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Snyder’s model for noncommutative spacetime (est. 1947)

+ Hartland Snyder was quite an innovator and a pioneer




Snyder’s model for noncommutative spacetime (est. 1947)

+ Hartland Snyder was quite an innovator and a pioneer

with his PhD supervisor, Oppenheimer, he
developed the first seed of the black hole idea (1939)
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When all thermonuclear sources of energy are exhausted a sufficiently heavy star will
collapse. Unless fission due to rotation, the radiation of mass, or the blowing off of mass by
radiation, reduce the star’s mass to the order of that of the sun, this contraction will continue
indefinitely. In the present paper we study the solutions of the gravitational field equations I f tt d M d M th / 60
which describe this process. In I, general and qualitative arguments are givenqon the [a Ong_ OrgO en pape r/ re ISCOVQ re In e S
behavior of the metrical tensor as the contraction progresses: the radius of the star ap-
proaches asymptotically its gravitational radius; light from the surface of the star is pro-
gressively reddened, and can escape over a progressively narrower range of angles. In II, an
analytic solution of the field equations confirming these general arguments is obtained for the
case that the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and typical stellar
masses, of the order of a day; an external observer sees the star asymptotically shrinking to
its gravitational radius.
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with a few collaborators, he developed the
technique of strong-focussing (1952), which
allows to focus particles in accelerators by
alternating the gradient of the magnetic field

At the end of last month the very sad news reached
us that Dr. Hartland Snyder had died. To us in CERN,
Snydet’s name is for ever tied to the discovery of"
the alternating-gradient focusing principle. He shared
the honour of this discovery with his colleagues
Dr. E.D. Courant and Dr. M.S. Livingston, and with
Dr. N.C. Christofilos, Everybody knows what this has
meant to CERN. We can only remind ourselves that we
were planning a 10-GeV weak-focused synchrotron, a
machine at least as expensive and more difficult to
make than the PS, when in 1952 we learnf about the
elegant new ideas from Brookhaven. This changed the
CERN plans enfirely, and perhaps also the CERN
spirit, as we got a very much more exciting project
to concentrate on.
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+ Hartland Snyder was quite an innovator and a pioneer

in 1947 he proposed the first model of quantum spacetime
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Quantized Space-Time
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It is usually assumed that space-time is a continuum. This assumption is not required by
Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time.

motivated by the hope that the discreteness induced by spacetime noncommutativity could
avoid divergencies in quantum field theory (issue later solved by renormalisation)
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+ This work was almost forgotten for a long time, until quantum gravity research
revived it in the late “90s
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+ This work was almost forgotten for a long time, until quantum gravity research
revived it in the late “90s
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Studies in string theory and quantum gravity suggest the existence of a finite lower limit Ax,, to the possible Nathan Seiberg and Edward Witten

resolution of distances, at the latest on the scale of the Planck length of 10~ >° m. Within the framework of the School of Natural Sciences, Institute for Advanced Study
Euclidean path integral we explicitly show ultraviolet regularization in field theory through this short distance Olden Lane, Princeton, NJ 08540
structure. Both rotation and translation invariance can be preserved. An example is studied in detail. E-mail: seiberg@ias.edu, witten@ias.edu




Snyder’s model for noncommutative spacetime (1947)

+ The main focus is on not spoiling special-relativistic Lorentz invariance
Ji, J;] = €ijkJk, Ji, K| = € Ky, Ki, K] = —€i5Jk

— assume Lorentz-invariant commutators between spacetime coordinates
1 =502 K ) = da%eiin ]
[370733@] = a 19 [CIZZ,ZJ] — 14 € ikJE
[ais a length scale,a ~ Lp, and we use ¢ =h = 1]

+ Momenta are defined as objects that transform as vectors under Lorentz
transformations

Pasps] = 0

po, IG] = —ip;

pi, K| = —idi;po

po,Ji] = 0

:pja Jz] — —iﬁijkpk -  Snyder, Phys. Rev. 1947




Snyder deformed phase space

+ Noncommutative coordinates and momenta close a deformed phase space
algebra

zi, 0] = (0 + a2p,,;pj)
:IEO,]?O] — 73(1 - CLQP(Q))
zi,p0] = ia’pop;

z0,pi] = —ia’pop; .

