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Motivations
• Superconformal field theories

• UV Completion of Quantum Field Theories
• Obtained through branes engeneering

• Supersymmetric AdS vacua in various dimensions
• Landscape of vacua from String/M-theory
• Dual to Superconformal Field Theories

• A string theory construction allows to keep track of the fields
dynamics and symmetries, and allows us to perform holographic tests

→ Deformations of the field theory out of the critical point: the RG flow
is triggered by nontrivial scalar vevs, in the gravity picture.
Interpolating between two asymptotic AdS regions

AdSd + 〈ϕi 〉 ↔ AdSd + 〈ϕ′i 〉

satisfying an extremization condition ∂iW(Θ, φi ) = 0
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Branes setup
[Intriligator, Brunner&Karch, Hanany&Zaffaroni, ‘97]

6D SCFTs from branes constructions engineered in type IIA theory classified as

T N
G ,µL,µR

Given N and G , and different µL, µR they are related by Higgs RG flows as:

T N
G ,µL,µR

RG−→ T N
G ,µ′L,µR

⇔ µL < µ′L ,

[Gaiotto, Tomasiello, Heckman, Rudelius ‘14-’16]

Consider G = SU(k). A nilpotent element, up to conjugation, is of the form

µ =

 Jd1

Jd2

. . .

 , Jd ≡

0 1
0 1

. . .
. . .


 d .

with
∑

a da = k. One can associate a Young tableau by assigning each da with
the number of rows of the diagram.
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Branes setup
The UV theory at the top of the RG flow corresponds to µL = µR = 0

T N
G ,0,0 di = 1 µ =

This SCFT has N = (1, 0) supersymmetry and flavor symmetry GL × GR .
Consider the case G = SU(k).
• Realized in type IIA as N + 1 NS5-branes on k D6-branes
• Flavor symmetries SU(k)× SU(k).

→ No D8 branes in the top UV theory.
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Branes setup
[pics from Cremonesi, Tomasiello, ’15]

The branes configurations
in the 10 dimensional space
gives rise to matter content
captured by the linear quiver

The rank
of the flavor symmetry groups
give rise to a convex curve
to which two Young Tableau
are associated. They represent
the commutant of the
D8 branes on top of the D6
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The RG chain

From UV to IR: µ > µ′ if µ′ can be obtained from µ by removing a box
from a higher row and adding it to a lower row.
Possible RG flows, from smaller to larger Young diagrams

On the left, the vertical diagram corresponds to the partition [16],

which belongs to the smallest possible orbit.
At the right extremum the horizontal Young diagram ,
corresponds to the largest possible orbit [16]t = [6].
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Nilpotent element and su(2) ⊂ g embedding
[Jacobson-Morozov theorem]

Given a nilpotent element µ ∈ G , find two other elements in G such that
they satisfy sl(2,C) comm rel (with µ a creation operator). Up to a
change of basis, bring this triple to Hermitian matrices

[σi , σj ] = εijkσk .

→ µ defines an embedding σ : su(2) ⊂ g, each σi is sum of irreducible
representations of spins `1, `2, . . . such that 2`a + 1 = da

σi =

 σi
1

σi
2

. . .


A normalization useful for the explicit solutions

Tr(σi
aσ

j
a) = −κ2

aδ
ij , κ2

a ≡
`a(`a + 1)(2`a + 1)

3
.
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AdS7 dual vacua
10D configuration dual to the branes worldvolume theory [Apruzzi et al., ’13-’15],

[Cremonesi & Tomasiello, ’15]

1

π
√

2
ds2 = 8

√
−α
α̈
ds2

AdS7
+

√
− α̈
α

(
dz2 +

α2

α̇2 − 2αα̈
ds2

S2

)
;

B = π

(
−z +

αα̇

α̇2 − 2αα̈

)
volS2 , F2 =

(
α̈

162π2
+

πF0αα̇

α̇2 − 2αα̈

)
volS2 ;

eφ = 25/4π5/234 (−α/α̈)3/4

(α̇2 − 2αα̈)1/2
.

