L_{∞} algebra of Einstein-Cartan-Palatini gravity and its braided noncommutative deformation

Grigorios Giotopoulos

Workshop on Quantum Geometry, Field Theory and Gravity August 20, 2019

based on joint work with Marija Dimitrijević Ćirić, Voja Radovanović and Richard J. Szabo

Brief review of Einstein-Cartan-Palatini (ECP) gravity.

2 Cyclic L_{∞} algebras, Gauge theories and the ECP algebra.

3 Noncommutative braided ECP gravity

(4) Noncommutative ECP braided L_{∞} algebra

5 Summary and Outlook

• ECP gravity is described by the following action functional

$$S = \int_{M} Tr(e \land e \land R) = \int_{M} (e^{a} \land e^{b} \land R^{cd} \epsilon_{abcd})$$

where $e: TM \to \mathcal{V}$ is a bundle isomorphism onto a fixed (Minkowski) vector bundle (\mathcal{V}, η) , and $R = d\omega + \frac{1}{2}[\omega, \omega]$ is the curvature of a connection one form on the associated principal SO(1,3)-bundle.

• ECP gravity is described by the following action functional

$$S = \int_{M} Tr(e \land e \land R) = \int_{M} (e^{a} \land e^{b} \land R^{cd} \epsilon_{abcd})$$

where $e: TM \to \mathcal{V}$ is a bundle isomorphism onto a fixed (Minkowski) vector bundle (\mathcal{V}, η) , and $R = d\omega + \frac{1}{2}[\omega, \omega]$ is the curvature of a connection one form on the associated principal SO(1,3)-bundle.

• Locally, or globally for a parallelizable M, $e \in \Omega^1(M, \mathbb{R}^{1,3})$ and $\omega \in \Omega^1(M, \mathfrak{so}(1,3))$.

• ECP gravity is described by the following action functional

$$S = \int_{M} Tr(e \land e \land R) = \int_{M} (e^{a} \land e^{b} \land R^{cd} \epsilon_{abcd})$$

where $e: TM \to \mathcal{V}$ is a bundle isomorphism onto a fixed (Minkowski) vector bundle (\mathcal{V}, η) , and $R = d\omega + \frac{1}{2}[\omega, \omega]$ is the curvature of a connection one form on the associated principal SO(1,3)-bundle.

- Locally, or globally for a parallelizable M, $e \in \Omega^1(M, \mathbb{R}^{1,3})$ and $\omega \in \Omega^1(M, \mathfrak{so}(1,3))$.
- Using the isomorphism so(1,3) ≅ ∧²ℝ^{1,3}, one identifies ω = ω^{ab}E_a ∧ E_b. The curly wedge combines two different exterior products. The trace is the flat space hodge star.

• The Lie algebra of (infinitessimal) gauge symmetries is given by the semi-direct product

$$\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1,3))$$

corresponding to diffeomorphisms and local lorentz rotations, respectively.

• The Lie algebra of (infinitessimal) gauge symmetries is given by the semi-direct product

$$\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1,3))$$

corresponding to diffeomorphisms and local lorentz rotations, respectively.

• The Equations of motion are given by

$$e \downarrow d^{\omega} e = 0$$
 $e \downarrow R = 0$

• The Lie algebra of (infinitessimal) gauge symmetries is given by the semi-direct product

$$\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1,3))$$

corresponding to diffeomorphisms and local lorentz rotations, respectively.

• The Equations of motion are given by

$$e \downarrow d^{\omega} e = 0$$
 $e \downarrow R = 0$

• The first is equivalent to $T := d^{\omega}e = 0$, a torsionless condition $\implies \omega$ is the Levi-civita connection.

• The Lie algebra of (infinitessimal) gauge symmetries is given by the semi-direct product

$$\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1,3))$$

corresponding to diffeomorphisms and local lorentz rotations, respectively.

• The Equations of motion are given by

$$e \downarrow d^{\omega} e = 0$$
 $e \downarrow R = 0$

- The first is equivalent to $T := d^{\omega}e = 0$, a torsionless condition $\implies \omega$ is the Levi-civita connection.
- The second is then equivalent to the Einstein equation in vacuum.

• The Lie algebra of (infinitessimal) gauge symmetries is given by the semi-direct product

$$\Gamma(TM) \rtimes \Omega^0(M, \mathfrak{so}(1,3))$$

corresponding to diffeomorphisms and local lorentz rotations, respectively.

• The Equations of motion are given by

$$e \downarrow d^{\omega} e = 0$$
 $e \downarrow R = 0$

- The first is equivalent to $T := d^{\omega}e = 0$, a torsionless condition $\implies \omega$ is the Levi-civita connection.
- The second is then equivalent to the Einstein equation in vacuum.
- To change dimension, modify number of *e*-fields in action. E.g. in 3d $d^{\omega}e = 0$, R = 0.

