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densed neutron phase would start at the center.
By reason of the greater density of the con-
densed phase, the star will begin to collapse.
The details of this process are di6.cult to analyze
without knowing the change of density and the
heat of condensation (latent heat of evapora-
tion). If the latter one can be neglected beside
the regular energy liberation in the stellar
interior, collapsing can go on until a very thin
neutron atmosphere is left around the con-
densed neutron core. This hypothesis affords a

concrete physical basis for Zwicky's' suggestion
that the supernovae originate from the sudden
transition of an ordinary star to a centrally
condensed one. It is obvious that a detailed
analysis of this problem must await a great deal
more experimental data concerning the physical
properties of the neutron.
I should like to express my thanks to Dr.

Rupert Wildt for helpful discussions on the
subject.

6 F. Zwicky, Astrophys. J. 88, 522 (&938).
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When all thermonuclear sources of energy are exhausted a suSciently heavy star will
collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star's mass to the order of that of the sun, this contraction will continue
indefinitely. In the present paper we study the solutions of the gravitational field equations
which describe this process. In I, general and qualitative arguments are given on the
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles. In II, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and typical stellar
masses, of the order of a day; an external observer sees the star asymptotically shrinking to
its gravitational radius.

ECENTLY it has been shown' that the
general relativistic field equations do not

possess any static solutions for a spherical
distribution of cold neutrons if the total mass of
the neutrons is greater than 0.7Q. It seems of
interest to investigate the behavior of nonstatic
solutions of the field equations.
In this work we will be concerned with stars

which have large masses, &0.7Q, and which
have used up their nuclear sources of energy. A
star under these circumstances would collapse
under the inAuence of its gravitational field and
release energy. This energy could be divided into
four parts: (1) kinetic energy of motion of the
i J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. SS,

374 (1939).

particles in the star, (2) radiation, (3) potential
and kinetic energy of the outer layers of the star
which could be blown away by the radiation,
(4) rotational energy which could divide the
star into two or more parts. If the mass of the
original star were sufficiently small, or if enough
of the star could be blown from the surface by
radiation, or lost directly in radiation, or if the
angular momentum of the star were great enough
to split it into small fragments, then the re-
maining matter could form a stable static
distribution, a white dwarf star. We consider the
case where this cannot happen.
If then, for the late stages of contraction, we

can neglect the gravitational effect of any
escaping radiation or matter, and may still
neglect the deviations from spherical symmetry

with his PhD supervisor, Oppenheimer, he 
developed the first seed of the black hole idea (1939)

[a long-forgotten paper, rediscovered in the ‘60s]  

✦ Hartland Snyder was quite an innovator and a pioneer
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with a few collaborators, he developed the 
technique of strong-focussing (1952), which 
allows to focus particles in accelerators by 
alternating the gradient of the magnetic field

IHI f^6hM M QBRN (cont.) 
Prof. An thony Turkevich, one of 

CERN's Visi t ing Scientists sponsored by 
the U.S. National Science Foundat ion, 
t ravel led to Washington at the end of 
Apr i l to receive an E. O. Lawrence 
Memor ia l A w a r d for 1962. These 
Awards, established in 1959, are g iven 
annually by the U.S. Atomic Energy 
Commission to f ive peop le of age 45 
or less, in recogni t ion of 'meritorious 
contr ibut ions to the deve lopment , use, 
or contro l of atomic energy ' . Each 
award consists of a medal , c i tat ion, and 
cheque. 

The award was made to Prof. Turke-
v ich, who comes from the University of 
Chicago, ' for outstanding contr ibut ions 
to radiochemistry in act ivat ion analysis, 
to analysis of intranuclear cascades, and 
to the ut i l izat ion of radiochemical tech-
niques throughout atomic energy ' . The 
other recipients this year were : 
A . A. Benson, R. P. Feynman, H. G o l d -
stein, and H. F. York. 