• Internal space has S3 topology.

• α̈ is defined on a closed interval I and D6 branes can sit at its endpoints.

• D8/D6 bound states at za loci where the piecewise function α̈ changes
slopes.

→ Can be all described as vacua of 7D minimal gauged SG, as a universal
sector.
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7D Supergravity theory
Minimal gauged 7D SG (emµ , ψ

A
µ , A

i
µ , χ

A , Bµν , σ) . To describe RG flows we
need a reduction that keeps more modes of the internal manifold, and more
information about the physics of the SCFTs:

• Each of the D6- and D8-brane stacks should contribute in seven
dimensions a non-abelian vector multiplet, coming from the gauge fields
living on them in ten dimensions. [Passias, Rota, Tomasiello, ’15]

• For a given theory with flavor symmetry G , couple the minimal 7D theory
to k vector multiplets, realizing the group G as gauged group

(Aµ R , λ
A
R , φiR) .

Scalars parameterize the moduli space

SO(3, n)

SO(3)× SO(n)
.

[E. Bergshoeff, I. Koh, and E. Sezgin, ’85]

→ uplift?? [E. Malek, H. Samtleben, V. Vall Camell, ’19]
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7D Supergravity theory

Lagrangian

e−1L =
R

2
− 5

8
∂µσ∂

µσ − 1

2
PµirPµir − V (σ, L(φ)) ,

with scalar potential

V = 1
4
e−σ

(
C iRCiR − 1

9
C 2
)

+ 16h2e4σ − 4
√

2
3

h e3σ/2C ,

Relevant BPS equations are

δψµ = 2Dµε−
√

2

30
e−σ/2Cγµε−

4

5
he2σγµε ,

δχ = −1

2
γµ∂µσε+

√
2

30
e−σ/2Cε− 16

5
e2σhε ,

δλR = iγµP iR
µ σ

iε− i√
2
e−σ/2C iRσiε .

[Karndumri‘14, Louis, Lust ‘15]
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BPS vacua

Choice of gauge group has to contain

G = SU(2)R0 × SU(k)× SU(k) .

Thus the structure constants will split as

fIJK = {g3εijk , gLfrst , gRfr̂ ŝ t̂}

AdS vacua will have to:

• be in one-to-one correspondence with a choice of two Young
diagrams, which are the main data in the SCFTs

• be those on which the residual gauge symmetries reproduce the
flavor symmetries of the dual SCFTs.

In this talk: Restrict to a single Young diagram µL ≡ µ, so the second
copy of SU(k) gauge group is unbroken.
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BPS vacua

The scalar fields at the vacuum satisfy the ansatz

φi = ψσi .

• R-symmetry: diagonal SU(2)R of the original SU(2)R0 and of
SU(2) subgroup of the rest of the gauge group.

• Scalars can be expanded on a basis of generators T r
f of the gauge

algebra
φi = φirT

r
f ,

• The coset representative are

LI J = (Li J , L
r
J) = exp

[
0 φir
φsj 0

]
.
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BPS vacua

A first check: recover the result of Karndumri ‘15, where a new vacuum
is derived

• Gauge group SO(3)× SO(3), corresponds to k = 2.

• The only nontrivial partition is , for which simply

φir ∼ φ δir

• Nontrivial vacuum at

σ = −1

5
log

[
g2 − 256h2

g2

]
, V∗ = −240e4σh2

tanh(φ) =
16h

g

with masses m2
σL

2 = −8, m2
φL

2 = 40, consistent with BF bound

m2L2 ≥ −9.
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BPS vacua
Having specified a scalar ansatz, the coset representative can be written
explicitly as

LI J =

(
coshαδij sinhα

α φir
sinhα
α φsj δrs + coshα−1

α2 P rs

)
,

where the normalization α comes from the choice of partition

φirφ
j
r = −Tr

(
φiφj

)
= ψ2

∑
a

κ2
aδ

ij = α2δij , κ2 =
∑
a

κ2
a

Vacuum conditions can be easily read from the BPS variations and yield

tanh(ψκ) =
κ g3

gL
, e

5σ
2 =

g3 gL

16 h
√

g2
L − g2

3 κ
2
.