An L_∞ algebra is a graded vector space X = ⊕_{k∈ℤ} X^k equipped with graded skewsymmetric multilinear maps

$$\ell_n: \wedge^n X \to X$$

satisfying higher versions of the Jacobi identity.

An L_∞ algebra is a graded vector space X = ⊕_{k∈ℤ} X^k equipped with graded skewsymmetric multilinear maps

$$\ell_n: \wedge^n X \to X$$

satisfying higher versions of the Jacobi identity.

• Schematically:

$$\ell_1 \ell_1 = 0,$$
 $\ell_1 \ell_2 - \ell_2 \ell_1 = 0,$ $\ell_1 \ell_3 + \ell_2 \ell_2 + \ell_3 \ell_1 = 0$

and infinite more similar higher relations.

An L_∞ algebra is a graded vector space X = ⊕_{k∈Z} X^k equipped with graded skewsymmetric multilinear maps

$$\ell_n: \wedge^n X \to X$$

satisfying higher versions of the Jacobi identity.

• Schematically:

$$\ell_1 \ell_1 = 0,$$
 $\ell_1 \ell_2 - \ell_2 \ell_1 = 0,$ $\ell_1 \ell_3 + \ell_2 \ell_2 + \ell_3 \ell_1 = 0$

and infinite more similar higher relations.

• The first says ℓ_1 is a differential and the second says ℓ_1 is a derivation wrt ℓ_2 .

An L_∞ algebra is a graded vector space X = ⊕_{k∈ℤ} X^k equipped with graded skewsymmetric multilinear maps

$$\ell_n: \wedge^n X \to X$$

satisfying higher versions of the Jacobi identity.

• Schematically:

$$\ell_1 \ell_1 = 0,$$
 $\ell_1 \ell_2 - \ell_2 \ell_1 = 0,$ $\ell_1 \ell_3 + \ell_2 \ell_2 + \ell_3 \ell_1 = 0$

and infinite more similar higher relations.

- The first says ℓ_1 is a differential and the second says ℓ_1 is a derivation wrt ℓ_2 .
- The third relation represents the breaking of the Jacobi identity in the presence of a non-trivial ℓ_3 .

Such an algebra is called Cyclic if it is equipped with a non degenerate pairing (of deg -3) (−,−) : X × X → ℝ. Cyclicity meaning

$$\langle A_1, \ell_n(A_2, \cdots, A_n) \rangle = \langle A_n, \ell_n(A_1, \cdots, A_{n-1}) \rangle$$

Such an algebra is called Cyclic if it is equipped with a non degenerate pairing (of deg -3) (−,−) : X × X → ℝ. Cyclicity meaning

$$\langle A_1, \ell_n(A_2, \cdots, A_n) \rangle = \langle A_n, \ell_n(A_1, \cdots, A_{n-1}) \rangle$$

• In the Physics literature, first appeared in bosonic string field theory, governing the symmetries and dynamics of the theory. [Zwiebach '92]

Such an algebra is called Cyclic if it is equipped with a non degenerate pairing (of deg -3) (−,−) : X × X → ℝ. Cyclicity meaning

$$\langle A_1, \ell_n(A_2, \cdots, A_n) \rangle = \langle A_n, \ell_n(A_1, \cdots, A_{n-1}) \rangle$$

- In the Physics literature, first appeared in bosonic string field theory, governing the symmetries and dynamics of the theory. [Zwiebach '92]
- Independently in Mathematics literature [Lada,Stasheff '92], shown dual to differential graded commutative algebras.

Such an algebra is called Cyclic if it is equipped with a non degenerate pairing (of deg -3) (−,−) : X × X → ℝ. Cyclicity meaning

$$\langle A_1, \ell_n(A_2, \cdots, A_n) \rangle = \langle A_n, \ell_n(A_1, \cdots, A_{n-1}) \rangle$$

- In the Physics literature, first appeared in bosonic string field theory, governing the symmetries and dynamics of the theory. [Zwiebach '92]
- Independently in Mathematics literature [Lada,Stasheff '92], shown dual to differential graded commutative algebras.
- Complete data of Classical Field theories fit into truncated L_{∞} structures with finitely many higher brackets not vanishing. [Hohm, Zwiebach '17]

Due to duality with BV/BRST. [Jurco, Saemann, Raspollini, Wolf '18]

The classical data of a gauge field theory is encoded in such an algebra as follows:

• The action S is given by:

$$S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots$$

The classical data of a gauge field theory is encoded in such an algebra as follows:

• The action S is given by:

$$S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots$$

• The gauge transformations of the fields:

$$\delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots$$

The classical data of a gauge field theory is encoded in such an algebra as follows:

