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Conformal field theory

A well-known result in CFT is that the form of 2 and 3-point functions of quasi-primary scalars is
completely determined by conformal symmetry, while 1-point functions are zero:

〈φ1 (x1)〉 = 0 (except 〈c〉 = c)

〈φ1 (x1)φ2 (x2)〉 =
C12

x2∆
12

, ∆ ≡ ∆1 = ∆2, x12 ≡ |x1 − x2|

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

,

If we have more than 3 points we may construct conformally invariant cross ratios, as e.g. in the
case of 4 points:

x12x34

x13x24
&

x12x34

x14x23
.

The corresponding n-point function (n ≥ 4) has an arbitrary dependence on them, e.g. for n = 4:

〈φ1 (x1)φ2 (x2)φ3 (x3)φ4 (x4)〉 = f

(
x12x34

x13x24
,
x12x34

x14x23

)
·

4∏
i<j

x
∆/3−∆i−∆j

ij , ∆ ≡
4∑

i=1

∆i .
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Operator product expansion (OPE)

Generally, we don’t need a Lagrangian to define a CFT. A CFT is defined by its local operators
and their n-point correlation functions:

{Ok (x)} 〈O1 (x1)O2 (x2) . . .On (xn)〉 .

The latter can be determined by using the operator product expansion (OPE). E.g. for scalars:

φ1 (x1)φ2 (x2) =
∑
k

C12k

Ckk
· Pk (x12, ∂2)φk (x2) ,

where the sum is over all the primary operators of the CFT.

In general, the (n + 2)-point function can be computed recursively:

〈
φ1 (x1)φ2 (x2)

n∏
i=3

φi (xi )
〉

=
∑
k

C12k

Ckk
· Pk (x12, ∂2)

〈
φk (x2)

n∏
i=3

φi (xi )
〉
.

The CFT is fully specified by the CFT data: {∆k , `k , fk ,Cij ,Cijk}.
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Defect conformal field theory (dCFT)

Now consider a CFTd and introduce a boundary at z = 0, where xµ = (z , x) (Cardy, 1984).

.
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Defect conformal field theory (dCFT)

Now consider a CFTd and introduce a boundary at z = 0, where xµ = (z , x) (Cardy, 1984).

The subgroup of the d-dimensional (Euclidean) conformal group SO(d + 1, 1) that leaves the plane
z = 0 invariant contains:

(d − 1) dimensional translations: x′ = x + a

(d − 1) dimensional rotations SO(d − 1)

d dimensional rescalings x ′µ = α xµ & inversions x ′µ = xµ/x
2

That is the conformal group in d − 1 dimensions, SO(d , 1).

The resulting setup that contains a CFTd and a codimension 1 boundary/interface/domain wall/defect
upon which a CFTd−1 lives, is known as a defect Conformal Field Theory (dCFT) .
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dCFT correlators: bulk

Due to the presence of the z = 0 boundary we may form cross ratios from only 2 bulk points:

ξ =
x2

12

4 |z1| |z2|
& v 2 =

ξ

ξ + 1
=

x2
12

x2
12 + 4 |z1| |z2|

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

〈φ (z , x)〉 =
C

|z |∆

n-point bulk functions (n ≥ 2) will contain an arbitrary dependence on the cross ratio ξ. E.g. the
2-point bulk function of two scalars will be:

〈φ1 (z1, x1)φ2 (z2, x2)〉 =
f12 (ξ)

|z1|∆1 |z2|∆2
,

McAvity-Osborn, 1995

i.e. it will not vanish if ∆1 6= ∆2.
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dCFT correlators: bulk

Due to the presence of the z = 0 boundary we may form cross ratios from only 2 bulk points:

ξ =
x2

12

4 |z1| |z2|
& v 2 =

ξ

ξ + 1
=

x2
12

x2
12 + 4 |z1| |z2|

This means that 1-point bulk functions are nonzero and the only ones fully determined by symmetry:

〈φ (z , x)〉 =
C

|z |∆

n-point bulk functions (n ≥ 2) will contain an arbitrary dependence on the cross ratio ξ. E.g. the
2-point bulk function of two scalars will be:

〈φ1 (z1, x1)φ2 (z2, x2)〉 =
f12 (ξ)

|z1|∆1 |z2|∆2
,

McAvity-Osborn, 1995

i.e. it will not vanish if ∆1 6= ∆2. In principle, all correlation functions can be determined recursively.