 Snyder, Phys. Rev. 1947

such that the representation of Lorentz generators in undeformed
K; = xipo + xopi , Ji = €jkT;Dk
+ This model has been largely studied

noncommutative geometry, generalised uncertainty principle, deformed
special relativity, hydrogen atom, harmonic oscillator, path integral, ...




Snyder deformed phase space and GUP

+ One of the most relevant implications is a deformed Heisenberg uncertainty
principle and a minimum length uncertainty

Axtp > 5|z, p])

in 1+1 dimensions:

Awdp> o (1+a*(p?) = 5 (1+a*(Ap)” — a*()?)
1 1 — 2 2
— Az > o ( Zp<p " . aQAp)

absolute minimum, independent of <p>:

AZmin = a
 Snyder, Phys. Rev. 1947
» Kempt, Mangano, PRD 1997




Euclidean maximally symmetric spaces

+ Euclidean sphere (w > 0) and hyperbolic plane (w < 0) in embedding
coordinates

S3 S3

S§+w(8%—|—s§) =1

+ Algebra of symmetries SO, (3)
L, P=P, [JPl=-P, [P,P]=w]

+ It generates the spaces via S2 = SO, (3)/H, H = S0(2) = (J).

+ Action on embedding coordinates P, = 333% _ wsla%
P2 — 83% — W 828183
J = 518% — 328%1




Projective geometry of Euclidean spaces

+ Beltrami projective coordinates are obtained via a central stereographic
projection with pole (0,0,0) to the plane s3=T

3,51,52)

+ The relation between Beltrami coordinates and embedding coordinates is

Sq
q; — —
S3




Projective geometry of Euclidean spaces

+ The domain of Beltrami coordinates depends on the sign of @

1 +w(gi +q3) >0

q; € (—00, +00) qi € (—1/m,+1/M)

+ A curved metric is induced on the Beltrami plane

do? = (ds3+w(ds?+ds3))|y = wlordsifoadsa). | 62 4 3

W 1—w(s%—|—s%)
(14w ¢*)d ¢*—w(g-d q)*
(1+w ¢2)2




Euclidean Snyder phase spaces

+ The goal is to define a non commutative 2-dimensional space with
rotational invariance

we can take the sphere/hyperbolic plane as a ‘pregeometric’ manifold and
identify space coordinates with the generators of translations

513‘11:P1, CIZQI:PQ
their commutator is naturally consistent with the required symmetry
1, 22| = wJ

+ Momenta are defined by asking that they transform as vectors under
(hyperbolic) rotations — condition satisfied by the Beltrami coordinates!




Euclidean Snyder phase spaces

+ The full phase space relations are

:5131,5132: — wJa pxapy — 07
T1,p1] = 1“00]9%» x1,p2] = w p1p2,
:mQapQ: — 1"“}])37 :Jfg,pl: — W pP1pP2,

consistent with a standard representation of the (hyperbolic) rotation

enerator
5 J = x1p2 — T2p1

- the ‘pregeometric’ manifold (in Beltrami coordinates) is actually the
momentum space and space coordinates are translations over the manifold

+ The phase space is consistent with the spatial restriction of the original
Snyder model with w = a% > 0

ia2p0pz‘
—MQPOZ%' :

zi,pj| = (0 + CLQ]?z'pj) 1z, Po)
[fli'oapo] i(l — CLQP(Q)) [l‘o,pz’]




Projective geometry of Lorentzian spaces

+ The starting point are 3+1 dimensional maximally symmetric Lorentzian

manifolds, (A-)dS

In embedding coordinates they are defined by the constraint

A

we now keep c explicit to track its effects

+ Algebra of symmetries SO, (4, 1)

JZ)‘]j] — Eiijka
Py, K;| = P,
Py, P = AK;,

‘]‘L)PJ] — Eijkpk’)
P;,K;]| = % 0;; Po,

P, Pjl = A = €5 Jk,

si—As%—l—;(s%#—s%%—s%):l

JzaKJ] — e’iijk’)
K, K;] = — = €ijkJk,

:P()a Jz] — 07

+ It generates de Sitter (A > 0) and anti-de Sitter (A < 0) space via

dS3™ = S04 (4,1)/S0(3,1)




Projective geometry of Lorentzian spaces

+ Beltrami projective coordinates are obtained via a central stereographic
projection with pole (0,0,0) to the plane ss=1

Sa
S4
1 o

4 — . Sa =
V1-Ag + Aq? J1-Ag + AP

+ The domain of Beltrami coordinates depends on the sign of A:

o —

S

( 2
A 2 -9 < 4 if A >0
1A+ 2q>>0 = D7 A o
C \ qO — 2 > W 1 < O
+ A curved metric is induced on the Beltrami plane
—A SodSQ—% s-ds 2
doi = - (ds? — Adsi + 4 ds?) ‘ZA: (1+As(%—cc% > ) + ds§ — & ds?

