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SYM

Prospects of supersymmetry on the lattice

Non-perturbative physics from first principles:

1 SUSY BSM physics: non-perturbative breaking scenarios,
metastable vacua

2 SUSY theories for a general understanding of strong
interactions. What can we learn from the “exact” analytical
approaches? What lessons can supersymmetry teach us about
strong interactions?

3 Gauge ↔ Gravity duality:

← Predictions for strongly interacting (maximally)
supersymmetric gauge theories to be verified and extended
with numerical methods.
→ Insights into quantum gravity from SUSY gauge theories.
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Progress of supersymmetry on the lattice:
Some historical notes

Easy and simple toy models: 1D
Wess-Zumino models

failure of naive approach even in 1D,
[Catterall, Gregory (2000)],[Giedt, Koniuk, Poppitz, Yavin

(2004)], [GB, Kaestner, Uhlmann, Wipf (2008)],. . .
principle applicability shown, restoration
of SUSY in continuum limit

Simple, but non-trivial: 2D Wess-Zumino
and SUSY gauge theories in 1D and 2D

2D N = 1 Wess-Zumino model:
spontaneous SUSY breaking [Golterman,

Petcher (1989)],[Beccaria, Campostrini, Feo (2004)],
[Steinhauer, Wenger (2014)],. . .
1D SUSY gauge theories: restoration of
SUSY ensured
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Progress of supersymmetry on the lattice:
Current efforts

1D and 2D supersymmetric Yang-Mills theory: Gauge/Gravity
duality from Matrix Models

many talks in this conference (Nishimura, Hanada, Filev . . .)

4D under control, but (solved) technical difficulties: N = 1
supersymmetric Yang-Mills theory → in this talk

4D working approaches, techniques still under development:
N = 4 supersymmetric Yang-Mills theory [Kaplan, Ünsal], [Catterall,

Schaich],. . .
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Progress of supersymmetry on the lattice:
Future obstacles

4D Supersymmetric QCD: several current proposals, seems
challenging, but practicable [Giedt (2009)],[Costa, Panagopoulos (2018)],. . .

general approach for 4D extended SUSY gauge theories:
interesting proposals, might be practicable [Giedt (2009)]

principal unsolved problems: higher dimensional SUSY
theories, chiral SUSY gauge theories
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Lattice simulations of SUSY theories
Lattice simulations would be the ideal method to investigate
non-perturbative sector of SUSY theories . . .

Theory:→ next part

Can we define a lattice SUSY?
Can we control SUSY breaking?

Practical Simulations:→ example SYM

SUSY theories have nice properties, but require to rework
numerical methods

. . . but are challenging from theoretical and practical point of view.
[G.B., S. Catterall, arXiv:1603.04478]
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SUSY breaking and the Leibniz rule on the lattice

Like Nielsen-Ninomiya theorem: locality contradicts with SUSY

On the lattice:

There is no Leibniz rule for a discrete derivative operator. The ac-
tion can only be invariant with a non-local derivative and non-local
product rule. [GB],[Kato,Sakamoto,So],[Nicolai,Dondi]

Further problems:

fermonic doubling problem, Wilson mass term

gauge fields represented as link variables

“The lattice is the only valid non-perturbative definition of a QFT
and it can not be combined with SUSY. Therefore SUSY can not
exist!” (Lattice theorist)

7/32



SYM

SUSY breaking and the Leibniz rule on the lattice

Like Nielsen-Ninomiya theorem: locality contradicts with SUSY

On the lattice:

There is no Leibniz rule for a discrete derivative operator. The ac-
tion can only be invariant with a non-local derivative and non-local
product rule. [GB],[Kato,Sakamoto,So],[Nicolai,Dondi]

Further problems:

fermonic doubling problem, Wilson mass term

gauge fields represented as link variables

“The lattice is the only valid non-perturbative definition of a QFT
and it can not be combined with SUSY. Therefore SUSY can not
exist!” (Lattice theorist)

7/32



SYM

General solution by generalized Ginsparg-Wilson relation?
“Mrs. RG, the good physics teacher. . . ”
(Peter Hasenfratz)

Symmetry in the continuum (S [(1 + εM̃)ϕ] = S [ϕ]) implies
relation for lattice action SL:

Generalized Ginsparg-Wilson relation

M ij
nmφ

j
m

δSL
δφin

= (Mα−1)ijnm

(
δSL

δφjm

δSL
δφin
− δ2SL

δφjmδφin

)

Φ[M̃ϕ] = MnmΦm[ϕ]

Still open problem how to find solutions. [GB, Bruckmann, Pawlowski]

. . . but we still don’t completely understand her lesson.
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Sketch of solutions
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only model dependent solutions

partial realization of extended
SUSY

non-local actions

otherwise: fine tuning.
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Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

L = Tr

[
−1

4
FµνF

µν +
i

2
λ̄ /Dλ−mg

2
λ̄λ

]

supersymmetric counterpart of Yang-Mills theory;
but in several respects similar to QCD

λ Majorana fermion in the adjoint representation

SUSY transformations: δAµ = −2i λ̄γµε, δλ = −σµνFµνε
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Why study supersymmetric Yang-Mills theory on the
lattice ?