In preparat ion for the 21 st Session of 
Counci l , held on 13 June, the Committee 
of Counci l met on 23 May and the 
Finance Committee on 24 May • 

The CERN/ETH Cloud Chamber is now steadily accumulating photo-
graphs (one every five minutes during operating periods) for the study 
of the decay of K ° 2 particles. At the controls in this picture, are 
A. Dalluge (left) and G. Chi l , while R. Pegaitaz makes an inspection 
below. In the foreground is the air platform which is placed underneath 
to 'float' the chamber during final alignment. 

Dr. Hartland Snyder 
At the end of last month the very sad news reached 

us that Dr. Hart land Snyder had d ied . To us in CERN, 
Snyder's name is for ever t ied to the discovery of 
the al ternat ing-gradient focusing pr inc ip le. He shared 
the honour of this discovery wi th his colleagues 
Dr. E.D. Courant and Dr. M.S. Liv ingston, and wi th 
Dr. N.C. Christofi los. Everybody knows what this has 
meant to CERN. W e can only remind ourselves that we 
were planning a 10-GeV weak-focused synchrotron, a 
machine at least as expensive and more diff icult to 
make than the PS, when in 1952 we learnt about the 
elegant new ideas f rom Brookhaven. This changed the 
CERN plans ent i rely, and perhaps also the CERN 
spirit, as we got a very much more excit ing project 
to concentrate on . 

Snyder's role in this deve lopment can hardly be 
overest imated. Not on ly d i d he take part in the 
discovery of the new pr inc ip le , but he fo l lowed if up 
continously wi th enthusiasm, opt imism and new ideas, 
whi le attached to the AGS project in Brookhaven 
dur ing its entire per iod of construct ion. 

He also co loured other projects. He spent consid-
erable t ime and effort on the electron-synchrotron 

project at Cambr idge, Mass., and when he d ied he 
was at the centre of the p lanning of much larger 
synchrotrons at Berkeley, where he was a visitor on 
leave from Brookhaven. W e in CERN were hop ing to 
see him here in a few weeks t ime, and we have 
learned from Fritz Gruffer how much he was look ing 
forward to his visit, which he had not been able to 
make before. 

A l though Snyder's main contr ibut ions lie in the f ie ld 
of accelerator physics he had in fact, as a theoretical 
physicist, a much wider f ie ld of interest and abi l i ty , 
and inf luenced in a w ide sense the physics programmes 
in the laboratories to which he was attached. 

Snyder d ied young , he was on ly 49, and untimely. 
W e still expected great contr ibut ions from him. There 
is hardly a day that his name does not come up in 
some connexion or other. 'Snyder said so and so' is 
a very common phrase. His statements were sometimes 
controversial , but always to the point and always 
inspir ing. Our Organizat ion and many of its staff have 
lost a g o o d f r iend. 

K. Johnsen 
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four (111) directions. Pairs of solute atoms
lying along these four directions will be affected
equally by a shear stress o, —p» across the (110)
planes, but unequally by a shear stress o.,„across
a (001) plane. The first type of shear stress will
therefore not cause a preferred orientation of
pair axes, i.e., 5' is identically zero, and therefore
the h~ due to interaction of nearest neighbors is
zero when a tensile stress is applied along one of
the principal axes. On the other hand, the shear
stress o,„will tend to cause a preferred orien-
tation, and hence 8 is not zero. These conclusions
may be arrived at in a more elegant manner.
Let n111, n111 ~ ~ be the number of pairs of solute
atoms with axes lying along the directions { 111),
L111], The potential energy of the lattice
can then contain three interaction terms which
are linear in the e's and in the strains. One inter-
action term will contain the product of the sum
of the n's and of the sum e, +~»+e„.This term
will cause no relaxation, and hence will not be
further considered. The remaining two terms
represent interaction of the orientation variables

with shear strains, These terms must have the
same symmetry as the lattice. One term is

cc {nlll(epz+ ele+e e) +n ill(eel e~e e»)
+nlll( eez+ ezra ezy) +niii( eez ezx+e») }~