• The action S is given by:

$$S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots$$

• The gauge transformations of the fields:

$$\delta_{\lambda}A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots$$

• The Equations of motion, by cyclicity:

$$\mathcal{F}_A = \ell_1(A) - \frac{1}{2}\ell_2(A,A) + \cdots$$

The classical data of a gauge field theory is encoded in such an algebra as follows:

• The action S is given by:

$$S = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \cdots$$

• The gauge transformations of the fields:

$$\delta_{\lambda} A = \ell_1(\lambda) + \ell_2(\lambda, A) + \cdots$$

• The Equations of motion, by cyclicity:

$$\mathcal{F}_{\mathcal{A}} = \ell_1(\mathcal{A}) - \frac{1}{2}\ell_2(\mathcal{A},\mathcal{A}) + \cdots$$

• The Noether identities:

$$\mathcal{I}_{\lambda} = \ell_1(\mathcal{F}_A) + \ell_2(\mathcal{F}_A, A) + \cdots \equiv 0$$

offshell.

Grigorios Giotopoulos

For ECP gravity $X = X_0 \oplus X_1 \oplus X_2 \oplus X_3$, where these are the spaces of • Gauge transformations:

$$(\xi,\lambda)\,\in\,X_0={\sf \Gamma}(\mathit{TM})\oplus\Omega^0(M,\mathfrak{so}(3))$$

For ECP gravity $X = X_0 \oplus X_1 \oplus X_2 \oplus X_3$, where these are the spaces of • Gauge transformations:

$$(\xi,\lambda) \in X_0 = \Gamma(TM) \oplus \Omega^0(M,\mathfrak{so}(3))$$

• Dynamical fields:

$$(e,\omega) \in X_1 = \Omega^1(M,\mathbb{R}^3) \oplus \Omega^1(M,\mathfrak{so}(3))$$

For ECP gravity $X = X_0 \oplus X_1 \oplus X_2 \oplus X_3$, where these are the spaces of • Gauge transformations:

$$(\xi,\lambda) \in X_0 = \Gamma(TM) \oplus \Omega^0(M,\mathfrak{so}(3))$$

• Dynamical fields:

$$(e,\omega) \in X_1 = \Omega^1(M,\mathbb{R}^3) \oplus \Omega^1(M,\mathfrak{so}(3))$$

• Equations of motion:

$$(E,\Omega) \in X_2 = \Omega^2(M, \wedge^2(\mathbb{R}^3)) \oplus \Omega^2(M, \mathbb{R}^3)$$

For ECP gravity $X = X_0 \oplus X_1 \oplus X_2 \oplus X_3$, where these are the spaces of • Gauge transformations:

$$(\xi,\lambda) \in X_0 = \Gamma(TM) \oplus \Omega^0(M,\mathfrak{so}(3))$$

• Dynamical fields:

$$(e,\omega) \in X_1 = \Omega^1(M,\mathbb{R}^3) \oplus \Omega^1(M,\mathfrak{so}(3))$$

• Equations of motion:

$$(E,\Omega) \in X_2 = \Omega^2(M, \wedge^2(\mathbb{R}^3)) \oplus \Omega^2(M, \mathbb{R}^3)$$

Noether Identities

$$(\Xi, \Lambda) \in X_3 = \Omega^1(M, \Omega^3(M)) \oplus \Omega^3(M, \wedge^2(\mathbb{R}^3))$$

The brackets are:

For ECP gravity $X = X_0 \oplus X_1 \oplus X_2 \oplus X_3$, where these are the spaces of • Gauge transformations:

$$(\xi,\lambda) \in X_0 = \Gamma(TM) \oplus \Omega^0(M,\mathfrak{so}(3))$$

• Dynamical fields:

$$(e,\omega) \in X_1 = \Omega^1(M,\mathbb{R}^3) \oplus \Omega^1(M,\mathfrak{so}(3))$$

• Equations of motion:

$$(E,\Omega) \in X_2 = \Omega^2(M, \wedge^2(\mathbb{R}^3)) \oplus \Omega^2(M, \mathbb{R}^3)$$

Noether Identities

$$(\Xi, \Lambda) \in X_3 = \Omega^1(M, \Omega^3(M)) \oplus \Omega^3(M, \Lambda^2(\mathbb{R}^3))$$

The brackets are:

• <u>ℓ</u>1

$$\ell_1(\xi,\lambda)=(0,\mathrm{d}\lambda),\ \ \ell_1(e,\omega)=(0,0)\ \ \text{and}\ \ \ell_1(E,\Omega)=(0,\mathrm{d}\Omega).$$