(1-Ag2+ 2 q?) (ded— L da?)+A(godgo— % q-dq)”
(1-Ag2+ 4 q2)




(anti-)Snyder model from projective geometry

+ A non commutative Lorentz-invariant spacetime can be constructed by
using the (anti-)de Sitter manifold as a ‘pregeometric’ manifold and
identifying the spacetime coordinates with the generators of translations

1
ZE()I:EP(), .CIZZ'Z:CPZ'

their commutator is naturally consistent with the required symmetry
o, ;) = ANK;,  wg,75] = NegjrJy

+ For A > 0 these are the commutators used by Snyder, with A = a* > 0
and the Beltrami coordinates correspond to Snyder’s choice of momenta

SO 1 1 Si
Po -=€qo = € —, Pi =4 = — —
S4 C C S4

—fp The Snyder model is a ‘curved momentum space’ model, where the

momentum space is the projection of a de Sitter manifold and spacetime
coordinates are translations over the de Sitter manifold. A curved metric is
induced on the Beltrami plane: 4

C
dp(p) = d*
1P = Ta T Ape) — Ay 1P




(anti-)Snyder phase space

+ The noncommutative coordinates and the momenta close a deformed phase

space algebra
o, zi) = A Ky,

;:807]?04] — 500{ —
xi, o] = A pops,

A
2 PoPa s

i, ;] = NejjrJk,
25, D5] = 0ij + Apipj,
paapﬁ] — 07

which reproduces the original Snyder phase space for A = a* > 0
The case A = —a? < 0 defines the so-called anti-Snyder model

» Mignemi PRD 2011

+ In terms of coordinates and momenta the symmetry generators are

1
K; = xop; + 3 TiDo,

Ji = €jkT;Dk

+ The spatial components of the phase space reproduce the Euclidean Snyder
model, so it could be natural to suppose that in the corresponding Galilean
model, where time is absolute, only these relations survive




The non-relativistic limit of the (anti-)Snyder model

+ The nonrelativistic limit is usually realised by reducing to the spatial

coordinates and momenta eLu, Stern NPB 2012

*Mignemi CQG 2012
*Ching, Yeo, Ng, IIMPA 2017

zo, x| = A (zopi + = @ipo)

:xi,a?j] — AEz‘ij[]{ v xi] = weiind
:x()apoz] — 5004 — =2 P0Pa ___’ -pz' pj] — 0

Ti,p;] = 0ij + Apip; :w.’ - 5?. 7.
: s D — T W Pip
zi,p0] = Apop: oo P Y -
Pa,psl = 0

thus one obtains the Euclidean (anti-)Snyder model dS?\Jrl —> SS’J

+ However the Euclidean sphere/hyperbolic plane are not the ¢ — oo limit of the
de Sitter/anti-de Sitter spaces, thus is not compatible with the symmetries of the
Galilei algebra

The actual Galilean limit of the Snyder model is best exposed by using the
momentum space construction




Galilean limit of (anti-)de Sitter

+ Take the ¢ — oo limit of the (anti-)de Sitter algebra of symmetries

Ji, J;l = €iindk Ji,Ji] = €k
Ji, Pl = &P Ji, Pjl = €iinb
Ji, Kj] = €Ky Ji, K| = €Ky
Py, K| = Pz' c — 00 K, P = P
:Pj,Ki] = 5@3P0 -—’ :Ki,Pj] = 0
K’HKJ] — CQ EZ]]{IJ]{? KzaK] = 0

P, P = AK, P, P = AK,
P, Pl = A%endi PP = 0
:P07 ] = 0 :P07 ] = 0

+ This defines the Newton-Hooke algebra (expanding A > 0, oscillating A < 0)
whose associated homogeneous manifold is

N3t = NHx (3 +1)/ISO(3).




