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kn, k1

ks

Scattering amplitudes A = (IN|S|OUT): do o< |A[?
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S-matrix of gauge theory beyond Feynman diagrams?

Scattering amplitudes A = (IN|S|OUT): do o< |A[?
» Computing efficiently necessary in practice

» Understanding beyond Feynman diagrams mathematically important

[Millenium Prize]
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Strategy

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory

1 .
L =———5—TrF,, F" + fermions + scalars
9y m
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Strategy

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory
in planar limit, N — oo with A = g3, N fixed:

» Planar MSYM < Free superstrings
strongly coupled < weakly coupled [Maldacena]
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Strategy

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory
in planar limit, N — oo with A = g3, N fixed:

O=Te[Z'WZ*W] < e .

» Planar MSYM < Free superstrings
strongly coupled < weakly coupled Maldacenal

» Integrable structures = Exact physical quantities! [Arutyunov

,-..,Zarembo]
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Strategy

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory
in planar limit, N — oo with A = g3, N fixed:
kn k1

T
Tn z2 ki =21 — 2 = Tir1

An k2 Si.j = (kz +...+ k])2 = x?j+1

T3

» Planar MSYM < Free superstrings
strongly coupled < weakly coupled Maldacenal
» Integrable structures = Exact physical quantities! [Arutyunov.... Zarembo]

Maldacena)

» Amplitudes < Wilson Loops; Remarkable symmetries [4!42
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Strategy

Focus on the simplest interacting 4D gauge theory

SU(N) maximally supersymmetric Yang-Mills (MSYM) theory
in planar limit, N — oo with A = g3, N fixed:

2

» Planar MSYM < Free superstrings
strongly coupled < weakly coupled Meldacenal

» Integrable structures = Exact physical quantities! [Arutyunov.... Zarembo]
» Amplitudes < Wilson Loops; Remarkable symmetries [4!d2:Maldacena)
Ideal theoretical laboratory for developing new computational tools for
QCD Eg methOd Of SymbOlS [Goncharov,Spradlin,Vergu, Volovich ]

Apply to |gg - Hg|* for N3LO Higgs cross-section! [Anastasion,Duhr et. al]
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Present and future of solving the simplest gauge theory

Amplitudes A,, with n =4,5 particles already known to all loops!
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Present and future of solving the simplest gauge theory

Amplitudes A,, with n =4,5 particles already known to all loops!

More generally, in this talk,
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Present and future of solving the simplest gauge theory

Amplitudes A,, with n =4,5 particles already known to all loops!

More generally,
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The Amplitude Bootstrap
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. |
The Amplitude Bootstrap Stat Pullng:

The most efficient method for computing planar N =4
amplitudes in general kinematics, at fixed order in the
coupling.
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The Amplitude Bootstrap Stat Pullng:

The most efficient method for computing planar N =4
amplitudes in general kinematics, at fixed order in the
coupling.

A. Construct an ansatz for the amplitude assuming
1. What the general class of functions that suffices to express it is

2. What the function arguments (encoding the kinematics) are
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.
The Amplitude Bootstrap Stat Pullng

N

The most efficient method for computing planar N =4
amplitudes in general kinematics, at fixed order in the
coupling.

A. Construct an ansatz for the amplitude assuming
1. What the general class of functions that suffices to express it is
2. What the function arguments (encoding the kinematics) are

B. Fix the coefficients of the ansatz by imposing consistency conditions
(e.g. known near-collinear or multi-Regge limiting behavior)
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The Amplitude Bootstrap Evolution

QFT Property Computation
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The Amplitude Bootstrap Evolution

QFT Property Computation

. L
Physical Branch Cuts Aé ) ,L=3,4
[Gaiotto,Maldacena, [Dixon,Drummond, (Henn,)
Sever, Vieira] Duhr/Hippel,Pennington)]
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The Amplitude Bootstrap Evolution

Avav = A(-—+...+),

QFT Property

Computation

Physical Branch Cuts

[Gaiotto,Maldacena,
Sever, Vieira]

AP L =34

[Dixon,Drummond, (Henn,)
Duhr/Hippel,Pennington)]

(3)
Cluster Algebras A?,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu, Volovich] Spradlin]

Anvay = A(-——+...4)
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Avav = A(-—+...+),

The Amplitude Bootstrap Evolution

QFT Property

Computation

Physical Branch Cuts

[Gaiotto,Maldacena,
Sever, Vieira]

AP L =34

[Dixon,Drummond, (Henn,)
Duhr/Hippel,Pennington)]

(3)
Cluster Algebras ‘A7,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu, Volovich] Spradlin]

Steinmann Relation

[Steinmann)]

(5) 43 (4)
AG ’ A7,NMHV’ A7,MHV
[Caron-Huot,Dixon,. . .]
[Dixon,. .., GP,Spradlin]

Anvay = A(-——+...4)
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AMHv=A(——+...+),

The Amplitude Bootstrap Evolution

QFT Property

Computation

Physical Branch Cuts

[Gaiotto,Maldacena,
Sever, Vieira]

AP L =34

[Dixon,Drummond, (Henn,)
Duhr/Hippel,Pennington)]

(3)
Cluster Algebras A?,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu, Volovich] Spradlin]
. . 4
Steinmann Relation .A((;)), Ag?lleHV’ ‘Ag,l\)/IHV
[Steinmann)] [Caron-Huot,Dixon,. . .]
[Dixon,. .., GP,Spradlin]