No interaction term can be formed of the ~

e», e„strains, other than that representing a
uniform dilation, which has the cubic symmetry
of a cubic lattice.
In f.c.c. lattices the axes passing through

nearest neighbors lie along one of the six (110)
directions. These pairs are affected unequally by
both types of shearing stress, and hence both 8
and 5' are different from zero. This conclusion
is vindicated by the existence of two shear
interaction terms which satisfy the symmetry
relations. These are

P {(noii+noii) (2e..—e„„e„)—
+(nioi+nioi) (2ep els —ee )

+(niM+niio) (2e» e» e—»)}-
alld

p{(np]i np]])cog+(n101 nloi)egg+(niip nile)e p} ~

PH YSI CAL REVIEW . VOLUM E 71, NUMBER 1 JANUARY 1, 1947

Quantiz'ed Syace-Time
HEARTLAND 5. SNYDER

Department of Pkysics, Northwestern University, Evanston, Illinois
(Received May 13, 1946)

It is usually assumed that space-time is a continuum. This assumption is not required by
Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time.

! 'HE problem of the interaction of matter
and fields has not been sa,tisfactorily solved

to this date. The root of the trouble in present
field theories seems to lie in the assumption of
point interactions between matter and 6elds.
On the other hand, no relativistically invariant
Hamiltonian theory, is known for any form of
interaction other than point interactions.
Even for the case of point interactions the

relativistic iiivariance is of a formal nature only,
as the equations for quantized interacting fields
have no solutions. The uses of source functions,
or of a cut-off in momentum space to replace
infinity by a finite number are distasteful arbi-

trary procedures, and neither process has yet
been formulated in a relativistically invariant
manner. It may not be possible to do this.
It is possible that the usual four-dimensional

continuous space-time does not provide a suitable
framework within which interacting matter and
fields can be described. I have chosen the idea
that a modification of the ordinary concept of
space-time may be necessary because the "ele-
mentary" particles have fixed masses and
associated Compton wave-lengths.
The special theory of relativity may be based

on the invariance of the indefinite quadratic form

P =c't' —x'—y'—s' (1)

motivated by the hope that the discreteness induced by spacetime noncommutativity could 
avoid divergencies in quantum field theory (issue later solved by renormalisation) 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✦ This work was almost forgotten for a long time, until quantum gravity research 
revived it in the late ‘90s
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Studies in string theory and quantum gravity suggest the existence of a finite lower limit Dx0 to the possible
resolution of distances, at the latest on the scale of the Planck length of 10235 m. Within the framework of the
Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance
structure. Both rotation and translation invariance can be preserved. An example is studied in detail.
@S0556-2821~97!06510-7#

PACS number~s!: 11.25.Sq, 04.60.Gw, 11.10.Gh, 11.30.Cp

I. INTRODUCTION

As has long been known, the combination of relativistic
and quantum effects implies that the conventional notion of
distance breaks down the latest at the Planck scale, which is
about 10235 m. The basic argument is that the resolution of
small distances requires test particles of short wavelength
and thus of high energy. At sufficiently small scale, i.e.,
close to the Planck scale, the gravitational effect of the test
particle’s energy significantly disturbs the space-time struc-
ture which was tried. Studies on gedanken experiments
therefore suggest the existence of a finite limit Dx0 to the
possible resolution of distances. String theory, as a theory of
quantum gravity, should allow a deeper understanding of
what could happen at such extreme scales. Indeed, several
studies in string theory yielded a certain type of correction to
the uncertainty relation

DxDp>
\

2 @11b~Dp !21•••# , b.0, ~1!

which, as is easily verified, implies a finite minimal uncer-
tainty Dx05\Ab . Therefore, Dx0.0 can be viewed as a
fuzziness of space, or also as a consequence of the nonpoint-
likeness of the fundamental particles. It seems that, in string
theory, intuitively, the input of more energy does eventually
no longer allow to improve the spatial resolution, as this
energy starts to enlarge the probed string. References are,
e.g., @1–7#; see also @8#. For recent reviews, see, e.g., @9,10#.
Using the usual definition of uncertainties (uc& normal-

ized!