1-point functions are fundamental building blocks of dCFTs (along with the CFT data).
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Holographic dCFTs

Holographic dCFTs can be realized in the context of the AdS5/CFT4 correspondence:{
Type IIB String Theory in AdS5 × S5

}
←→

{
N = 4, su(N) Super Yang-Mills Theory in 4d

}
Maldacena, 1998

as shown by Karch and Randall in 2001, in an attempt to provide an explicit realization of gravity
localization on an AdS4 brane (Karch-Randall, 2001a).
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The D3-D5 system: bulk geometry

IIB string theory on AdS5 × S5 is encountered very close to a system of N coincident D3-branes:

The D3-branes extend along x1, x2, x3...

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
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The D3-D5 system: bulk geometry

IIB string theory on AdS5 × S5 is encountered very close to a system of N coincident D3-branes:

Now insert a single (probe) D5-brane at x3 = x7 = x8 = x9 = 0... its geometry will be AdS4 × S2...

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 • • • •
D5 • • • • • •
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The D3-D5 system: description

In the bulk, the D3-D5 system describes IIB
string theory on AdS5 × S5 bisected by a D5
brane with worldvolume geometry AdS4 × S2.

The dual field theory is still SU(N), N = 4
SYM in 3 + 1 dimensions, that interacts with
a CFT living on the 2 + 1 dimensional defect:

S = SN=4 + S2+1.

DeWolfe-Freedman-Ooguri, 2001

Due to the presence of the defect, the total
bosonic symmetry of the system is reduced
from SO(4, 2)×SO(6) to SO(3, 2)×SO(3)×
SO(3).

The corresponding superalgebra psu (2, 2|4)
becomes osp (4|4).
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The (D3-D5)k system

Add k units of background U(1) flux
on the S2 component of the AdS4×S2

D5-brane.

Then k of the N D3-branes (N � k)
will end on the D5-brane.

On the dual SCFT side, the gauge
group SU(N) × SU(N) breaks to
SU(N − k)× SU(N).

Equivalently, the fields of N = 4
SYM develop nonzero vevs...

(Karch-Randall, 2001b)
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The dCFT interface of D3-D5

An interface is a wall between two (different/same) QFTs

It can be described by means of classical solutions that are known as
”fuzzy-funnel” solutions (Constable-Myers-Tafjord, 1999 & 2001)

Here, we need an interface to separate the SU (N) and SU (N − k)
regions of the (D3-D5)k dCFT...

For no vectors/fermions, we want to solve the equations of motion
for the scalar fields of N = 4 SYM:

Aµ = ψa = 0,
d2Φi

dz2
= [Φj , [Φj ,Φi ]] , i , j = 1, . . . , 6.

A manifestly SO(3) ' SU(2) symmetric solution is given by (z > 0):

Φ2i−1 (z) =
1

z

[
(ti )k×k 0k×(N−k)

0(N−k)×k 0(N−k)×(N−k)

]
& Φ2i = 0,

Nagasaki-Yamaguchi, 2012

where the matrices ti furnish a k-dimensional representation of su (2):

[ti , tj ] = iεijktk .
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1-point functions

Following Nagasaki & Yamaguchi (2012), the 1-point functions of local gauge-invariant scalar operators

〈O (z , x)〉 =
C

z∆
, z > 0,

can be calculated within the D3-D5 dCFT from the corresponding fuzzy-funnel solution, for example:

O (z , x) = Ψi1...iLTr [Φ2i1−1 . . .Φ2iL−1]
SU(2)−−−−−→

interface

1

zL
·Ψi1...iLTr [ti1 . . . tiL ]

where Ψi1...iL is an so (6)-symmetric tensor and the constant C is given by (MPS=matrix product state)