Cluster Adjacency

[Drummond,Foster,
Gurdogan)]

Extended Steinmann

Coaction Principle

Ne)
7,NMHV
[Drummond,Foster,
Gurdogan, GP]
- A(ﬁ) A(7)
6 +Y16,MHV
[Caron-Huot,Dixon,Dulat,
McLeod,Hippel,GP]

ANMHv=A(———+...+)
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What are the right functions?
Multiple polylogarithms (MPLs)
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What are the right functions?
Multiple polylogarithms (MPLs)

fr is a MPL of weight k if its differential obeys

dfi = 3 £ dlog ¢,

over some set of ¢, with f,gf? functions of weight k£ — 1.
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What are the right functions?
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over some set of ¢, with f,gf? functions of weight k£ — 1.
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What are the right functions?
Multiple polylogarithms (MPLs)

fr is a MPL of weight k if its differential obeys

dfy = Zf;ff dlog ¢, e.g. dLiz(x)=—log(l-z)dlogz,

over some set of ¢, with f,gf? functions of weight k£ — 1.
Convenient tool for describing them: The symbol S(fj) encapsulating

recursive application of above definition (on f,gf? etc)

S(f)= X £ (Go, ® 0 ® By )

Ay O
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What are the right functions?
Multiple polylogarithms (MPLs)

fr is a MPL of weight k if its differential obeys

dfy = Efl&? dlog ¢, e.g. dLiz(x)=—log(l-z)dlogz,

over some set of ¢, with f,gf? functions of weight k£ — 1.

Convenient tool for describing them: The symbol S(fj) encapsulating
recursive application of above definition (on f,gf? etc)

S(f)= X £ (Go, ® 0 ® By )

Q1 5.ens O

Collection of ¢, : symbol alphabet | O(al""’a’“) rational
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What are the right functions?
Multiple polylogarithms (MPLs)

fr is a MPL of weight k if its differential obeys

dfy = Zf;ff dlog ¢, e.g. dLiz(x)=—log(l-z)dlogz,

over some set of ¢, with f,gf? functions of weight k£ — 1.

Convenient tool for describing them: The symbol S(fj) encapsulating
recursive application of above definition (on f,gf? etc)

S(f)= X £ (Go, ® 0 ® By )

Collection of ¢, : symbol alphabet | O(al""’a’“) rational

Empeirical evidence: L-loop amplitudes=MPLs of weight k£ = 2L

[Duhr,Del Duca,Smirnov][Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka] [GP]
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GP — The Steinmann Cluster Bootstrap Improving Perturbation Theory: The Amplitude Bootstrap 9/20



What are the right variables?

More precisely, what is the symbol alphabet? For n =6, from explicit
2_|oop Computatlon [Duhr,Del Duca,Smirnov]

Ga€P= {(l,b, ¢, muamvamwayu7yv7yw} )

u 1-u 233236 ;
a=-%, my==2, wu==34 & cyclicu—->v-ow.
VW u 114 I36
_ u—z4 _ v—2z4 _ w—z4
Yu = u—z_ Yv = v—z_ " Yw = w—z_ "

zi:%[—1+u+v+wi\/Z], A=(1-u-v-w)’-4duvw.
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What are the right variables?

More precisely, what is the symbol alphabet? For n =6, from explicit
2_|oop Computatlon [Duhr,Del Duca,Smirnov]

Ga€P= {(l,b, ¢, muamvamwayu7yv7yw} )

.'E2,$2 .
1346 & cyclic u—>v—->w.

_u _1-u _
a= o My ==, U= 375
14 <“36
_u—2z4 _v—z4 _ w-z4
Yu U—2z_ " Yo v—2_ Yuw w—2z_ "

zi:%[—1+u+v+wi\/Z], A=(1-u-v-w)’-4duvw.

Not every sequence of ¢, corresponds to a candidate amplitude:

» Locality: Amplitude singularities only when intermediate particles go
on-shell = constrains first symbol entry to a, b, c.

9/20
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What are the right variables?

More precisely, what is the symbol alphabet? For n = 6, from explicit

2_|oop Computatlon [Duhr,Del Duca,Smirnov]

d)a € (I) = {(l,b, ¢, muvmvamwayu7yv7yw} ’

u 1-u 22, x2 .
a=-%, my==2, wu==34 & cyclicu—->v-ow.
VW u 114 I36
_ u—24 _ v—24 _ w—2z4
Yu = u—z_ Yv = v—z_ " Yw = w—z_ "

zi:%[—1+u+v+wi\/Z], A=(1-u-v-w)’-4duvw.

Not every sequence of ¢, corresponds to a candidate amplitude:

» Locality: Amplitude singularities only when intermediate particles go

on-shell = constrains
» Integrability: For given S, ensures 3 function f with this symbol,

Ou;Ou; [ = Ou;0u, f = linear relations between weights k,k + 1.
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Ste|nmann Relatlons [Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera]
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Ste|nmann Relatlons [Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera]
Double discontinuities vanish for any set of overlapping channels

3 4

S\/\/ f
BN L /\%”‘K/
1/\\ 6 1/\T\6

7
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Ste|nmann Re|atIOHS [Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels
3 4
N \.f-f\/
@ N %\i/
- 6 6
1 /\ \ 1 (\
7 7

» Channel labelled by Mandelstam invariant we analytically continue
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Ste|nmann Re|atlonS [Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels

st N A
VNS T a

1/\'\’ T
7 DisCsgys [DisCsys, Al =0 7

» Channel labelled by Mandelstam invariant we analytically continue

» Channels overlap if they divide particles in 4 nonempty sets.
Here: {2}, {3,4}, {5}, and {6,7,1}
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Ste|nmann Re|atIOHS [Steinmann] [Cahill,Stapp] [Bartels,Lipatov,Sabio Vera]

Double discontinuities vanish for any set of overlapping channels
\\/ \// ’ \ \//4
NN, %\i/
- 6 6
1/\\ o
7 DisCsgys [DisCsys, Al =0 7

» Channel labelled by Mandelstam invariant we analytically continue
» Channels overlap if they divide particles in 4 nonempty sets.