• ℓ_2 bracket

$$\ell_{2}((\xi_{1},\lambda_{1}), (\xi_{2},\lambda_{2})) = ([\xi_{1},\xi_{2}], -[\lambda_{1},\lambda_{2}] + \mathcal{L}_{\xi_{1}}\lambda_{2} - \mathcal{L}_{\xi_{2}}\lambda_{1})$$

$$\ell_{2}((\xi,\lambda), (e,\omega)) = (-\lambda \cdot e + \mathcal{L}_{\xi}e, -[\lambda,\omega] + \mathcal{L}_{\xi}\omega),$$

$$\ell_{2}((\xi,\lambda), (E,\Omega)) = (-\lambda \cdot E + \mathcal{L}_{\xi}E, -\lambda \cdot \Omega + \mathcal{L}_{\xi}\Omega),$$

$$\ell_{2}((e_{1},\omega_{1}), (e_{2},\omega_{2})) = -(2\omega_{2} \wedge \omega_{1},\omega_{1} \wedge e_{2} + \omega_{2} \wedge e_{1})$$

and more related to the Noether identities:

$$\begin{split} \ell_2\big((e,\omega),(E,\Omega)\big) &= \\ &= \left(\operatorname{Tr}\big(\iota_{\partial_\mu} \mathrm{d} e \curlywedge E + \iota_{\partial_\mu} \mathrm{d} \omega \curlywedge \Omega - \iota_{\partial_\mu} e \curlywedge \mathrm{d} E - \iota_{\partial_\mu} \omega \curlywedge \mathrm{d} \Omega \big) \otimes \mathrm{d} x^{\mu} , \\ & E \land e - \omega \land \Omega \bigg) \end{split}$$

$$\ell_2\big((\xi,\lambda),(\Xi,\Lambda)\big) = \big(\operatorname{Tr}(\iota_{\partial_\mu} \mathrm{d}\lambda \mathrel{,} \Lambda) \otimes \mathrm{d}x^\mu + \mathcal{L}_{\xi}\Xi \;, -\lambda \cdot \Lambda + \mathcal{L}_{\xi}\Lambda\big)$$

• The gauge transformations are encoded as:

$$\delta_{(\xi,\lambda)}(e,\omega) = \left(-\lambda \cdot e + \mathcal{L}_{\xi}e, \, \mathrm{d}\lambda - [\lambda,\omega] + \mathcal{L}_{\xi}\omega\right)$$
$$= \ell_1(\xi,\lambda) + \ell_2((\xi,\lambda), \, (e,\omega)) \,,$$

• The gauge transformations are encoded as:

$$\delta_{(\xi,\lambda)}(\boldsymbol{e},\omega) = \left(-\lambda \cdot \boldsymbol{e} + \mathcal{L}_{\xi}\boldsymbol{e}, \, \mathrm{d}\lambda - [\lambda,\omega] + \mathcal{L}_{\xi}\omega\right)$$
$$= \ell_1(\xi,\lambda) + \ell_2((\xi,\lambda), \, (\boldsymbol{e},\omega)) \,,$$

• The equations of motion are encoded as:

$$\mathcal{F}(e,\omega) = \left(R,\mathrm{d}^{\omega}e\right) = \ell_1(e,\omega) - rac{1}{2}\,\ell_2ig((e,\omega)\,,\,(e,\omega)ig) \equiv 0$$

on-shell.

• The gauge transformations are encoded as:

$$\delta_{(\xi,\lambda)}(e,\omega) = \left(-\lambda \cdot e + \mathcal{L}_{\xi}e, \, \mathrm{d}\lambda - [\lambda,\omega] + \mathcal{L}_{\xi}\omega\right)$$
$$= \ell_1(\xi,\lambda) + \ell_2((\xi,\lambda), \, (e,\omega)) \,,$$

• The equations of motion are encoded as:

$$\mathcal{F}(e,\omega) = ig(R,\mathrm{d}^\omega eig) = \ell_1(e,\omega) - rac{1}{2}\,\ell_2ig((e,\omega)\,,\,(e,\omega)ig) \equiv 0$$

on-shell.

• The Noether identities:

$$\begin{split} \mathcal{I}_{(\xi,\lambda)} &= \left(\mathrm{d}^{\omega} \mathcal{F}_{\omega} - \mathcal{F}_{e} \wedge e, \mathrm{d} x^{\mu} \otimes \mathit{Tr} (\iota_{\partial_{\mu}} e \wedge \mathrm{d} \mathcal{F}_{e} - \iota_{\partial_{\mu}} \mathrm{d} e \wedge \mathcal{F}_{e}) + \cdots \right) \\ &= \ell_{1}(\mathcal{F}) - \ell_{2} \big((e, \omega), \mathcal{F} \big) \equiv 0 \end{split}$$

off-shell.