~Dx ! uc&5^cu~x2^cuxuc&!2uc&1/2, ~2!

the uncertainty relation Eq. ~1! implies a small correction
term to the commutation relation in the associative Heisen-
berg algebra:

@x,p#5i\~11bp21••• !. ~3!

For studies on the technical and conceptual implications of
these and more general types of correction terms, see @11–
16#. We remark that those studies arose from work ~e.g.,
@17#! in the seemingly unrelated field of quantum groups, in
which this type of commutation and uncertainty relations had
appeared independently ~first in @18#!. A standard reference
on quantum groups is @19#.
For the general case of n dimensions it appears that no

consensus has been reached in the literature on which gen-
eralization of Eq. ~3!, i.e., which particular correction terms
to the uncertainty relations could arise as a gravity effect in
the ultraviolet, or as a string effect. Let us therefore here
consider small correction terms of a general form
(xi
†5xi ,pi

†5pi)

@xi ,pj#5i\~d i j1b i jklpkpl1••• ! ~4!

with the coefficients b i jkl ~and also possible terms of higher
power in the pi) chosen such that the corresponding uncer-
tainty relations imply a finite minimal uncertainty Dx0.0.
We will for simplicity normally assume @pi ,pj#50, but we
allow @xi ,xj#fi0. Let us keep in mind that it is the correction
terms to the x,p commutation relations which induce
Dx0.0. A noncommutativity of the xi will not be necessary
for the appearance of a finite minimal uncertainty Dx0.
In short, the key mechanism which leads to ultraviolet

regularization in the presence of a minimal uncertainty Dx0
is the following.
In the case of the ordinary commutation and uncertainty

relations underlying, the states of maximal localization are
position eigenstates ux&, for which the uncertainty in position
vanishes. Crucially, these maximal localization states are
nonnormalizable. Therefore, their scalar product is not a
function but the Dirac d distribution ^xux8&5d(x2x8). As is
well known ~for a recent reference, see @20#!, in the formu-
lation of local interaction in field theory it is the ill defined-
ness of the product of these and related distributions which
give rise to ultraviolet divergencies.
A finite minimal uncertainty Dx0 will yield normalizable

maximal localization states, and thereby regularize the ultra-

*Electronic address: a.kempf@amtp.cam.ac.uk
†Electronic address: mangano@axpna1.na.infn.it,
g.mangano@amtp.cam.ac.uk
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Abstract: We extend earlier ideas about the appearance of noncommutative ge-
ometry in string theory with a nonzero B-field. We identify a limit in which the

entire string dynamics is described by a minimally coupled (supersymmetric) gauge
theory on a noncommutative space, and discuss the corrections away from this limit.
Our analysis leads us to an equivalence between ordinary gauge fields and non-

commutative gauge fields, which is realized by a change of variables that can be
described explicitly. This change of variables is checked by comparing the ordinary

Dirac-Born-Infeld theory with its noncommutative counterpart. We obtain a new
perspective on noncommutative gauge theory on a torus, its T -duality, and Morita

equivalence. We also discuss the D0/D4 system, the relation toM-theory in DLCQ,
and a possible noncommutative version of the six-dimensional (2, 0) theory.

Keywords: Bosonic Strings, D-branes, Space-Time Symmetries, Gauge

Symmetry.

✦ This work was almost forgotten for a long time, until quantum gravity research 
revived it in the late ‘90s



Snyder’s model for noncommutative spacetime (1947) 

✦ The main focus is on not spoiling special-relativistic Lorentz invariance

• Snyder, Phys. Rev. 1947

[x0, xi] = ia

2
Ki , [xi, xj ] = ia

2
✏ijkJk

 assume Lorentz-invariant commutators between spacetime coordinates

[Ji, Jj ] = ✏ijkJk, [Ji,Kj ] = ✏ijkKk, [Ki,Kj ] = �✏ijkJk

[   is a length scale,            , and we use                 ]a a ⇠ LP c = ~ = 1

✦ Momenta are defined as objects that transform as vectors under Lorentz 
transformations

[p↵, p� ] = 0
[p0,Ki] = �ipi
[pi,Kj ] = �i�ijp0
[p0, Ji] = 0
[pj , Ji] = �i✏ijkpk .