Here: {2}, {3,4}, {5}, and {6,7,1}

Focus on s123 o< \/a & cyclic (s;_1; more subtle)

[Caron-Huot,Dixon,McLeod,Hippel] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin]

[No b, c can appear after a in second symbol entry & cyclicJ
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Steinmann relations

[No b, c can appear after a in 2"¢ symbol entry & cyclic]
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Extended Steinmann relations

By inspecting known amplitude through five loops:

[Caron-Huot,Dixon,(Dulat,)McLeod,Hippel, GP]

[No b, c can appear after a in any symbol entry & cycIicJ
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Extended Steinmann relations

By inspecting known amplitude through five loops:

[Caron-Huot,Dixon,(Dulat,)McLeod,Hippel, GP]

[No b, c can appear after a in any symbol entry & cycIic]

weight n 01 2 3 4 5 6 7 8 9 10 11 12 13
Firstentry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?
Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?
Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann
hexagon spaces at symbol level.

» Drastically reduces number of candidate amplitudes
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Extended Steinmann relations

By inspecting known amplitude through five loops:

[Caron-Huot,Dixon,(Dulat,)McLeod,Hippel, GP]

[No b, c can appear after a in any symbol entry & cycIic]

[V}
.

weight n 0 1 5 6 7 8 9 10 11 12 13

Firstentry 1 3 9 26

|
o

218 643 1929 5897 ? ? ? ? ?

Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?

Ext. Stein. 1 3 6 13

no

6 5l 98 184 340 613 1085 1887 3224 5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann
hexagon spaces at symbol level.

» Drastically reduces number of candidate amplitudes
» Must be consequence of original Steinmann holding on any Riemann
sheet.
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Extended Steinmann relations

By inspecting known amplitude through five loops:

[Caron-Huot,Dixon,(Dulat,)McLeod,Hippel, GP]

[No b, c can appear after a in any symbol entry & cycIicJ

weight n 01 2 3 4 5 6 7 8 9 10 11 12 13
Firstentry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?
Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?
Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Figure: Dimensions of the hexagon, Steinmann hexagon, and extended Steinmann
hexagon spaces at symbol level.

» Drastically reduces number of candidate amplitudes

» Must be consequence of original Steinmann holding on any Riemann
sheet.

» Potentially universal: Valid for individual integrals!

[Drummond,Foster,Giirdogan] [Caron-Huot,Dixon,Hippel,McLeod,GP,]
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

Agn = Z Anfk,kgn = Z gnfk ® [gk mOd(iﬂ)] :
k=0 k=0
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

Agn = Z Anfk,kgn = Z gnfk ® [gk mOd(iﬂ)] :
k=0 k=0

Also applies to transcendental numbers, e.g.

A(im) = (im)®1, A(E)=(G)e1+238(+18 ().
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

Agn = Z Anfk,kgn = Z gnfk ® [gk mOd(iﬂ)] :
k=0 k=0

Also applies to transcendental numbers, e.g.

A(im) = (im)®1, A(E)=(G)e1+238(+18 ().

Valid by construction on G, upgrades symbols to functions.

(1)
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

Agn = Z Anfk,kgn = Z gnfk ® [gk mOd(iﬂ)] :
k=0 k=0

Also applies to transcendental numbers, e.g.

Aim) = (im)®1, A(()=(G)e1+23eG+1e(G). (1)

Valid by construction on G, upgrades symbols to functions. However, quite
nontrivial closure, or “coaction principle” on certain subspaces H c G:

AHcH®G. (2)
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

n n
AGp = Z Anfk,kgn = Z On-k® [gk mOd(iﬂ)] :
k=0 k=0
Also applies to transcendental numbers, e.g.

A(im) = (im)®1, A(()=(¢)el+2i3e+1e(¢). (1)

Valid by construction on G, upgrades symbols to functions. However, quite
nontrivial closure, or “coaction principle” on certain subspaces H c G:

AHcH®G. (2)

Example: If (3 ¢ H, then (1)-(2) imply ¢3 ¢ H. “Exclusion principle”!
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The Coaction on MPLs

Space of MPLs of weight n, G,,, endowed with coaction A that
“decomposes” it into a tensor product [©GoncharovliBrown]

n n
AGp = Z Anfk,kgn = Z On-k® [gk mOd(iﬂ)] :
k=0 k=0
Also applies to transcendental numbers, e.g.

Aim) = (im)®1, A(()=(G)e1+23eG+1e(G). (1)

Valid by construction on G, upgrades symbols to functions. However, quite
nontrivial closure, or “coaction principle” on certain subspaces H c G:

AHcH®G. (2)

Example: If (3 ¢ H, then (1)-(2) imply ¢3 ¢ H. “Exclusion principle”!