Cyclic pairing and Action functional

• The action is encoded via the cyclic, non degenerate pairing $\langle -, - \rangle : X_1 \times X_2 \to \mathbb{R}$,

$$\langle (e,\omega), (E,\Omega) \rangle := \int_M Tr(e \land E + \Omega \land \omega)$$

with

$$S_{ECP} = \langle (e, \omega), \ell_1(e, \omega) + \ell_2((e, \omega), (e, \omega)) \rangle$$

Cyclic pairing and Action functional

• The action is encoded via the cyclic, non degenerate pairing $\langle -, - \rangle : X_1 \times X_2 \to \mathbb{R}$,

$$\langle (e,\omega), (E,\Omega) \rangle := \int_M Tr(e \land E + \Omega \land \omega)$$

with

$$S_{ECP} = \langle (e, \omega), \ell_1(e, \omega) + \ell_2((e, \omega), (e, \omega)) \rangle$$

• Using gauge invariance and integrating by parts etc, pairing is extended to $\langle -, - \rangle : X_0 \times X_3 \to \mathbb{R}$

Cyclic pairing and Action functional

• The action is encoded via the cyclic, non degenerate pairing $\langle -, - \rangle : X_1 \times X_2 \to \mathbb{R}$,

$$\langle (e,\omega), (E,\Omega) \rangle := \int_M Tr(e \land E + \Omega \land \omega)$$

with

$$S_{ECP} = \langle (e, \omega), \ell_1(e, \omega) + \ell_2((e, \omega), (e, \omega)) \rangle$$

- Using gauge invariance and integrating by parts etc, pairing is extended to $\langle -, \rangle : X_0 \times X_3 \to \mathbb{R}$
- Cyclicity on gauge parameters (X₀) implies formula of Noether identities (Noether's 2nd Theorem).

Grigorios Giotopoulos

• Given a Drinfel'd twist, $\mathcal{F} = f^a \otimes f_a \in U(\Gamma(TM)) \otimes U(\Gamma(TM))$, one defines the braided Lie algebra $(\Omega^0_*(M, \mathfrak{so}(3)), [-, -]_*)$ where

$$[\lambda_1, \lambda_2]_\star := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$$

• Given a Drinfel'd twist, $\mathcal{F} = f^a \otimes f_a \in U(\Gamma(TM)) \otimes U(\Gamma(TM))$, one defines the braided Lie algebra $(\Omega^0_*(M, \mathfrak{so}(3)), [-, -]_*)$ where

$$[\lambda_1,\lambda_2]_\star := [-,-] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$$

• The bracket is braided antisymmetric:

$$[\lambda_1, \lambda_2]_{\star} = -[\bar{R}^a \lambda_2, \bar{R}_a \lambda_1]_{\star}$$

where $R = R^a \otimes R_a$ is the R-matrix of the twist.

• Given a Drinfel'd twist, $\mathcal{F} = f^a \otimes f_a \in U(\Gamma(TM)) \otimes U(\Gamma(TM))$, one defines the braided Lie algebra $(\Omega^0_*(M, \mathfrak{so}(3)), [-, -]_*)$ where

$$[\lambda_1, \lambda_2]_\star := [-, -] \circ \mathcal{F}^{-1}(\lambda_1 \otimes \lambda_2)$$

• The bracket is braided antisymmetric:

$$[\lambda_1, \lambda_2]_{\star} = -[\bar{R}^a \lambda_2, \bar{R}_a \lambda_1]_{\star}$$

where $R = R^a \otimes R_a$ is the R-matrix of the twist.

• A braided version of the Jacobi identity is satisfied.

 Braided so(3)-connections, ω ∈ Ω¹_{*}(M, so(3)) and coframe fields e ∈ Ω¹_{*}(M, ℝ³) may be defined. Transforming in braided representations:

$$\begin{split} \delta^{\star}_{\lambda} e &= -\lambda \star e = -\lambda^{a}{}_{b} \star e^{b} E_{a} \\ \delta^{\star}_{\lambda} \omega &= \mathrm{d}\lambda - [\lambda, \omega]_{\star} \end{split}$$

 Braided so(3)-connections, ω ∈ Ω¹_{*}(M, so(3)) and coframe fields e ∈ Ω¹_{*}(M, ℝ³) may be defined. Transforming in braided representations:

$$\begin{split} \delta^{\star}_{\lambda} e &= -\lambda \star e = -\lambda^{a}{}_{b} \star e^{b} E_{a} \\ \delta^{\star}_{\lambda} \omega &= \mathrm{d}\lambda - [\lambda, \omega]_{\star} \end{split}$$

• <u>Note</u>: Gauge transformations satisfy the <u>braided Leibniz rule</u>, e.g.

$$\delta^{\star}_{\lambda}(e\otimes\omega)=\delta^{\star}_{\lambda}e\otimes\omega+\bar{R}^{a}e\otimes\delta^{\star}_{\bar{R}_{a}\lambda}\omega$$

 Braided so(3)-connections, ω ∈ Ω¹_{*}(M, so(3)) and coframe fields e ∈ Ω¹_{*}(M, ℝ³) may be defined. Transforming in braided representations:

$$\delta_{\lambda}^{\star} e = -\lambda \star e = -\lambda^{a}{}_{b} \star e^{b} E_{a}$$
$$\delta_{\lambda}^{\star} \omega = d\lambda - [\lambda, \omega]_{\star}$$