• Each vacua has V∗ = −240e4σh2.

• Scalars masses are m2
σL

2 = −8, m2
ψL

2 = 40.
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Cosmological constant
The relation between the cosmological constants

(
VµL

V0

)5/4

=
1

1− κ2 g2
3

g2
L

is related to the UV-IR ratio of anomalies aµL = N3 k2

12
− N k

6

∑
a a

3fa + . . .
[Cremonesi, Tomasiello ‘15]

• Limit N →∞ yields a pure D6 theory, dual to T N
SU(k),0,0.

• One has to consider the nontrivial scaling

N →∞ , da →∞ , da/N ≡ δa finite,

this induces

κ2 ∼
∑
a

d3
a

12
∼ 1

12

∑
a

a3fa ∼ N3δ .

• The supergravity matches the field theory computation for
g2

3

g2
L

= 1
Nk2 .

• This matching is significant when the ... terms are in fact subleading e.g.
when δa/〈φi

a〉 ∼ 1.
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Masses, dual operators and Higgs mechanism
Dual operators have dimensions m2L = ∆(∆− 6), in terms of the su(2)
representations σi , they can be classified as

∆ SU(2)R rep.

6 d if d>1

4l+6 =2d+4 d-2 if d>2

4l+4 =2d+2 d+2

→ For every choice of partition, there will be operators of dimension ∆ = 6,
which would correspond to marginal operators of the 6D SCFT.

• General arguments in [Louis, Lust ‘15] and [Cordova, Dumitrescu, Intriligator ‘17]

forbids a continuous class of BPS AdS7 vacua/CFT6

→ The scalars corresponding to ∆ = 6 operators are eaten by the gauge
vectors that become massive at the vacuum. Notice that the trivial
vacuum µ = [16] has only d = 1, there is no Higgsing.

• to There can be other ∆ = 6 from the d − 2, d + 2 rows, but they are not
BPS operators thus they do not spoil the arguments above.
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BPS flow and domain wall solution

The domain wall metric ansatz is

ds2
7 = e2A(ρ)ds2

Mink6
+ e2B(ρ)dρ2 .

We express the fermionic BPS variation in terms of the flow superpotential

W (σ, φir ) =

√
2

30
e−σ/2C +

4

5
he2σ .

so the BPS flow is the solution to

A′ = eBW , σ′ = −4eB∂σW , φir t′ = −5eB∂φi
r
W .

Based on the superpotential relation

V = 5

(
−3W 2 + 2∂σW

2 +
5

2
∂φi

r
W∂φr

i
W

)
.
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BPS flow and domain wall solution
The flow between fixed points at UV ρ→ +∞ and IR ρ→ −∞ requires

φi (−∞) = φi
µL− , φi (+∞) = φi

µL+
,

where φi
µL± will be proportional to the σi representations associated to two

partitions µL±. The scalar ansatz yields the BPS equations

∂ρΦi = −g3Φi +
1

2

[
Φj , Φk

]
εijk ,

→ Massive Nahm equations. [Bachas, Koppe, Pioline ‘00]

• The scalars determine α(ρ), which allows to solve for the remaining fields,
σ and A.

• The cosmological constants are(
V+

V−

)5/4

=
g 2
L − κ2

−g
2
3

g 2
L − κ2

+g
2
3

,

we expect κ+ < κ− from which it follows that V+ < V−.