Previously Observed in Other Sett|ngs [Schlotterer, Stieberger| [Panzer, Schnetz|[Schnetz]

GP — The Steinmann Cluster Bootstrap Improving Perturbation Theory: The Amplitude Bootstrap 13/20



The Coaction Principle for the Six-particle Amplitude
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The Coaction Principle for the Six-particle Amplitude

Apply to extended Steinmann hexagon space H"® of amplitude and its
iterated derivatives, at pointa=b=c=1,oru=v=w = 1.
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The Coaction Principle for the Six-particle Amplitude

Apply to extended Steinmann hexagon space H"® of amplitude and its
iterated derivatives, at pointa=b=c=1,oru=v=w = 1.

Weight Multiple Zeta Values Appear in H"*

u,v,w—1

0 1 1
1 _ _
2 G2 G2
3 3 -
4 Ca Ca
5 G5 C3G2 5C5 — 2¢3(2
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The Coaction Principle for the Six-particle Amplitude
Apply to extended Steinmann hexagon space H"® of amplitude and its
iterated derivatives, at pointa=b=c=1,oru=v=w = 1.

Weight Multiple Zeta Values Appear in H"*

u,v,w—1

0 1 1
1 _ _
2 G2 G2
3 3 -
4 Ca Ca
5 G5 C3G2 5C5 — 2¢3(2

fin,old fin,old
AR @) (11, 1) = 418 ¢5 4 8(¢3)%, AT (1,1,1) = ~240¢5 4 8(¢3)?

Shift in common normalization factor containing known IR divergences,

A= AIR,oldAﬁn,old _ (pAIR,old)(Aﬁn,old/p) . p= 1+ 8((3)296 + 0(98)’
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The Coaction Principle for the Six-particle Amplitude
Apply to extended Steinmann hexagon space H"® of amplitude and its
iterated derivatives, at pointa=b=c=1,oru=v=w = 1.

Weight Multiple Zeta Values Appear in H"*

u,v,w—1

0 1 1
1 _ _
2 G2 G2
3 3 -
4 Ca Ca
5 G5 C3G2 5C5 — 2(3(2

fin,old fin,old
AR @) (11, 1) = 418 ¢5 4 8(¢3)%, AT (1,1,1) = ~240¢5 4 8(¢3)?

Shift in common normalization factor containing known IR divergences,
A= AIR,oldAﬁn,old _ (pAIR,old)(Aﬁn,old/p) . p= 1+ 8((3)296 + 0(98)’

» Reduces size of H"* = Simpler to bootstrap at higher weight!
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Six-gluon amplitude: Results | |

Caron-Huot,Dixon,Dulat,McLeod,Hippel, GP’19A]

Constraint L=1L=2L=3 L=4 L=5 L=6

1. Hhex 6 27 105 372 1214 36927
2. Symmetry  (2,4) (7,16) (22,56) (66,190) (197,602) (567,17957)
3. Final-entry (1,1) (4,3) (11,6) (30,16) (85,39) (236,102)
4. Collinear (0,0) (0,0) (0%,0%) (0*,2%) (1*3,5*3) (6*2,17*2)
5.LLMRK (0,00 (0,00 (0,00 (0,00 (0%,0%) (1%2,2*%)
6. NLL MRK  (0,0) (0,00 (0,00 (0,0) (0%,0%) (1*,0°%)
7. NNLL MRK (0,0) (0,0) (0,00 (0,0) (0,0 (1,0%)
8. N3LL MRK (0,0) (0,00 (0,00 (0,00 (0,0 (1,0)
9. Full MRK  (0,0) (0,00 (0,00 (0,00 (0,0 (1,0)
10. T OPE  (0,0) (0,0) (0,0) (0,00  (0,0) (1,0)
11. T2OPE  (0,0) (0,0) (0,0) (0,00  (0,0) (0,0)

Table 1. Remaining parameters in the ansétze for the (MHV, NMHV) amplitude after each con-
straint is applied, at each loop order. The superscript “x” (“#n”) denotes an additional ambiguity (n
ambiguities) which arises only due to lack of knowledge of the cosmic normalization constant p at the
given stage. The “?” indicates an ambiguity about the number of weight 12 odd functions that are
“dropouts”; they are allowed at symbol level but not function level. The seven-loop MHV amplitude
was constrained in a somewhat different order. As the parameter counts are not directly comparable

it is omitted from the table.
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Six-gluon amplitude: Results I

Re(L)(u,u,u)/RsM(1,1,1)

14+

— AGM
121

— L=7
1.0 L=6
081 L=5
06 L=4
04l — L=3
02f — L=2
00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J u

0 2 4 6 8 10

Figure: Normalized perturbative coefficients of the MHV amplitude (remainder),
RéL)(u,u,u)/RéL)(l, 1,1), for L =2 to 7, plotted along with the strong-coupling
result of AGM. The curves all have a remarkably similar shape for v < 1.
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Beyond six particles

What is the symbol alphabet for n-particle scattering?
» Variables a,, of a Grassmannian Gr(4,n) cluster algebra!

[Golden,Goncharov,Spradlin,Vergu, Volovich]
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Beyond six particles

What is the symbol alphabet for n-particle scattering?

» Variables a,, of a Grassmannian Gr(4,n) cluster algebra!

[Golden,Goncharov,Spradlin,Vergu, Volovich]

Emerge when parametrizing planar n-particle massless kinematics in terms
of n momentum twistors Z; on CP? (Z; ~ \Z;),

xT; ~ Zz‘—l N Zz
(wi—2;)° ~ erax L Zi 1 2] 2]\ Z) = det(Zi21 Z: 251 Z;) = (i — Lij — 15)
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Beyond six particles

What is the symbol alphabet for n-particle scattering?
» Variables a,, of a Grassmannian Gr(4,n) cluster algebra!