Snyder deformed phase space 

[xi, pj ] = i(�ij + a

2
pipj)

[x0, p0] = i(1� a

2
p

2
0)

[xi, p0] = ia

2
p0pi

[x0, pi] = �ia

2
p0pi .

Ki = xip0 + x0pi , Ji = ✏ijkxjpk

✦ Noncommutative coordinates and momenta close a deformed phase space 
algebra

such that the representation of Lorentz generators in undeformed

• Snyder, Phys. Rev. 1947

✦ This model has been largely studied

noncommutative geometry, generalised uncertainty principle, deformed 
special relativity, hydrogen atom, harmonic oscillator, path integral, …



Snyder deformed phase space and GUP 

• Snyder, Phys. Rev. 1947 
• Kempf, Mangano, PRD 1997

✦ One of the most relevant implications is a deformed Heisenberg uncertainty 
principle and a minimum length uncertainty

in 1+1 dimensions:

�x�p � 1

2
|h[x, p]i|

�x�p � 1

2

�
1 + a

2hp2i
�
=

1

2

�
1 + a

2(�p)2 � a

2hpi2
�

�x � 1

2

✓
1� a

2hpi2

�p

+ a

2�p

◆

�xmin = a

absolute minimum, independent of <p>:



Euclidean maximally symmetric spaces 

✦ Euclidean sphere (           )  and hyperbolic plane (           ) in embedding 
coordinates

s23 + !
�
s21 + s22

�
= 1

! > 0 ! < 0

✦ Algebra of symmetries

[J, P1] = P2, [J, P2] = �P1, [P1, P2] = !J

✦ Action on embedding coordinates P1 = s3
@

@s1
� ! s1

@
@s3

P2 = s3
@

@s2
� ! s2

@
@s3

J = s1
@

@s2
� s2

@
@s1

✦ It generates the spaces via S2
! = SO!(3)/H, H = SO(2) = hJi.

SO!(3)



Projective geometry of Euclidean spaces 

✦ Beltrami projective coordinates are obtained via a central stereographic 
projection with pole (0,0,0) to the plane s3=1

✦ The relation between Beltrami coordinates and embedding coordinates is

s3 =
1p

1 + !(q21 + q22)
, si =

qip
1 + !(q21 + q22)

qi =
si
s3



Projective geometry of Euclidean spaces 

✦ The domain of Beltrami coordinates depends on the sign of 𝜔

1 + !(q21 + q22) > 0

qi 2 (�1,+1) qi 2
�
�1/

p
|!|,+1/

p
|!|

�

✦ A curved metric is induced on the Beltrami plane

d�2
! = 1

!

�
ds23 + !

�
ds21 + ds22

����
⌃!

= !(s1ds1+s2ds2)
2

1�!(s21+s22)
+ ds21 + ds22

= (1+! q2)d q2�!( q·d q)2

(1+! q2)2



Euclidean Snyder phase spaces 

✦ The goal is to define a non commutative 2-dimensional space with 
rotational invariance

we can take the sphere/hyperbolic plane as a ‘pregeometric’ manifold and 
identify space coordinates with the generators of translations

x1 := P1 , x2 := P2

their commutator is naturally consistent with the required symmetry

[x1, x2] = !J

✦ Momenta are defined by asking that they transform as vectors under 
(hyperbolic) rotations — condition satisfied by the Beltrami coordinates!

p1 := q1 =
s1
s3

, p2 := q2 =
s2
s3



Euclidean Snyder phase spaces 

✦ The full phase space relations are 

consistent with a standard representation of the (hyperbolic) rotation 
generator

[x1, x2] = !J, [p
x

, p

y

] = 0,

[x1, p1] = 1 + ! p

2
1, [x1, p2] = ! p1p2,

[x2, p2] = 1 + ! p

2
2, [x2, p1] = ! p1p2,

the ‘pregeometric’ manifold (in Beltrami coordinates) is actually the 
momentum space and space coordinates are translations over the manifold

J = x1p2 � x2p1

✦ The phase space is consistent with the spatial restriction of the original 
Snyder model with ! = a2 > 0

[xi, pj ] = i(�ij + a

2
pipj)

[x0, p0] = i(1� a

2
p

2
0)

[xi, p0] = ia

2
p0pi

[x0, pi] = �ia

2
p0pi .