• <u>Note</u>: Gauge transformations satisfy the <u>braided Leibniz rule</u>, e.g.

$$\delta^{\star}_{\lambda}(e\otimes\omega)=\delta^{\star}_{\lambda}e\otimes\omega+\bar{R}^{a}e\otimes\delta^{\star}_{\bar{R}_{a}\lambda}\omega$$

• A braided covariant derivative is similarly defined, and thus the braided curvature and torsion:

$$R := \mathrm{d}\omega + \frac{1}{2}[\omega, \omega]_{\star}$$
$$T := \mathrm{d}^{\omega}e = \mathrm{d}e + \omega \wedge_{\star} e$$

The Lie algebra of vector fields is twisted to a braided version (Γ_{*}(TM), [-, -]_{*}), acting via a twisted Lie derivative, e.g.

$$\mathcal{L}_{\xi}^{\star}e := \mathcal{L}_{\bar{f}^{a}\xi}\left(\bar{f}_{a}e\right)$$

The Lie algebra of vector fields is twisted to a braided version (Γ_{*}(*TM*), [-, -]_{*}), acting via a twisted Lie derivative, e.g.

$$\mathcal{L}_{\xi}^{\star} e := \mathcal{L}_{ar{f}^{a} \xi} \left(ar{f}_{a} e
ight)$$

• The noncommutative ECP (3d) action is:

$$S^{\star}_{ECP} := \operatorname{Tr} \int_{M} e \wedge_{\star} R = \int e^{a} \wedge_{\star} R^{bc} \epsilon_{abc}$$

assuming \wedge_{\star} is commutative under the integral, this is the only possible deformation.

• The Lie algebra of vector fields is twisted to a braided version $(\Gamma_{\star}(TM), [-, -]_{\star})$, acting via a twisted Lie derivative, e.g.

$$\mathcal{L}_{\xi}^{\star} e := \mathcal{L}_{ar{f}^{a} \xi} \left(ar{f}_{a} e
ight)$$

• The noncommutative ECP (3d) action is:

$$S^{\star}_{ECP} := Tr \int_{M} e \wedge_{\star} R = \int e^{a} \wedge_{\star} R^{bc} \epsilon_{abc}$$

assuming \wedge_{\star} is commutative under the integral, this is the only possible deformation.

• The action is invariant under the braided NC Lie algebra $\Gamma_\star(TM)\rtimes\Omega^0_\star(M,\mathfrak{so}(3))$

• The Equations of motion follow:

$$\mathcal{F}_{e} = \mathrm{d}\omega + \omega \wedge_{\star} \omega = \mathrm{d}\omega + \frac{1}{2}[\omega, \omega]_{\star} =: R$$
$$\mathcal{F}_{\omega} = \mathrm{d}e + \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e =: T - \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e$$

• The Equations of motion follow:

$$\mathcal{F}_{e} = \mathrm{d}\omega + \omega \wedge_{\star} \omega = \mathrm{d}\omega + \frac{1}{2}[\omega, \omega]_{\star} =: R$$
$$\mathcal{F}_{\omega} = \mathrm{d}e + \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e =: T - \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e$$

• <u>Note</u>: Braided non commutativity seems to induce Torsion. Unlike classical case, if connection is kept dynamical, Torsion arises.

• The Equations of motion follow:

$$\mathcal{F}_{e} = \mathrm{d}\omega + \omega \wedge_{\star} \omega = \mathrm{d}\omega + \frac{1}{2}[\omega, \omega]_{\star} =: R$$
$$\mathcal{F}_{\omega} = \mathrm{d}e + \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e =: T - \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e$$

- <u>Note</u>: Braided non commutativity seems to induce Torsion. Unlike classical case, if connection is kept dynamical, Torsion arises.
- <u>"Problem"</u>: Although EOMs are braided gauge covariant, braided gauge symmetries do not produce new solutions, e.g.:

$$\delta_{\lambda}^{\star} R[\omega] \neq R[\omega + \delta_{\lambda}^{\star} \omega],$$

due to braided Leibniz rule.

