coeffs for i subsector (relations to 6d

anomaly) Derendinger, Ferrara, Kounnas, Zwirner 1992

Unification is no longer automatic
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N = 1 and Chirality

Additional constraints on charged spectrum required

Define

kaΦa ≡ ba log

(
ξ

4π2
M2

s

M2
U

)
+ da +

∑
i

βa,i∆̂
(i)

and impose

Φa = Φb = . . .

for all unifying gauge group factors Ga,Gb, . . .

• Case da = 0, Φa = 0 reduces to Ibanez-Luest 1992

• General case applies to both ‘mirage’ and ‘true’ unification

• For ‘true’, conditions trivialise → choose Ti to match GUT

• For ‘mirage’ with 3 Gas, can always satisfy Φ-conditions and

match GUT by tuning Ti s
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N = 1 and Chirality

Now consider: heterotic N = 1 as T 6/Γ limits of CY, with Γ

preserving 4 Killing spinors

Thresholds are moduli independent unless Γ contains elements

preserving 8 supercharges: “N = 2 subsectors”

Again, they decompose

∆a = da +
∑
i

(
−kaŶ (i) + βa,i∆̂

(i)
)

In general, this runs into Decompactification problem

Need to break SL(2;Z)T → Γ1(N)T for all N = 2 subsectors

Challenge: do this without spoiling chirality (non-trivial)
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N = 1 and Chirality

This is impossible in Z2 × Z2 orbifolds - or even (Z2)n
Kiritsis, Kounnas, Petropoulos, Rizos 1996 and Faraggi, Kounnas, Partouche 2015

To get Γ1(N)T in all N = 2 subsectors, we need free action

• twisted sectors are massive

• untwisted sectors are non-chiral (real action of Z2)

so chirality is lost

Exception to this no-go
Balance Ŷ against ∆̂ (I.F. and Rizos, 2017)

See talk by J. Rizos
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An explicit example

Incompatibility between Γ1(N)T and chirality

Can be lifted by choosing T 6/Γ with complex action Γ on

untwisted fermions

An example T 6/Z3 × Z′3 at fixed Ui = e2πi/6

• Z3: v = (13 ,
1
3 ,

2
3) - “Z-orbifold” Dixon, Harvey, Vafa, Witten 1985

• standard embedding, W=0

• Z′3: w = (13 + δ,−1
3 + δ, δ)

• opposite rotations in first two T 2s

• order 3 shifts zi → zi + (1 + Ui )/3 on all three 2-tori

Chirality is generated already by T 6/Z3, without N = 2 sectors

When Z′3 acts, its untwisted sector remains chiral
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An explicit example

In the full T 6/Z3 × Z′3 there are three N = 2 subsectors

• residual T-duality
∏3

i=1 Γ1(3)Ti

• theory has unbroken N = 1

• non-abelian E6 × E8

• charged chiral matter
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An explicit example

Gauge thresholds decompose via partial unfolding

∆E8 = d8 +
∑

i=1,2,3

(
Ŷ (i) − 20∆̂(i)

)
∆E6 = d6 +

∑
i=1,2,3

(
Ŷ (i) − 8∆̂(i)

)
d8, d6 constant contributions from Z-orbifold

Y (i) =
1

144

∫
F3

d2τ

τ22
Γ2,2[01](Ti ,Ui )

[
Ê2E4(3E4X3 − 2E6)

2η24

+
E4(2E 2

4 − 3X3E6)

2η24
+ 1152

]

∆̂(i) =

∫
F3

d2τ

τ22
Γ2,2[01](Ti ,Ui )
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An explicit example

Can be evaluated with some work

∆̂(i) = − log

 ξ

27
Ti ,2Ui ,2

∣∣∣∣∣η3(Ti/3)

η(Ti )

η3(1+Ui
3 )

η(Ui )

∣∣∣∣∣
2


∼ − log

(
ξ

27
Ti ,2f3(Ui )

)
+ O(e−2πTi,2/3)

As expected, only logarithmic growth in in ∆̂ and

Ŷ
(i)
singular ∼ log

[
|j(Ti )− 744|1/3

|j∞(Ti/3) + 3|

∣∣∣∣ j∞(Ti/3) + 231

j∞(Ti/3)− 12

∣∣∣∣9
]

linear growth cancels out non-trivially, and no logarithmic growth

(Ŷ is IR finite)
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An explicit example

Behavior at large volume

∆̂(i) ∼ − log

(
ξ

27
T2,i f3(Ui )

)
, Ŷ (i) ∼ c3(Ui )

Ti ,2

f3(U), c3(U) of order one

This large volume behavior is a generic property of the

breaking to
∏

i Γ1(N)Ti

Again, appropriate choice of Ti can match GUT scale

Gravitational R2 thresholds: similar analysis → logarithmic growth
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Conclusions

Unification of gauge couplings at MGUT is an appealing possibility

and already much studied in string literature

• However, past treatments required either W 6= 0 or faced

decompactification problem

• The latter drives theory non-perturbative very close to GUT

scale
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Conclusions

Key idea: break T-duality group to∏
i

Γ1(N)Ti

It is possible to precisely match SU and GUT scales

• N = 1 and N = 2 vacua

• even with W = 0

• without too many restrictions on charged spectrum

• can preserve chirality

• Decompactification problem is solved simultaneously
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