1 extension of the standard model

gauge part of SUSY models
understand non-perturbative sector: check effective actions etc.

2 controlled confinement [Ünsal,Yaffe, Poppitz] :

compactified SYM: continuity expected
small R regime: semiclassical confinement

3 connection to QCD [Armoni,Shifman]:

orientifold planar equivalence: SYM ↔ QCD
Remnants of SYM in QCD ?
comparison with one flavor QCD
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Supersymmetric Yang-Mills theory:
Symmetries

SUSY

gluino mass term mg ⇒ soft SUSY breaking

UR(1) symmetry, “chiral symmetry”: λ→ e−iθγ5λ

UR(1) anomaly: θ = kπ
Nc

, UR(1)→ Z2Nc

UR(1) spontaneous breaking: Z2Nc

〈λ̄λ〉6=0→ Z2
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Supersymmetric Yang-Mills theory on the lattice
Lattice action:

SL = β
∑
P

(
1− 1

Nc
<UP

)
+

1

2

∑
xy

λ̄x (Dw (mg ))xy λy

Wilson fermions:

Dw = 1− κ
4∑

µ=1

[
(1− γµ)α,βTµ + (1 + γµ)α,βT

†
µ

]
+ clover

gauge invariant transport: Tµλ(x) = Vµλ(x + µ̂);

κ =
1

2(mg + 4)

links in adjoint representation: (Vµ)ab = 2Tr[U†µT aUµT
b]

of SU(2), SU(3)
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Lattice SYM:
Symmetries

Wilson fermions:

explicit breaking of symmetries: chiral Sym. (UR(1)), SUSY

fine tuning:

add counterterms to action

tune coefficients to obtain signal of restored symmetry

special case of SYM:

tuning of mg enough to recover chiral symmetry 1

same tuning enough to recover supersymmetry 2

1
[Bochicchio et al., Nucl.Phys.B262 (1985)]

2
[Veneziano, Curci, Nucl.Phys.B292 (1987)]
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Recovering symmetry

Fine-tuning:

chiral limit = SUSY limit +O(a), obtained at critical κ(mg )

no fine tuning with Ginsparg-Wilson fermions
(overlap/domainwall) fermions3;
but too expensive

practical determination of critical κ:

limit of zero mass of adjoint pion (a− π)

⇒ definition of gluino mass: ∝ (ma−π)2

cross checked with SUSY Ward identities

3
[Fleming, Kogut, Vranas, Phys. Rev. D 64 (2001)], [Endres, Phys. Rev. D 79 (2009)],

[JLQCD, PoS Lattice 2011]
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Low energy effective theory

multiplet1 multiplet2

scalar meson a−f0 glueball 0++

pseudoscalar meson a−η′ glueball 0−+

fermion gluino-glue gluino-glue

Supersymmetry

Particles must ha-
ve same mass.

confinement: colourless bound states

symmetries + confinement → low energy effective theory

glueballs, gluino-glueballs, gluinoballs (mesons)

build from chiral multiplet type

1
[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2
[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Bound states on the lattice

like in YM and QCD: glueball bound states of gluons

meson states (like flavour singlet mesons in QCD)

a–f0 : λ̄λ ; a–η′ : λ̄γ5λ

gluino-glue spin-1/2 state∑
µ,ν

σµνtr [Fµνλ]

Quite challenging to get good signal for the correlators of these
operators. Mass determined from exponential decay of the
correlator.
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The status of the project
Advanced methods of lattice QCD required:

disconnected contributions [LATTICE2011]

eigenvalue measurements [GB,Wuilloud]

variational methods (including mixing of glueball and meson
operators) [LATTICE2017]

SU(2) SYM:

multiplet formation found in the continuum limit of SU(2)
SYM [JHEP 1603, 080 (2016)]

SU(3) SYM:

adjoint representation much more demanding than
fundamental one (limited to small lattice sizes)

first SU(3) simulations [LATTICE99,LATTICE2016,LATTICE2017]

results presented here: [arXiv:1801.08062],[PRL (2019)]
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Fit w0mgg̃ w0m0++ w0ma−η′

linear fit 0.917(91) 1.15(30) 1.05(10)
quadratic fit 0.991(55) 0.97(18) 0.950(63)
SU(2) SYM 0.93(6) 1.3(2) 0.98(6)