Braided symmetries are "gauge"

• Braided Leibniz rule also spoils argument for Noether's 2nd Theorem, since:

$$\delta^{\star}_{\lambda} S_{ECP}
eq \int_{M} \mathcal{F}_{e} \curlywedge_{\star} \delta^{\star}_{\lambda} e + \mathcal{F}_{\omega} \curlywedge_{\star} \delta^{\star}_{\lambda} \omega$$

Braided symmetries are "gauge"

 Braided Leibniz rule also spoils argument for Noether's 2nd Theorem, since:

$$\delta_{\lambda}^{\star} S_{ECP} \neq \int_{M} \mathcal{F}_{e} \curlywedge_{\star} \delta_{\lambda}^{\star} e + \mathcal{F}_{\omega} \curlywedge_{\star} \delta_{\lambda}^{\star} \omega$$

• <u>However</u>, one may modify the argument to a braided version and derive a set of "braided" Noether identities, e.g.

$$d\mathcal{F}_{\omega} + \frac{1}{2}(\omega \wedge_{\star} \mathcal{F}_{\omega} + \frac{1}{2}\bar{R}^{k}\omega \wedge_{\star} \bar{R}_{k}\mathcal{F}_{\omega} - \mathcal{F}_{e} \wedge_{\star} e - \bar{R}^{k}\mathcal{F}_{e} \wedge e) + \frac{1}{4}\omega \wedge_{\star} \omega \wedge_{\star} e + \frac{1}{4}\bar{R}^{a}(\omega \wedge_{\star} \omega) \wedge_{\star} \bar{R}_{a}e - \frac{1}{2}\omega \wedge_{\star} \bar{R}^{k}\omega \wedge_{\star} \bar{R}_{k}e \equiv 0$$

off-shell. Thus, braided local symmetries do have the right to be called "gauge".

• In analogy with the commutative theory, all the data mentioned fits in a braided deformation of the classical L_{∞} algebra.

- In analogy with the commutative theory, all the data mentioned fits in a braided deformation of the classical L_{∞} algebra.
- The brackets { ℓ_n } are now braided antisymmetric. Braided versions of the higher Jacobi identities are satisfied.

- In analogy with the commutative theory, all the data mentioned fits in a braided deformation of the classical L_{∞} algebra.
- The brackets { ℓ_n } are now braided antisymmetric. Braided versions of the higher Jacobi identities are satisfied.
- For braided ECP (3d) gravity, the underlying vector space is the same (formally extended).

- In analogy with the commutative theory, all the data mentioned fits in a braided deformation of the classical L_{∞} algebra.
- The brackets { ℓ_n } are now braided antisymmetric. Braided versions of the higher Jacobi identities are satisfied.
- For braided ECP (3d) gravity, the underlying vector space is the same (formally extended).
- The cyclic pairing encoding the action is

$$\langle (e,\omega), (E,\Omega) \rangle_{\star} := \int_{M} Tr(e \wedge_{\star} E + \Omega \wedge_{\star} \omega) ,$$

The brackets are:

• <u>ℓ</u>1

 $\ell_1(\xi,\lambda)=(0,\mathrm{d}\lambda), \ \ell_1(e,\omega)=(0,0) \ \text{and} \ \ell_1(E,\Omega)=(0,\mathrm{d}\Omega).$

The brackets are:

• <u>ℓ</u>1

$$\ell_1(\xi,\lambda) = (0,\mathrm{d}\lambda), \ \ell_1(e,\omega) = (0,0) \ \text{and} \ \ell_1(E,\Omega) = (0,\mathrm{d}\Omega).$$

• ℓ_2 bracket

$$\begin{split} \ell_2\big((\xi_1,\lambda_1)\,,\,(\xi_2,\lambda_2)\big) &= \big([\xi_1,\xi_2]_\star\,,\,-[\lambda_1,\lambda_2]_\star + \mathcal{L}^\star_{\xi_1}\lambda_2 - \mathcal{L}^\star_{\bar{R}^a\xi_2}\bar{R}_a\lambda_1\big)\\ \ell_2\big((\xi,\lambda)\,,\,(e,\omega)\big) &= (-\lambda\star e + \mathcal{L}^\star_{\xi}e,-[\lambda,\omega]_\star + \mathcal{L}^\star_{\xi}\omega),\\ \ell_2\big((\xi,\lambda)\,,\,(E,\Omega)\big) &= (-\lambda\star E + \mathcal{L}^\star_{\xi}E,-\lambda\star\Omega + \mathcal{L}^\star_{\xi}\Omega)\,,\\ \ell_2\big((e_1,\omega_1)\,,\,(e_2,\omega_2)\big) &= -(2\omega_2\wedge_\star\omega_1,\omega_1\wedge_\star e_2 + \bar{R}^a\omega_2\wedge\bar{R}_ae_1) \end{split}$$

and more related to the Noether identities:

• The gauge transformations are encoded as classically:

$$\delta_{(\xi,\lambda)}(\boldsymbol{e},\omega) = \left(-\lambda \star \boldsymbol{e} + \mathcal{L}_{\xi}^{\star}\boldsymbol{e}, \, \mathrm{d}\lambda - [\lambda,\omega]_{\star} + \mathcal{L}_{\xi}^{\star}\omega\right)$$
$$= \ell_{1}(\xi,\lambda) + \ell_{2}((\xi,\lambda), \, (\boldsymbol{e},\omega)) ,$$