Projective geometry of Lorentzian spaces 

✦ The starting point are 3+1 dimensional maximally symmetric Lorentzian 
manifolds, (A-)dS

In embedding coordinates they are defined by the constraint

s24 � ⇤s20 +
⇤

c2
�
s21 + s22 + s23

�
= 1

✦ Algebra of symmetries

✦ It generates de Sitter (𝛬 > 0) and anti-de Sitter (𝛬 < 0) space via

[Ji, Jj ] = ✏ijkJk, [Ji, Pj ] = ✏ijkPk, [Ji,Kj ] = ✏ijkKk,

[P0,Ki] = Pi, [Pj ,Ki] =
1
c2 �ijP0, [Ki,Kj ] = � 1

c2 ✏ijkJk,

[P0, Pi] = ⇤Ki, [Pi, Pj ] = ⇤ 1
c2 ✏ijkJk, [P0, Ji] = 0,

we now keep c explicit to track its effects

dS3+1
⇤ = SO⇤(4, 1)/SO(3, 1)

SO⇤(4, 1)



Projective geometry of Lorentzian spaces 

✦ Beltrami projective coordinates are obtained via a central stereographic 
projection with pole (0,0,0) to the plane s4=1

q↵ =
s↵
s4

✦ The domain of Beltrami coordinates depends on the sign of 𝛬:

✦ A curved metric is induced on the Beltrami plane

)
(

q20 �
q2

c2 < 1
⇤ if ⇤ > 0

q20 �
q2

c2 > 1
|⇤| if ⇤ < 0

d�2
⇤ = 1

�⇤

�
ds24 � ⇤ds20 +

⇤
c2 ds

2
����

⌃⇤

=
�⇤(s0ds0� 1

c2
s·ds)2

1+⇤s20� ⇤
c2

s2
+ ds20 � 1

c2 ds
2

=
(1�⇤q20+

⇤
c2

q2)(dq20� 1
c2

dq2)+⇤(q0dq0� 1
c2

q·dq)2

(1�⇤q20+
⇤
c2

q2)2

s4 =
1q

1� ⇤q20 +
⇤
c2q

2
, s↵ =

q↵q
1� ⇤q20 +

⇤
c2q

2

1� ⇤q20 +
⇤

c2
q2 > 0



(anti-)Snyder model from projective geometry 

✦ A non commutative Lorentz-invariant spacetime can be constructed by 
using the (anti-)de Sitter manifold as a ‘pregeometric’ manifold and 
identifying the spacetime coordinates with the generators of translations

their commutator is naturally consistent with the required symmetry

✦ For 𝛬 > 0 these are the commutators used by Snyder, with  
and the Beltrami coordinates correspond to Snyder’s choice of momenta

The Snyder model is a ‘curved momentum space’ model, where the 
momentum space is the projection of a de Sitter manifold and spacetime 
coordinates are translations over the de Sitter manifold. A curved metric is 
induced on the Beltrami plane:

x0 :=
1

c

P0, xi := c Pi

[x0, xi] = ⇤Ki, [xi, xj ] = ⇤ ✏ijkJk

⇤ ⌘ a2 > 0

p0 := c q0 = c
s0
s4

, pi :=
1

c
qi =

1

c

si
s4

dµ(p) =
c4

(c2(1 + ⇤|p2|)� ⇤p20)
5/2

d4p ,



(anti-)Snyder phase space 

✦ The noncommutative coordinates and the momenta close a deformed phase 
space algebra

which reproduces the original Snyder phase space for  
The case                       defines the so-called anti-Snyder model