[Golden,Goncharov,Spradlin,Vergu, Volovich]

Emerge when parametrizing planar n-particle massless kinematics in terms
of n momentum twistors Z; on CP? (Z; ~ \Z;),

Ti~ i A N
(x;—x5)% ~ eUKLZ{,IZ;’ZjSIZf =det(Zi1Z:Z;12;) = (i - 1ij - 15)

Cluster “A-coordinates” «,,: Certain homogeneous polynomials of (ijkl),

» Grouped into overlapping subsets {a1,...,a,} of rank n, the clusters
» Constructed recursively from initial cluster via mutations

GP — The Steinmann Cluster Bootstrap
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Cluster adjacency
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Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule:

[Drummond,Foster,Giirdogan’17]

Two symbol letters are adjacent only if they belong to the same cluster
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[Drummond,Foster,Giirdogan’17]
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In fact, for NMHV, cluster
adjacency somewhat stronger:
Relates transcendental to ra-
tional part of the amplitude

[Drummond,Foster,Giirdogan’18]
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Remarkably, extended Steinmann relations are equivalent to rule:

[Drummond,Foster,Giirdogan’17]

Two symbol letters are adjacent only if they belong to the same cluster

In fact, for NMHV, cluster
adjacency somewhat stronger:
Relates transcendental to ra-
tional part of the amplitude

[Drummond,Foster,Giirdogan’18]

Application: the 4-loop
NMHYV 7-particle amplitude,
and its multi-Regge limit

[Drummond,Foster,Giirdogan,Papathanasiou]
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Cluster adjacency

Remarkably, extended Steinmann relations are equivalent to rule:

[Drummond,Foster,Giirdogan’17]

Two symbol letters are adjacent only if they belong to the same cluster

In fact, for NMHV, cluster
adjacency somewhat stronger:
Relates transcendental to ra-
tional part of the amplitude

[Drummond,Foster,Giirdogan’18]

Application: the 4-loop
NMHYV 7-particle amplitude,
and its multi-Regge limit

[Drummond,Foster,Giirdogan,Papathanasiou]

Bootstrap application to A5 in QCD

[Gehrmann,Henn,Lo Presti] [Abreu,Dormans,Febres Cordero,Ita,Page,Sotnikov]
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Higher Multiplicity n
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Higher Multiplicity n

For n > 8, Gr(4,n) cluster algebra becomes infinite

(1234) (1256) (1235)(1267) (123N —2)(12N — 1N)

(1236) (1245) (1237)(1256) - - (123N)(12N —2N —1)

(1235)(1456) (1236)(1245) (1567) (123N — 1)(12N — 3N — 2)(IN — 2N — 1N)
(256)(1345) ° (123s)(1267y(1456) T - (123N —2)(BN—1N)(IN —3N —2N —1)

(1245) (3456) (1256) (1345) (4567) (12N —2N-1)(IN—4N -3N —2)(N—3N —2N —1N)
1156)(2315) ~ (2dsy(seny@ase) o T T (N3N _2)(IN 2N _IN)(N— AN 3N 2N _1)
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Higher Multiplicity n

For n > 8, Gr(4,n) cluster algebra becomes infinite

(1234)(1256) (1235)(1267) e - (123N — 2)(12N — 1N)

(1236)(1245) (1237)(1256) (123N)(12N —2N — 1)

(1235)(1456) (1236) (1245) (1567) (123N —1)(12N —3N — 2)(IN —2N — 1N)
(1256)(1345) —~  (1235)(1267)(1d56) T - (23N —2)(12N—IN) AN —3N 2N —1)

(1245) (3456) (1256) (1345)(4567) (12N —2N —1)(IN —4N —3N — 2)(N —3N —2N — 1 N)
1156)(2315) ~ (2dsy(seny@ase) o T T (N3N _2)(IN 2N _IN)(N— AN 3N 2N _1)

» However, in multi-Regge limit, Gr(4,N) > An_5 x Ay_5: finite!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]
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Higher Multiplicity n

For n > 8, Gr(4,n) cluster algebra becomes infinite

(230)(1256) assaen . (123N —2)(12N — 1N)

(1236)(1245) (1237)(1256) (23 N)(12N —2N —1)

(1235)(1456) (1236) (1245)(1567) (123N — 1)(12N — 3N — 2)(IN — 2N — 1N)
(1256)(1345) —~  (1235)(1267)(1d56) T - (23N —2)(12N—IN) AN —3N 2N —1)

(1245) (3456) (1256) (1345)(4567) (12N —2N —1)(IN —4N —3N —2)(N —3N — 2N — 1N)
(1456)(2345) - (1245)(1567) (3456) - T (2N-3N-2)(IN-2N-IN)(N-4N-3N-2N 1)

» However, in multi-Regge limit, Gr(4,N) > An_5 x Ay_5: finite!

