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Infrared divergences in quantum electrodynamics

– Quantum electrodynamics is, for all practical purposes,

solvable by perturbation theory.

– Asymptotic expansions in fine structure constant

α ∼ 1/137 converges rapidly.

– However, there is a subtlety due to infrared divergences:
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Two approaches

1. Inclusive probabilities

F.Bloch, A.Nordsieck, Phys.Rev.52, 54 (1937)

D.R.Yennie, S.C.Frautschi, H.Suura, Ann.Phys.13, 379

(1961)

S.Weinberg, Phys.Rev.140, B516 (1965)

2. Dressed states

V.Chung, Phys.Rev.140, B1110 (1965)

P.Kulish, L.D.Faddeev, Theor.Math.Phys.4, 745 (1970)

Asymptotic symmetries

S.Hawking, M.Perry, A.Strominger Phys.Rev.Lett.116,

231301 (2016)

R.Bousso, M.Porrati, arXiv:1706.00436 [hep-th]
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I. The Inclusive probability is infrared finite

= finite

Cancellation of infrared divergences is guaranteed by

unitarity of infrared cutoff S-matrix.

|in >< in| =⇒ S†|in >< in|S , ρout =
∑
softγ

< γ|S†|in >< in|S|γ >
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2. Dressed States

Combine the soft photons which are produced with the

charged particles to make “dressed states”

The elements of the usual S-matrix in dressed states are

infrared finite
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Dressed states
Hard and soft physics are decoupled by a canonical

transformation

|pµ1

1 , pµ2

2 , . . . > =⇒ |pµ1

1 , pµ2

2 , . . . >dressed

≡ exp

−e

∫ Λ

mph

d3k√
2|k|

∑
j

pµj ϵ
s(k)

pνj kν + iϵ
as(k)− h.c.

 |pµ1

1 , pµ2

2 , . . . >

as(k) =⇒ as(k) +
∑
j

pµj ϵ
∗
s(k)

pνj kν − iϵ
, mph < |k| < Λ < pµ1

1 , pµ2

2 , . . .

– matrix elements of the S-matrix are independent of mph

– Probabilities for processes agree with inclusive approach

– Λ appears as the usual “detector resolution”

– when mph → 0, improper canonical transformation

– not Lorentz invariant
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Cutoffs, soft photons and hard particles
regularize infrared divergences: fundamental IR cutoff mph

|α >< α| =⇒

 ∑
βγ

|β, γ > Smph∗
α,βγ

  ∑
β̃γ̃

Smph

α,β̃γ̃
< β̃, γ̃|


[
mph

]
<

[
soft γ

]
<

[
detector resolution Λ

]
<

[
hard α, β

]

ρout =
∑

mph<γ′<Λ

< γ′|

∑
ββ̃γγ̃

|β, γ > Smph∗
α,βγ Smph

α,β̃γ̃
< β̃, γ̃|

 |γ′ >

Diagonal components of ρout are independent of mph

< β|ρout|β > =
∑

mph<γ<Λ

Smph∗
α,βγ Smph

α,βγ = SΛ∗
α,βγ SΛ

α,βγ

= |dressed < α|S|β >dressed |2
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What about off-diagonal elements of < β|ρout|β̃ >?

< β|ρout|β̃ > =
∑

mph<γ<Λ

Smph∗
α,βγ Smph

α,β̃γ

versus the dressed out-state (which is a pure state)

< β|ρdressedout |β̃ > = dressed < β|S†|α >dressed< α|S|β̃ >dressed
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What about off-diagonal elements of < β|ρout|β̃ >?

< β|ρout|β̃ > =
∑

mph<γ<Λ

Smph∗
α,βγ Smph

α,β̃γ

versus the dressed out-state (which is a pure state)
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Compute von Neumann entropy of ρout, S = −Trρ ln ρ.
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What about off-diagonal elements of < β|ρout|β̃ >?

< β|ρout|β̃ > =
∑

mph<γ<Λ

Smph∗
α,βγ Smph

α,β̃γ

versus the dressed out-state (which is a pure state)

< β|ρdressedout |β̃ > = dressed < β|S†|α >dressed< α|S|β̃ >dressed

Compute von Neumann entropy of ρout, S = −Trρ ln ρ.

Entanglement of soft and hard products of scattering?

Computed in perturbation theory, the entanglement en-

tropy is logarithmically infrared divergent.

D.Carney, L.Chaurette, D.Neuenfeld, G.Semenoff, Phys.

Rev. Lett. 119, 180502 (2017); Phys. Rev. D 97, 025007

(2018); JHEP 1809, 121 (2018); GWS 2019??
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Soft photon theorem applied to the density matrix
Soft photon theorems imply:

ρββ̃ = Sλ∗
αβSλ

αβ̃

(mph

λ

)∆A
(
Λ

λ

)Ã

=⇒ mph. → 0??

∆A =
1

2
Aαβ,αβ +

1

2
Aαβ̃,αβ̃ −Aαβ,αβ̃ ≥ 0

AX,Y = −
∑

n∈X,m′∈Y

enen′ηnη
′
n

8πβnn′
ln

[
1 + βnn′

1− βnn′

]
βnn′ =relative relativistic velocity

{
e1p

µ
1

2ω(p1)
, ...,

enp
µ
n

2ω(pn)

}
=

{
ẽ1p̃

µ
1

2ω(p̃1)
, ...,

ẽñp̃
µ
ñ

2ω(p̃ñ)

}
decoherence
momentum eigenstates are “pointer basis”
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Example: Compton scattering

ρk′q′;k̃′q̃′ = [mph]
e2

4π2 [ 1
2β

ln 1+β
1−β

−1]

β =relative velocity of outgoing electrons k′, k̃′

Exponent ≥ 0. Exponent = 0 only when β = 0,

k′ = k̃′.

As mph → 0, ρk′,q′;k̃′,q̃′ = 0 unless k′
µ = k̃′

µ.
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Implication for Compton scattering

Diagonal elements of the density matrix are the transition

probabilities for QED processes.

ρk′,q′;k′,q′ = Probability of |k, q >→ |k′q′ >

Off-diagonal elements vanish ρk′,q′;k̃′,q̃′ = 0, k ̸= k̃′

Probability |k, q > =⇒ 1√
2
|k′1, q′1 > + 1√

2
|k′2, q′2 >

equals
1
2 ·Prob. |k, q >→ |k′1, q′1 > + 1

2 ·Prob. |k, q >→ |k′2, q′2 >
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What if the photon has a mass?

ρk′,q′;k̃′,q̃′ = (mph)
e2

4π2 [ 1
2β ln 1+β

1−β−1]

mph ∼ 10−32mel

∼ e−0.1β2

β << 1 , ∼
(
1− β

2

)0.1

β ∼ 1 (.0001)0.1 ∼ 0.4

Gravity is even more weakly coupled.
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Conclusions

• Solutions of the infrared problem in quantum

electrodynamics lead to either fundamental

decoherence of final states or the necessity of using

dressed states.

• Two theories of QED with different physical

predictions, which one describes nature?

• All that has been said here for quantum

electrodynamics can also be said for perturbative

quantum gravity – two theories of perturbative

quantum gravity. Which describes nature?
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