✦ In terms of coordinates and momenta the symmetry generators are

⇤ ⌘ a2 > 0

[x0, xi] = ⇤Ki, [xi, xj ] = ⇤ ✏ijkJk,

[x0, p↵] = �0↵ � ⇤
c2 p0p↵, [xi, pj ] = �ij + ⇤ pipj ,

[xi, p0] = ⇤ p0pi, [p↵, p� ] = 0,

⇤ ⌘ �a2 < 0

Ki = x0pi +
1

c

2
xip0, Ji = ✏ijkxjpk

✦ The spatial components of the phase space reproduce the Euclidean Snyder 
model, so it could be natural to suppose that in the corresponding Galilean 
model, where time is absolute, only these relations survive

• Mignemi PRD 2011



The non-relativistic limit of the (anti-)Snyder model 

✦ The nonrelativistic limit is usually realised by reducing to the spatial 
coordinates and momenta

[x0, xi] = ⇤
�
x0pi +

1
c2 xip0

�

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵ � ⇤
c2 p0p↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

[xi, xj ] = !✏ijkJk

[pi, pj ] = 0,
[xi, pj ] = �ij + ! pipj

✦ However the Euclidean sphere/hyperbolic plane are not the              limit of the 
de Sitter/anti-de Sitter spaces, thus is not compatible with the symmetries of the 
Galilei algebra 
 
The actual Galilean limit of the Snyder model is best exposed by using the 
momentum space construction

c ! 1

thus one obtains the Euclidean (anti-)Snyder model dS3+1
⇤ S3

!

•Lu, Stern NPB 2012  
•Mignemi CQG 2012 
•Ching, Yeo, Ng, IJMPA 2017



Galilean limit of (anti-)de Sitter 

c ! 1✦ Take the              limit of the (anti-)de Sitter algebra of symmetries

c ! 1

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[Ki, P0] = Pi

[Ki, Pj ] = 0
[Ki,Kj ] = 0
[P0, Pi] = ⇤Ki

[Pi, Pj ] = 0
[P0, Ji] = 0

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[P0,Ki] = Pi

[Pj ,Ki] = 1
c2 �ijP0

[Ki,Kj ] = � 1
c2 ✏ijkJk

[P0, Pi] = ⇤Ki

[Pi, Pj ] = ⇤ 1
c2 ✏ijkJk

[P0, Ji] = 0

✦ This defines the Newton-Hooke algebra (expanding 𝛬 > 0, oscillating 𝛬 < 0) 
whose associated homogeneous manifold is 

N3+1
⇤ = NH⇤(3 + 1)/ISO(3).



Galilean limit of (anti-)de Sitter 

c ! 1✦ Take the              limit of the (anti-)de Sitter algebra of symmetries

c ! 1

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[Ki, P0] = Pi

[Ki, Pj ] = 0
[Ki,Kj ] = 0
[P0, Pi] = ⇤Ki

[Pi, Pj ] = 0
[P0, Ji] = 0

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[P0,Ki] = Pi

[Pj ,Ki] = 1
c2 �ijP0

[Ki,Kj ] = � 1
c2 ✏ijkJk

[P0, Pi] = ⇤Ki

[Pi, Pj ] = ⇤ 1
c2 ✏ijkJk

[P0, Ji] = 0

✦ This defines the Newton-Hooke algebra (expanding 𝛬 > 0, oscillating 𝛬 < 0) 
whose associated homogeneous manifold is 

N3+1
⇤ = NH⇤(3 + 1)/ISO(3).