C =
1√
L

(
8π2

λ

)L/2

· 〈MPS|Ψ〉
〈Ψ|Ψ〉

1
2

,

{
〈MPS|Ψ〉 ≡ Ψi1...iLTr [ti1 . . . tiL ] (”overlap”)

〈Ψ|Ψ〉 ≡ Ψi1...iLΨi1...iL

}
,

which ensures that the 2-point function will be normalized to unity (O → (2π)L · O/(λL/2
√
L)

〈O (x1)O (x2)〉 =
1

|x1 − x2|2∆

within SU(N), N = 4 SYM (i.e. without the defect).
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Bethe eigenstates

We will only consider the 1-point functions of Bethe eigenstates |Ψ〉 of the integrable so (6) spin chain:

D = L · I +
λ

8π2
·H +

∞∑
n=2

λn · Dn, H =
L∑

j=1

(
Ij,j+1 − Pj,j+1 +

1

2
Kj,j+1

)
, λ = g 2

YMN,

Minahan-Zarembo, 2002

which describes the mixing of single-trace operators O (x) up to one loop in N = 4 SYM. We’ve set:

I · |. . .ΦaΦb . . .〉 = |. . .ΦaΦb . . .〉

P · |. . .ΦaΦb . . .〉 = |. . .ΦbΦa . . .〉

K · |. . .ΦaΦb . . .〉 = δab

6∑
c=1

|. . .ΦcΦc . . .〉 .

The above result is unaffected by the presence of a defect in the SCFT (DeWolfe-Mann, 2004).
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M. de Leeuw, C. Kristjansen, G. Linardopoulos, Scalar One-point functions and matrix product states of

AdS/dCFT, Phys.Lett. B781 (2018) 238 [arXiv:1802.01598]
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1-point functions in su (2)

In the su (2) sector our goal is to calculate the one-point function coefficient:

C =
1√
L

(
8π2

λ

)L/2

· 〈MPS|p〉
〈p|p〉

1
2

, k � N →∞.

where the k × k matrices t1,3 form a k-dimensional representation of su (2):

〈MPS|p〉 = N ·
∑
σ∈SM

∑
1≤xk≤L

exp

i∑
k

pσ(k)xk +
i

2

∑
j<k

θσ(j)σ(k)

 · Tr
[
tx1−1

3 t1t
x2−x1−1
3 . . .

]
.

Overlap properties:

The overlap 〈MPS|p〉 vanishes if M ≡ N1 or L is odd: Tr
[
tx1−1

3 t1t
x2−x1−1
3 . . .

] ∣∣∣∣
M or L odd

= 0

The overlap 〈MPS|p〉 vanishes if
∑

pi 6= 0: due to trace cyclicity

The overlap 〈MPS|p〉 vanishes if momenta are not fully balanced (pi ,−pi ): due to Q3 · |MPS〉 = 0

de Leeuw-Kristjansen-Zarembo, 2015
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The su (2) determinant formula

Vacuum overlap:

〈MPS|0〉 = Tr
[
tL3

]
= ζ

(
−L, 1− k

2

)
− ζ

(
−L, 1 + k

2

)
, ζ (s, a) ≡

∞∑
n=0

1

(n + a)s
,

where ζ (s, a) is the Hurwitz zeta function. For M balanced excitations the overlap becomes:

Ck ({uj}) ≡
〈MPS| {uj}〉k√
〈{uj} | {uj}〉

= C2 ({uj}) ·
(k−1)/2∑

j=(1−k)/2

jL

M/2∏
l=1

u2
l

(
u2
l + k2/4

)[
u2
l + (j − 1/2)2] [u2

l + (j + 1/2)2]


where

C2 ({uj}) ≡
〈MPS| {uj}〉k=2√
〈{uj} | {uj}〉

=

M/2∏
j=1

u2
j + 1/4

u2
j

detG+

detG−

 1
2

,

and the M/2×M/2 matrices G±jk and K±jk are defined as:

G±jk =

(
L

u2
j + 1/4

−
∑
n

K+
jn

)
δjk + K±jk & K±jk =

2

1 + (uj − uk)2 ±
2

1 + (uj + uk)2 .