• The gauge transformations are encoded as classically:

$$\delta_{(\xi,\lambda)}(\boldsymbol{e},\omega) = \left(-\lambda \star \boldsymbol{e} + \mathcal{L}_{\xi}^{\star}\boldsymbol{e}, \, \mathrm{d}\lambda - [\lambda,\omega]_{\star} + \mathcal{L}_{\xi}^{\star}\omega\right)$$
$$= \ell_{1}(\xi,\lambda) + \ell_{2}((\xi,\lambda), \, (\boldsymbol{e},\omega)) ,$$

• The equations of motion are encoded, due to cyclicity, as classically:

$$\mathcal{F}_{(e,\omega)} = \left(R, T - \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star} \bar{R}_{a}e\right)$$
$$= \ell_{1}(e,\omega) - \frac{1}{2}\ell_{2}((e,\omega), (e,\omega)) \equiv 0$$

on-shell.

• The gauge transformations are encoded as classically:

$$\delta_{(\xi,\lambda)}(\boldsymbol{e},\omega) = \left(-\lambda \star \boldsymbol{e} + \mathcal{L}_{\xi}^{\star}\boldsymbol{e}, \, \mathrm{d}\lambda - [\lambda,\omega]_{\star} + \mathcal{L}_{\xi}^{\star}\omega\right)$$
$$= \ell_{1}(\xi,\lambda) + \ell_{2}((\xi,\lambda), \, (\boldsymbol{e},\omega)) ,$$

• The equations of motion are encoded, due to cyclicity, as classically:

$$\begin{aligned} \mathcal{F}_{(e,\omega)} &= \left(R, T - \frac{1}{2}\omega \wedge_{\star} e + \frac{1}{2}\bar{R}^{a}\omega \wedge_{\star}\bar{R}_{a}e \right) \\ &= \ell_{1}(e,\omega) - \frac{1}{2}\ell_{2}\big((e,\omega), (e,\omega)\big) \equiv 0 \end{aligned}$$

on-shell.

• But the Noether identities, due to braided Leibniz rule:

$$\begin{split} \mathcal{I}_{(\xi,\lambda)} &= \ell_1(\mathcal{F}) - \frac{1}{2} \big(\ell_2((e,\omega),\mathcal{F}) - \ell_2(\mathcal{F},(e,\omega)) \big) \\ &+ \frac{1}{4} \ell_2 \big(\bar{R}^a \mathcal{A}, \ell_2^\star(\bar{R}_a(e,\omega),(e,\omega)) \big) \equiv 0 \end{split}$$

off-shell.

Grigorios Giotopoulos

Summary

• Presented the classical (3d) ECP cyclic L_{∞} algebra, including Noether identities. The algebra for any dimension d > 3, signature, and cosmological constant has also been constructed.

Summary

- Presented the classical (3d) ECP cyclic L_{∞} algebra, including Noether identities. The algebra for any dimension d > 3, signature, and cosmological constant has also been constructed.
- Presented a non commutative deformation of ECP gravity which introduces no extra degrees of freedom. The meaning of braided gauge symmetries was clarified by braided Noether identities.

Summary

- Presented the classical (3d) ECP cyclic L_{∞} algebra, including Noether identities. The algebra for any dimension d > 3, signature, and cosmological constant has also been constructed.
- Presented a non commutative deformation of ECP gravity which introduces no extra degrees of freedom. The meaning of braided gauge symmetries was clarified by braided Noether identities.
- Presented the 3d braided deformation of the L_{∞} algebra, encoding all the data of the non commutative theory.

Future plans

• Investigating relation to Einstein-Hilbert (metric) noncommutative gravity, where usually one assumes torsionless condition. There are arguments that suggest ECP as more fundamental (coupling to fermions and Torsion).

Future plans

- Investigating relation to Einstein-Hilbert (metric) noncommutative gravity, where usually one assumes torsionless condition. There are arguments that suggest ECP as more fundamental (coupling to fermions and Torsion).
- Identifying the conditions under which, given a field theory L_{∞} algebra and a Drinfel'd twist, one may construct a braided deformation encoding a braided NC field theory (e.g. possible for Chern-Simons). In mathematical terms, constructing a "Quantization" functor between suitable categories is work in progress.

Future plans

- Investigating relation to Einstein-Hilbert (metric) noncommutative gravity, where usually one assumes torsionless condition. There are arguments that suggest ECP as more fundamental (coupling to fermions and Torsion).
- Identifying the conditions under which, given a field theory L_{∞} algebra and a Drinfel'd twist, one may construct a braided deformation encoding a braided NC field theory (e.g. possible for Chern-Simons). In mathematical terms, constructing a "Quantization" functor between suitable categories is work in progress.
- Investigating a potential dual "Braided BV/BRST" formalism and furthermore quantization of such noncommutative gauge theories.

Thank you for your attention!