→ The scalar field equation should contain information on the hierarchy of κ’s
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BPS flow and domain wall solution
[Kronheimer et al., 1990]

Redefine Φi = 1
g3s

Ti , s = − 1
2
e−g3ρ so the BPS equations is

∂sTi = −1

2
εijk [Tj ,Tk ] .

The solution of the field equations with boundary conditions corresponding to
the φi

± = φµL± have moduli space given by the intersection:

O(µL−) ∩ S(µL+) .

• The Slodowy slice is the space

S(µL+) ≡ {φ−L+ + X | [X , φ+
L+] = 0} ,

with φ± ≡ 1
2
(φ1 ± iφ2), since φi

µ give the embedding su(2)→ su(k)
associated to µ.

• The slice S(µL+) intersects the orbit of every other nilpotent element µL−
in one point such that µL+ < µL− ,

reproducing the hierarchy of RG flows from the UV (µL+) to the IR (µL−).
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Summary and Outlook

• Infinite many new AdS7 vacua in one to one correspondence with
the 6D theory

• Test of the conjectured hierarchy of RG flows of 6D SCFT

• Identified extremization conditions, solved BPS equations as Nahm
equations

- Does a consistent truncation from 10D type IIA exist?

- DBI-like derivation of higher order terms to capture subleading
anomaly coefficients

- non-BPS AdS7 vacua: instability branes origin?
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Thank You!
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More...
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Flavor symmetries of TG ,µL,µR
Let’s consider µL, µR 6= 0. Each theory results from a partially Higgsing of the
flavor symmetry GL × GR of T N

G ,0,0.

f L,Ra = #{blocks Ja with dimension a}

The flavor symmetries are S(ΠaU(f La ))× S(ΠaU(f Ra )). For example

T N
SU(6),0,0 × → f1 = 6

has flavor symmetry SU(6)× SU(6) while if we completely Higgs one of the
groups

T N
SU(6),[6],0 × → f L1 = 6, f R6 = 1

the flavor group si simply SU(6).

A. Gnecchi Holographic RG flows for 6D SCFTs 23



Example of one tableau flow
[Bachas, Koppe, Pioline ‘00]

Consider the case when the UV is the trivial vacuum, µ = 0 (or [1k ]). The
solution for the scalars is

Φi =
g3

1 + eg3ρ
φi
µL−

in terms of the normalized fields

α = arctanh

[
g3 κL−

gL

1

1 + eg3ρ

]
⇒ φi =

1

κL−
arctanh

[
g3 κL−

gL

1

1 + eg3ρ

]
φi
µL− .

Relevant deformations

• Metric asymptotics

ds2
7 ∼ e2

g3 ρ
4 ds2

Mink6
+ dρ2 ,

so an AdS7 metric of radius L+ = g3/4.

• Dilaton and scalar fields behave as

φi ∼ e
− 4ρ

L+ φi
µL− , σ ∼ e

− 4ρ
L+ .
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Example of one tableau flow

To understand the deformation of our solution due to

φi ∼ e
− 4ρ

L+ φiµL−
,

consider the general AdSd expansion

δϕ ≈ ϕnon-norme
−(6−∆)ρ + ϕnorme

−∆ρ

with respect to the usual dictionary

ϕnon-norm → operator O ϕnorm → 〈O〉

so the theory in the UV is deformed by the vev of an operator of dim.
∆ = 4.
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RG flows

When a background gauge field is turned on they

AdSd ↔ AdSp ×Md−p

• BPS black holes in 4D and 5D are RG flows across dimensions.
States dual to the topologically twisted sector of the 3D ABJM
original theory [Benini, Hristov, Zaffaroni, ‘14], or 4D SYM [Benini, Milan ’18] -

See C. Toldo’s talk.
• Extremization mechanisms in the dual theory

- 2d c, central charge extremization [Benini, Bobev ‘13]

- 3d F , free energy [Jafferis, ‘10]

- 6d a anomaly for (1,0) SCFTs [Cordova, Dumitrescu, Intriligator ‘15]
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