the constraint defining the manifold in terms of embedding coordinates and the metric 
on this manifold are degenerate, because of the appearance of an “absolute time”, 
which induces a constant-time foliation (invariant under the action of the NH group)

s24 � ⇤s20 = 1
d�2

⇤ =
ds20

1 + ⇤s20
d�02

⇤ = ds2 on s0 = constant



Galilean limit of (anti-)de Sitter 

c ! 1✦ Take the              limit of the (anti-)de Sitter algebra of symmetries

c ! 1

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[Ki, P0] = Pi

[Ki, Pj ] = 0
[Ki,Kj ] = 0
[P0, Pi] = ⇤Ki

[Pi, Pj ] = 0
[P0, Ji] = 0

[Ji, Jj ] = ✏ijkJk
[Ji, Pj ] = ✏ijkPk

[Ji,Kj ] = ✏ijkKk

[P0,Ki] = Pi

[Pj ,Ki] = 1
c2 �ijP0

[Ki,Kj ] = � 1
c2 ✏ijkJk

[P0, Pi] = ⇤Ki

[Pi, Pj ] = ⇤ 1
c2 ✏ijkJk

[P0, Ji] = 0

✦ This defines the Newton-Hooke algebra (expanding 𝛬 > 0, oscillating 𝛬 < 0) 
whose associated homogeneous manifold is 

N3+1
⇤ = NH⇤(3 + 1)/ISO(3).

the constraint defining the manifold in terms of embedding coordinates and the metric 
on this manifold are degenerate, because of the appearance of an “absolute time”, 
which induces a constant-time foliation (invariant under the action of the NH group)

s24 � ⇤s20 = 1
d�2

⇤ =
ds20

1 + ⇤s20
d�02

⇤ = ds2 on s0 = constant



Galilean (anti-)Snyder model 

c ! 1✦ The Galilean Snyder phase space can be found as the              limit of the 
Lorentzian Snyder phase space

[x0, xi] = ⇤
�
x0pi +

1
c2 xip0

�

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵ � ⇤
c2 p0p↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

c ! 1
[x0, xi] = ⇤Ki

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

 where the boost       reduces to the Galilean boost: Ki = x0piKi

✦ The commutators between the spatial components of phase space are the same as 
in the Euclidean Snyder model. 



Galilean (anti-)Snyder model 

c ! 1✦ The Galilean Snyder phase space can be found as the              limit of the 
Lorentzian Snyder phase space

[x0, xi] = ⇤
�
x0pi +

1
c2 xip0

�

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵ � ⇤
c2 p0p↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

c ! 1
[x0, xi] = ⇤Ki

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

 where the boost       reduces to the Galilean boost: Ki = x0piKi

✦ The commutators between the spatial components of phase space are the same as 
in the Euclidean Snyder model. 

However there are also nontrivial commutators between space and time 
components.



Galilean (anti-)Snyder model 

c ! 1✦ The Galilean Snyder phase space can be found as the              limit of the 
Lorentzian Snyder phase space

[x0, xi] = ⇤
�
x0pi +

1
c2 xip0

�

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵ � ⇤
c2 p0p↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

c ! 1
[x0, xi] = ⇤Ki

[xi, xj ] = ⇤ ✏ijkJk

[x0, p↵] = �0↵

[xi, pj ] = �ij + ⇤ pipj

[xi, p0] = ⇤ p0pi

[p↵, p� ] = 0

 where the boost       reduces to the Galilean boost: Ki = x0piKi

✦ The commutators between the spatial components of phase space are the same as 
in the Euclidean Snyder model. 

There is a remnant spacetime mixing in the Galilean limit of the 
relativistic model due to spacetime noncommutativity

However there are also nontrivial commutators between space and time 
components.



Conclusions & outlook 

✦ The Snyder model for noncommutative spacetime introduces a minimum length 
without violating Lorentz invariance  

✦ This is achieved by defining spacetime coordinates as translations over a curved 
maximally symmetric manifold [ (A-)dS ] and physical momenta as the projective 
coordinate on a plane of such curved manifold — the momentum space inherits a 
curved metric 

✦ The non relativistic limit of the Snyder model is found by performing a similar 
construction of the manifold that is the Galilean limit of (A-)dS, i.e. the Newton-
Hooke manifold.  

✦ The time foliation of the NH manifold is reminiscent of the “absolute time” of 
Galilean physics. However, spatial and time translations on these manifold do not 
commute, so the resulting Galilean Snyder space and time coordinates are not 
independent 

✦ This provides an example of QG model where the nonrelativistic limit is 
qualitatively different from that of standard physics, and time does not completely 
decouple from space 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