Buhl-Mortensen, de Leeuw, Kristjansen, Zarembo, 2015
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The su (3) determinant formula

Moving to the su (3) sector, let us define the following Baxter functions Q and R :

Q1 (x) =
M∏
i=1

(x − ui ) , Q2 (x) =

N+∏
i=1

(x − vi ) , R2(x) =

2bN+/2c∏
i=1

(x − vi ) .

All the one-point functions in the su (3) sector are then given by

Ck ({uj ; vj}) = Tk−1 (0) ·

√
Q1 (0)Q1 (i/2)

R2 (0)R2 (i/2)
· detG+

detG−

de Leeuw-Kristjansen-GL, 2018
where ui ≡ u1,i , vj ≡ u2,j and

Tn(x) =

n/2∑
a=−n/2

(x + ia)L
Q1(x + i(n + 1)/2)Q2(x + ia)

Q1(x + i(a + 1/2))Q1(x + i(a− 1/2))
.

The validity of the su (3) formula has been checked numerically for a plethora of su (3) states.
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The so (6) determinant formula

The one-point function in the so (6) sector is given by

Ck ({uj ; vj ;wj}) = Tk−1(0) ·

√
Q1 (0)Q1 (i/2)Q1 (ik/2)Q1 (ik/2)

R2 (0)R2 (i/2)R3 (0)R3 (i/2)
· detG+

detG−

where ui ≡ u1,i , vj ≡ u2,j , wk ≡ u3,k and

Tn (x) =

n/2∑
a=−n/2

(x + ia)L
Q2 (x + ia)Q3 (x + ia)

Q1 (x + i (a + 1/2))Q1 (x + i (a− 1/2))
.

de Leeuw-Kristjansen-GL, 2018

This formula has also been verified numerically. The M/2×M/2 matrices G±jk and K±jk are defined as:

G±ab,jk = δabδjk

 Lq2
a

u2
a,j + q2

a/4
−

3∑
c=1

dN/2e∑
l=1

K+
ac,jl

+ K±ab,jk , K±ab,jk = K−ab,jk ±K+
ab,jk

K±ab,jk ≡
Mab

(ua,j ± ub,k)2 + 1
4
M2

ab

.
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The so (6) determinant formula

The one-point function in the so (6) sector is given by

Ck ({uj ; vj ;wj}) = Tk−1(0) ·

√
Q1 (0)Q1 (i/2)Q1 (ik/2)Q1 (ik/2)

R2 (0)R2 (i/2)R3 (0)R3 (i/2)
· detG+

detG−

where ui ≡ u1,i , vj ≡ u2,j , wk ≡ u3,k and

Tn (x) =

n/2∑
a=−n/2

(x + ia)L
Q2 (x + ia)Q3 (x + ia)

Q1 (x + i (a + 1/2))Q1 (x + i (a− 1/2))
.

de Leeuw-Kristjansen-GL, 2018

More properties of one-point functions in so (6):

One-point functions vanish if M or L + N+ + N− is odd.

Because Q3 · |MPS〉 = 0, all 1-point functions vanish unless all the Bethe roots are fully balanced:{
u1, . . . , uM/2,−u1, . . . ,−uM/2, 0

}{
v1, . . . , vN+/2,−v1, . . . ,−vN+/2, 0

}
,

{
w1, . . . ,wN−/2,−w1, . . . ,−wN−/2, 0

}
.
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Outlook

Surface critical phenomena are described by means of dCFTs and BCFTs... the surface critical
exponents are related to the conformal dimensions of boundary operators...

Applications

Boundary conformal bootstrap (Liendo-Rastelli-van Rees, 2012): The insertion of a boundary in
the bulk of a CFT can be used to constrain both the dCFT and the original CFT...

D3-D7 system proposed as a holographic model of graphene (Rey, 2009) and topological insulators
(Kristjansen-Semenoff, 2016)....

Relation to the quench action approach (Piroli-Vernier-Calabrese-Pozsgay, Bertini-Tartaglia-Calabrese,
2018)...

Strong-coupling methods... String integrability in the presence of boundaries (Dekel-Oz, 2011)...
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