[Del Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek]

» Recently, “tropicalization” proposed to tame this infinity in general
klnematlcs [Arkani-Hamed,Lam,Spradlin;to appear|[Drummond,Foster,Gurdogan,Kalousios]

» Can correspond to amplitude for MHV case at most. [Henke.GFin prosress]
Verification /Refinement?
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Conclusions

In this presentation, | talked about the beauty, simplicity and utility of
amplitudes in maximally supersymmetric Yang-Mills theory.
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| demonstrated that

» Extended Steinmann relation/cluster adjacency: Potential universality
» Coaction principle: AA=A®..., "superselection rule"

» Applied to determine 6 gluons/7 loops, 7 gluons/4 loops

Ultimately, can the integrability of planar SYM theory, together with

a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory's exact S-matrix?
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Conclusions

In this presentation, | talked about the beauty, simplicity and utility of
amplitudes in maximally supersymmetric Yang-Mills theory.

| demonstrated that

» Extended Steinmann relation/cluster adjacency: Potential universality
» Coaction principle: AA=A®..., "superselection rule"

» Applied to determine 6 gluons/7 loops, 7 gluons/4 loops

Ultimately, can the integrability of planar SYM theory, together with

a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory's exact S-matrix?

Higher-point bootstrap? All-order resummation? QCD applications?
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Amplitude Normalization

Factor out normalization factor containing known IR divergences A'R,

A= AR Agp.
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Amplitude Normalization

Factor out normalization factor containing known IR divergences A'R,
A= AR Ag,.

Meaningful to tune A%, so that the finite Ag, we compute, becomes
simpler/minimal. Possible choices:
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Amplitude Normalization

Factor out normalization factor containing known IR divergences A'R,
A= AR Ag,.

Meaningful to , so that the finite Ag, we compute, becomes

simpler/minimal. Possible choices:

» Originally A'R = ABDS  essentially the exponentiated A1),

» Next, AR = 4BDS-like 5| finite s;_1,.1 dependence removed.
= Only then Ay, satisfies (extended) Steinmann relations!

» Most recently, AR = gBDSHike ;|
[Caron-Huot,Dixon,Dulat,McLeod,Hippel, GP’19A+B]
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Amplitude Normalization

Factor out normalization factor containing known IR divergences A'R,
A= AR Ag,.

Meaningful to , so that the finite Ag, we compute, becomes
simpler/minimal. Possible choices:

» Originally A'R = ABDS  essentially the exponentiated A1),

» Next, AR = 4BDS-like 5| finite s;_1,.1 dependence removed.
= Only then Ay, satisfies (extended) Steinmann relations!

» Most recently, AR = 4BDS-like ;|

[Caron-Huot,Dixon,Dulat,McLeod,Hippel, GP’19A+B]

p(g%) = 1+8(3) g° ~160GsCs g° + [1680CaCr +912(Gs)? - 32a(¢s)?] 9™

~ [18816¢5¢0 + 20832057 - 448C4aCs — 40065(¢5)?] 92 + O(g™)

so as to satisfy (cosmic Galois)
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Amplitude Normalization

Factor out normalization factor containing known IR divergences A'R,
A= AR Ag,.

Meaningful to , so that the finite Ag, we compute, becomes
simpler/minimal. Possible choices:

» Originally A'R = ABDS  essentially the exponentiated A1),

» Next, AR = 4BDS-like 5| finite s;_1,.1 dependence removed.
= Only then Ay, satisfies (extended) Steinmann relations!

» Most recently, AR = 4BDS-like ;|

[Caron-Huot,Dixon,Dulat,McLeod,Hippel, GP’19A+B]

p(g%) = 1+8(3) g° ~160GsCs g° + [1680CaCr +912(Gs)? - 32a(¢s)?] 9™

~ [18816¢5¢0 + 20832057 - 448C4aCs — 40065(¢5)?] 92 + O(g™)

so as to satisfy (cosmic Galois) .Call (N)MHV Aq, (E) €.

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 22/20



B. ldentifying the Amplitude within "®*: Additional Constraints

1. Discrete symmetries, e.g. p; — p;+1 due to trace cyclicity

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 23/20



B. ldentifying the Amplitude within "®*: Additional Constraints

1. Discrete symmetries, e.g. p; — p;+1 due to trace cyclicity

2. Dual superconformal symmetry = constrains last symbol entry

[Caron-Huot,He]

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 23/20



B. ldentifying the Amplitude within "®*: Additional Constraints

1. Discrete symmetries, e.g. p; — p;+1 due to trace cyclicity

2. Dual superconformal symmetry = constrains last symbol entry
[Caron-Huot,He]

3. Collinear limit: After removing universal soft and collinear
divergences, finite amplitude remainder obeys lim;,qj; Ay = An-1
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B. ldentifying the Amplitude within "®*: Additional Constraints

Discrete symmetries, e.g. p; = p;+1 due to trace cyclicity

2. Dual superconformal symmetry = constrains last symbol entry

[Caron-Huot,He]

3. Collinear limit: After removing universal soft and collinear
divergences, finite amplitude remainder obeys lim;,qj; Ay = An-1

4. Additional limits: multi-Regge and near-collinear (OPE) expansion

New effective d.o.f.=dispersion integrals

n .
AgARL = Z (zi*) 2 / %XV1XV1|Z|2W€_L“}U =

n

[Bartels,Lipatov] [Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek] I~
Xvy X1

[Basso,Sever,Vieira)

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 23/20



B. ldentifying the Amplitude within "®*: Additional Constraints

Discrete symmetries, e.g. p; = p;+1 due to trace cyclicity

2. Dual superconformal symmetry = constrains last symbol entry

[Caron-Huot,He]

3. Collinear limit: After removing universal soft and collinear
divergences, finite amplitude remainder obeys lim;,qj; Ay = An-1

4. Additional limits: multi-Regge and near-collinear (OPE) expansion

New effective d.o.f.=dispersion integrals

n .
AgARL = Z (zi*) 2 / %XV1XV1|Z|2W€_L“}U =

n

[Bartels,Lipatov] [Duca,Druc,Drummond,Duhr,Dulat,Marzucca,GP,Verbeek] I~
Xvy X1

[Basso,Sever,Vieira)

Can evaluate in principle at any loop order, [¢7GFDrummend]

using nested summation algorithms [Moch Uwer Weinzierl]
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Beyond Perturbation Theory: Coupling Resummation
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Beyond Perturbation Theory: Coupling Resummation

For a subspace of n = 6 pentagon-ladder integrals, can resum to all loops!