More details about Ward identities to appear soon.
([Eur.Phys.J. C78 (2018) no.5, 404])
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SU(2) supersymmetric Yang-Mills theory at finite
temperature

Deconfinement:

above T deconf.
c plasma of gluons and gluinos

Order parameter: Polyakov loop

Chiral phase transitions:

above T chiral
c fermion condensate melts and chiral symmetry

gets restored

order parameter: 〈λ̄λ〉
In QCD:

quarks add screening effects

explicit chiral symmetry breaking

→ both transitions become crossover

In SYM: two independent transitions (at mg = 0)
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Lattice results SYM at finite T
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Compactified SYM with periodic boundary conditions
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at small m (large κ) no signal of deconfinement

intermediate masses: two phase transitions (deconfinement +
reconfinement) [GB,Piemonte],[GB, Piemonte, Ünsal]
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Phase diagram at finite temperature/compactification
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thermal b.c. deconfined
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change of boundary conditions in compact direction
Z (βB)→ Z̃ (βB) (Witten index)

Witten index can not have βB dependence: states can only be
lifted pairwise ⇒ continuity in SYM
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From N = 1 to N = 4 supersymmetric Yang-Mills theory

N = 4 supersymmetric Yang-Mills theory is obtained from N = 1
supersymmetric Yang-Mills theory in 10 dimensions via dimensional
reduction.

1 Majorana-Weyl fermion → 4 Majorana fermions

6 additional gauge fields become scalars Xi

Yukawa interactions

Additional bosonic term:

SB =

∫
d4x

[
1

2
DµX

iDµX i +
1

4
[X i ,X j ]2

]
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N = 4 supersymmetric Yang-Mills theory

Interesting theory:

gauge-gravity duality, string theory. . .

But:

large supersymmetry group, scalar fields

naive expectation: large fine tuning

Idea: turn “bug” into a “feature”

large number of super-charges allows to construct a sub-group
that is preserved on the lattice

subgroup is (nearly) enough to recover the complete
symmetry in the continuum limit
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Twisted formulation: example N = (2, 2) SYM in two
dimensions

Field content:

2 Majorana fermions λI

two scalar fields B I , and two gauge fields Ai

Twisted symmetry group:

SO(2)E Lorentz group, SO(2)I flavour symmetry

decompose fields according to SO(2)′=diag(SO(2)E×SO(2)I )

Q becomes a matrix:

Q = qI + qµγµ + q12γ1γ2

Scalar supercharge {q, q} = 0: q can be preserved on the lattice
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Example N = (2, 2) SYM in two dimensions

action is a q-exact form

scalar fields transform as vectors and are combined with A
into complexified gauge field

Dirac-Kähler fermions (η, ψµ, χ12)

Lattice structure:

ψµ, Aµ on links, χ12 on (backward) diagonal
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N = 4 supersymmetric Yang-Mills theory on the lattice

Similar construction:

SO(4)E Lorentz group, SU(4) R-symmetry contains
SO(4)R×U(1) part

choose diagonal SO(4)′ part

5 complex “gauge” fields

16 fermionic degrees of freedom (η, ψa, χab)

lattice structure with 5 basis vectors

⇒ interesting approach, needs further work concerning stabilizing
the simulations [Catterall, Giedt, Jha (2018)]
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Gerneralizing the tuning approach

General tuning approach:

O(a) SUSY breaking on the lattice

radiative corrections lead to relevant breaking, compensated
by counterterms → tuning

SQCD: depending on the formulation O(10) tuning
coefficients [J. Giedt,Int.J.Mod.Phys. A24 (2009)]

estimate tuning in perturbation theory

⇒ provide a more general approach for 4D SUSY gauge theories
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Conclusions

simulation of supersymmetric theories on the lattice is still in
some aspects an open theoretical problem

Simple solutions, non-trivial applications

matrix models, supersymmetric Yang-Mills in 1D and 2D

4D supersymmetric Yang-Mills theory:

theoretical problem is solvable, practical challenges

interesting non-perturbative physics like the phase diagram
can be investigated on the lattice

Open challenges and ongoing efforts:

generalizing the tuning approach: Can we simulate SQCD and
N = 2 supersymmetric Yang-Mills?
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The sign problem in supersymmetric Yang-Mills
Majorana fermions:∫

Dλe− 1
2

∫
λ̄Dλ = Pf(CD) = (−1)n

√
detD

n = number of degenerate real negative eigenvalue pairs
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