Galilean limit of (anti-)de Sitter

+ Take the ¢ — oo limit of the (anti-)de Sitter algebra of symmetries

Ji Ji] = €irdi i Ji) = €ijrdk
Ji, Pl = €ijuPy Ji, Pl = €D
Ji, Kj| = €K Ji, Kj| = €K
Po, K] = Pi c — 00 K, P P;
:Piji] — 523P0 '-" _Kiapj] 0

K, K;] = —%eindk K, K| 0

P, P = AK, Py, Py AK;
P, Pl = A%endi P, Pj] 0
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+ This defines the Newton-Hooke algebra (expanding A > 0, oscillating A < 0)
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N3t = NHx (3 +1)/ISO(3).

the constraint defining the manifold in terms of embedding coordinates and the metric
on this manifold are degenerate, because of the appearance of an “absolute time”,
which induces a constant-time foliation (invariant under the action of the NH group)
ds?
dos = 0
s — Ast =1 Y14 Asp
do’s =ds?® on sy = constant
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Galilean (anti-)Snyder model

+ The Galilean Snyder phase space can be found as the ¢ — oo limit of the
Lorentzian Snyder phase space

zo,zi] = A (fE‘opi T Ciz CEz'po) xo,x;] = AK;

zi x5 = A€y C -5 00 SUz, ;] = ANejpdi
:anpa] = 00a — C%popa — > :Slfo,pa] = d0a

zi,p;] = 0ij + Apip; :iliz',pj] = 0ij + Apip;
zi,po] = Apop: :5137;,]00] = A pop;
pompﬁ] = 0 _powpﬁ] = 0

where the boost K; reduces to the Galilean boost: K; = xgp;

+ The commutators between the spatial components of phase space are the same as
in the Euclidean Snyder model.




Galilean (anti-)Snyder model

+ The Galilean Snyder phase space can be found as the ¢ — oo limit of the

Lorentzian Snyder phase space

L0, T
:mia xj]
:x07poz]
:337;, pj]
;wiapo]
_pompﬁ]

1

A (fb‘opi T =2 LiPo

Neijndi

Soa — 5 PoPa
0ij + A pip;
A pop;

0

:3307p04] — 500{

xi,p;] = dij + Apip,
T4, Do) A pop;
Pa,ps] = 0

where the boost K; reduces to the Galilean boost: K; = xgp;

+ The commutators between the spatial components of phase space are the same as
in the Euclidean Snyder model.

However there are also nontrivial commutators between space and time
components.




Galilean (anti-)Snyder model

+ The Galilean Snyder phase space can be found as the ¢ — oo limit of the
Lorentzian Snyder phase space

To,xi] = A (fE‘opi T Ciz CEz'po)

zi,xi] = Nejrdy I . T

:anpOé] = 00a — C%popa —— :anpa] =  0pa

zi,p;] = 0ij + Apip; z5,p5] = 0ij + Apip;
xi,po] = Apop; zi,p0] = Apop;
Paspg] = 0 Pasps] = 0

where the boost K; reduces to the Galilean boost: K; = xgp;

+ The commutators between the spatial components of phase space are the same as
in the Euclidean Snyder model.

However there are also nontrivial commutators between space and time
components.

—P There is a remnant spacetime mixing in the Galilean limit of the
relativistic model due to spacetime noncommutativity




Conclusions & outlook

+ The Snyder model for noncommutative spacetime introduces a minimum length
without violating Lorentz invariance

+ This is achieved by defining spacetime coordinates as translations over a curved
maximally symmetric manifold [ (A-)dS ] and physical momenta as the projective
coordinate on a plane of such curved manifold — the momentum space inherits a
curved metric

+ The non relativistic limit of the Snyder model is found by performing a similar
construction of the manifold that is the Galilean limit of (A-)dS, i.e. the Newton-
Hooke manifold.

+ The time foliation of the NH manifold is reminiscent of the “absolute time” of
Galilean physics. However, spatial and time translations on these manifold do not
commute, so the resulting Galilean Snyder space and time coordinates are not
independent

+ This provides an example of QG model where the nonrelativistic limit is
qualitatively different from that of standard physics, and time does not completely
decouple from space
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