[Caron-Huot,Dixon,McLeod,GP,von Hippel]

k, ky

L
Q()=k3 1|2 [eeefLa] L ks

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 24/20



Beyond Perturbation Theory: Coupling Resummation

For a subspace of n = 6 pentagon-ladder integrals, can resum to all loops!

[Caron-Huot,Dixon,McLeod,GP,von Hippel]

ky ks

L
Q()=k3 1|2 [eeefLa] L ks

k, k
Obtain extremely simple formula,

bl

© dv 0 FL(x)FL,(y) - F, (x)F?
0= ZQZLQ(L) _ 2_’{yu/2 +u(x) +u(‘y) V(‘T) ,,(y)
T —o0 21 sinh(7v)

where g2 = 16’>2 and F? normalized hypergeometric functions:

. T(1+ 2R\ (1421 . i i ) o
Fi(z) = = ﬁ(fﬂ-(u) 2 B (Y Y i), f=in/iR g2,
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Strong-coupling behavior

From asymptotic analysis of 9 F, also obtain expansion of finite-coupling

Q around g — 00, [Lantos,Papathanasiou;to appear]
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Strong-coupling behavior

From asymptotic analysis of 9 F, also obtain expansion of finite-coupling

Q around g — 00, [Lantos,Papathanasiou;to appear]

@ =-2mg (£ -1)"* (1 -1) " coshlg(6(x)-p () )e ™

where ¢(x) = arccos(2z-1), u; = 1+m, ug = 1+\}W' (1—;:;?1—;,4) =ujus
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Strong-coupling behavior

From asymptotic analysis of 9 F, also obtain expansion of finite-coupling
Q around g — 00 [Lantos,Papathanasiou;to appear]

0= -2y (1-1)" (3 1) " coblo( ()60

where ¢(x) = arccos(2z-1), u; = 1+\/IW' ug = 1+\}W' (1—;;;?1—1,4) =ujus

Interpretation as a long string,

as expected from gauge/string
duality [Aldey:Maldacena]

i
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Strong-coupling behavior

From asymptotic analysis of 9 F, also obtain expansion of finite-coupling

Q around g — 00, [Lantos,Papathanasiou;to appear]

0= -2y (1-1)" (3 1) " coblo( ()60

where ¢(x) = arccos(2z-1), u; = 1+\/1W' ug = 1+\}W' (1—;;;?1—;,4) =ujus

Interpretation as a long string,

as expected from gauge/string
duality [Alday,Maldacena]

i

Can systematically compute any subleading term at strong coupling!
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Results: Steinmann Heptagon Symbols

Weight k = 2 3 4 5 6 7 8
Heptagon Symbols 7 42 | 237 | 1288 | 6763 ? ? ?
Steinmann Relation 7 28 97 | 322 | 1030 | 3192 | 9570 ?
MHYV Final Entry 0 0 1 1 2 1 4
Well-defined [|i + 1 - 0 - 0 - 0 - 0
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Results: Steinmann Heptagon Symbols

Weight k = 1 2 3 4 5 6 7 8
Heptagon Symbols 7 42 237 | 1288 | 6763 ? ? ?
Steinmann Relation 7 28 97 | 322 | 1030 | 3192 | 9570 ?
MHYV Final Entry 0 1 0 1 1 2 1 4
Well-defined [|i + 1 - 0 - 0 - 0 - 0

The symbol of the 3-loop 7-particle MHV amplitude is the only
weight-6 heptagon symbol which satisfies the last-entry condition and
which is finite in the 7 || 6 collinear limit./Prommond GPSpradiin]
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Results: Steinmann Heptagon Symbols

Weight k = 1 2 3 4 5 6 7 8
Heptagon Symbols 7 42 237 | 1288 | 6763 ? ? ?
Steinmann Relation 7 28 97 | 322 | 1030 | 3192 | 9570 ?
MHYV Final Entry 0 1 0 1 1 2 1 4
Well-defined [|i + 1 - 0 - 0 - 0 - 0

The symbol of the 3-loop 7-particle MHV amplitude is the only
weight-6 heptagon symbol which satisfies the last-entry condition and

which is finite in the 7 || 6 collinear limit, Prwmmond. GP.Spradin]

Weight k = 1 2 3 4 5 6 7 8
Hexagon Symbols 3 9 26 75 218 643 ? ?
Steinmann Relation 3 6 13 26 51 98 184 | 340
MHV Final Entry 0 3 4 11 21 41 76 142
Well-defined 4||i + 1 - 0 - 2 - 11 - 43

GP — The Steinmann Cluster Bootstrap

Conclusions & Outlook

26/20



Results: Steinmann Heptagon Symbols

Weight k = 1 2 3 4 5 6 7 8
Heptagon Symbols 7 42 237 | 1288 | 6763 ? ? ?
Steinmann Relation 7 28 97 | 322 | 1030 | 3192 | 9570 ?
MHYV Final Entry 0 1 0 1 1 2 1 4
Well-defined [|i + 1 - 0 - 0 - 0 - 0

The symbol of the 4-loop 7-particle MHV amplitude is the only
weight-8 Steinmann heptagon symbol satisfying the final-entry con-

dition with finite i || 4+1 limit. (2o Prummond Hasingion Mel.eod G Spradin
Weight k = 1 2 3 4 5 6 7 8
Hexagon Symbols 3 9 26 75 218 643 ? ?
Steinmann Relation 3 6 13 26 51 98 184 | 340
MHV Final Entry 0 3 4 11 21 41 76 142
Well-defined 4||i + 1 - 0 - 2 - 11 - 43
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Initial Cluster Mutate ay: New cluster

General rule for mutation at node k:

1. Vi—>k—j, add i — j, reverse i < k < j, remove 2.

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 27/20



Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras with
» Distinguished set of generators a;, the cluster variables
» Grouped into overlapping subsets {a1,...,a,} of rank n, the clusters

» Constructed recursively from initial cluster via mutations
Can be described by quivers. Example: Az Cluster algebra

F—@D—@ &= (u+a)fa

Initial Cluster Mutate as: New cluster and so on. ..

General rule for mutation at node &:
1. Vi—>k—j, add i — j, reverse i < k < j, remove 2.

2. In new quiver/cluster, aj, > aj, = ( [T a+ TI aj)/ak

arrows i—k arrows k—j
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Momentum Twistors Z! [Hodses]

» Represent dual space variables z* ¢ R13 as projective null vectors
XM R34 X2=0, X ~\X.

» Repackage vector XM of SO(2,4) into antisymmetric representation

X1 = X7 = H of SU(2,2)

Can build latter from two copies of the fundamental zl = D
XM -zUzN (2127 - 272200 X =Z N Z

v

» After complexifying, Z! transform in SL(4,C). Since Z ~tZ, can be
viewed as homogeneous coordinates on P3.

» Can show
(=) o 2X-X' = €155, 2727 2" 20 = det(222' 2" = (222" Z')
» (i —xi)? =0 = Xi=Zi1 A Z;

GP — The Steinmann Cluster Bootstrap Conclusions & Outlook 28/20



Conf, (P?) and GraBmannians
Can realize Confn(P3) as 4 x n matrix
(Z1|Za|. ..\ Zn)

modulo rescalings of the n columns and SL(4) transformations, which
resembles a GraBmannian Gr(4.n).
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Conf, (P?) and GraBmannians
Can realize Conf,(P?) as 4 x n matrix
(Z1|Zs| .. .| Zy)

modulo rescalings of the n columns and SL(4) transformations, which
resembles a

Gr(k,n): The space of k-dimensional planes passing through the origin in
an n-dimensional space. Equivalently the space of k x n matrices modulo
GL(k) transformations:

» k-plane specified by k basis vectors that span it = k x n matrix

» Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

{ Conf, (P?) = Gr(4,n)/(C*)" }
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Connection with Conf, (P?) = Gr(4,n)/(C*)"1

» GraBmannians Gr(k,n) equipped with cluster algebra structure 5"

» Initial cluster made of a special set of Pliicker coordinates (iy ... i)

» Mutations also yield certain homogeneous polynomials of Pliicker
coordinates

» Crucial observation: For all known cases, symbol alphabet of n-point
amplitudes for n = 6,7 are Gr(4,n) cluster variables (also known as
A—COOFdInateS) [Golden,Goncharov,Spradlin,Vergu,Volovich]

Fundamental assumption of “cluster bootstrap”

Symbol alphabet is made of cluster .A-coordinates on
Conf,(P?). For the heptagon, 42 of them.
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Singularities of generalised polylogarithm functions are encoded in the first
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[ First-entry condition: Only (i-17j-17) allowed in the first entry of S }
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Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate
particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when
(pi +pist + - +pj1)” = (25— a3)? o< (i-1ij-15) - 0

Singularities of generalised polylogarithm functions are encoded in the first
entry of their symbols.

[ First-entry condition: Only (i-17j-17) allowed in the first entry of S }

Define (Steinmann) n-gon symbol: An integrable symbol of the
corresponding n-gon alphabet that obeys first-entry condition (and the
Steinmann relation).
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MHYV Constraints: Yangian anomaly equations

» Tree-level amplitudes exhibit (usual + dual) superconformal symmetry

[Drummond,Henn,Korchemsky,Sokatchev]

» Combination of two symmetries gives rise to a Yangian

[Drummond,Henn,Plefka] [Drummond,Ferro]

» Although broken at loop level by IR divergences, Yangian anomaly
equations governing this breaking have been proposed [“#ron-tuot el

Consequence for MHV amplitudes: Their differential is a linear
combination of dlog(ij—1jj+1), which implies

Last-entry condition: Only (ij—17j+1) may appear in the last entry
of the symbol of any MHV amplitude.
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Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop
MHYV remainder function that it should smoothly approach the
corresponding (n—1)-particle function in any simple collinear limit:

. L
lim R(Y = R

i+1]4
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For n =7, taking this limit in the most general manner reduces the

42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet,
plus nine additional letters.
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Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop
MHYV remainder function that it should smoothly approach the
corresponding (n—1)-particle function in any simple collinear limit:

lim R = R
il m -l
For n =7, taking this limit in the most general manner reduces the

42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet,
plus nine additional letters.

A function has a well-defined i+1 || i limit only if its symbol is
independent of all nine of these letters.
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