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Prospects of supersymmetry on the lattice

Non-perturbative physics from first principles:

© SUSY BSM physics: non-perturbative breaking scenarios,
metastable vacua

@ SUSY theories for a general understanding of strong
interactions. What can we learn from the “exact” analytical
approaches? What lessons can supersymmetry teach us about
strong interactions?

© Gauge <> Gravity duality:

o « Predictions for strongly interacting (maximally)
supersymmetric gauge theories to be verified and extended
with numerical methods.

e — Insights into quantum gravity from SUSY gauge theories.
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Progress of supersymmetry on the lattice:

Some historical notes

@ Easy and simple toy models: 1D
Wess-Zumino models

o failure of naive approach even in 1D,
[Catterall, Gregory (2000)], [Giedt, Koniuk, Poppitz, Yavin
(2004)], [GB, Kaestner, Uhlmann, Wipf (2008)],. . .

e principle applicability shown, restoration
of SUSY in continuum limit

o Simple, but non-trivial: 2D Wess-Zumino
and SUSY gauge theories in 1D and 2D
e 2D N =1 Wess-Zumino model:
spontaneous SUSY breaking [Golterman,
Petcher (1989)], [Beccaria, Campostrini, Feo (2004)],
[Steinhauer, Wenger (2014)],. . .

e 1D SUSY gauge theories: restoration of
SUSY ensured
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Progress of supersymmetry on the lattice:
Current efforts

@ 1D and 2D supersymmetric Yang-Mills theory: Gauge/Gravity
duality from Matrix Models
e many talks in this conference (Nishimura, Hanada, Filev . ..)
@ 4D under control, but (solved) technical difficulties: NV =1
supersymmetric Yang-Mills theory — in this talk
@ 4D working approaches, techniques still under development:
N = 4 supersymmetric Yang-Mills theory [Kaplan, Ginsal], [Catterall

Schaich],. . .
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Progress of supersymmetry on the lattice:
Future obstacles

@ 4D Supersymmetric QCD: several current proposals, seems
challenging, but practicable (Giedt (2000)],[Costa, Panagopoulos (2018)],. . .

@ general approach for 4D extended SUSY gauge theories:
interesting proposals, might be practicable [Giedt (2000)]

@ principal unsolved problems: higher dimensional SUSY
theories, chiral SUSY gauge theories
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Lattice simulations of SUSY theories

Lattice simulations would be the ideal method to investigate
non-perturbative sector of SUSY theories . ..

Theory:
@ Can we define a lattice SUSY?
@ Can we control SUSY breaking?

Practical Simulations:
@ SUSY theories have nice properties, but require to rework
numerical methods

... but are challenging from theoretical and practical point of view.

[G.B., S. Catterall, arXiv:1603.04478]
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Lattice simulations of SUSY theories

Lattice simulations would be the ideal method to investigate
non-perturbative sector of SUSY theories . ..

Theory:— next part
@ Can we define a lattice SUSY?
@ Can we control SUSY breaking?

Practical Simulations:— example SYM
@ SUSY theories have nice properties, but require to rework
numerical methods

... but are challenging from theoretical and practical point of view.

[G.B., S. Catterall, arXiv:1603.04478]
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SUSY breaking and the Leibniz rule on the lattice

Like Nielsen-Ninomiya theorem: locality contradicts with SUSY

On the lattice:

There is no Leibniz rule for a discrete derivative operator. The ac-
tion can only be invariant with a non-local derivative and non-local
product rule. [GB],[Kato,Sakamoto,So], [Nicolai,Dondi]

Further problems:
e fermonic doubling problem, Wilson mass term

@ gauge fields represented as link variables
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SUSY breaking and the Leibniz rule on the lattice

Like Nielsen-Ninomiya theorem: locality contradicts with SUSY

On the lattice:

There is no Leibniz rule for a discrete derivative operator. The ac-
tion can only be invariant with a non-local derivative and non-local
product rule. [GB],[Kato,Sakamoto,So], [Nicolai,Dondi]

Further problems:
e fermonic doubling problem, Wilson mass term
@ gauge fields represented as link variables

“The lattice is the only valid non-perturbative definition of a QFT
and it can not be combined with SUSY. Therefore SUSY can not
exist!” (Lattice theorist)
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General solution by generalized Ginsparg-Wilson relation?

“Mrs. RG, the good physics teacher. ..’
(Peter Hasenfratz)

Symmetry in the continuum (S[(1 + eM)¢] = S[y]) implies
relation for lattice action S;:
Generalized Ginsparg-Wilson relation
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O[Mp] = Mpm®mly]

St|” Open problem hOW to f|nd SO|uti0nS. [GB, Bruckmann, Pawlowski]
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General solution by generalized Ginsparg-Wilson relation?

“Mrs. RG, the good physics teacher. ..’
(Peter Hasenfratz)

Symmetry in the continuum (S[(1 + eM)¢] = S[y]) implies
relation for lattice action S;:
Generalized Ginsparg-Wilson relation

Minthtet = (o~
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O[Mp] = Mpm®mly]

St|” Open problem hOW to f|nd SO|uti0nS. [GB, Bruckmann, Pawlowski]

... but we still don't completely understand her lesson.



SYM

Sketch of solutions
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Super Yang-Mills theory

Supersymmetric Yang-Mills theory:

1 i - m, -
=Tr|—=F, F" + = —=—E M
L="Tr|—2F, - 2AID/\ .

@ supersymmetric counterpart of Yang-Mills theory;
but in several respects similar to QCD

@ A Majorana fermion in the adjoint representation
@ SUSY transformations: dA, = —2i5\'yus, N = —ouwFue
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Why study supersymmetric Yang-Mills theory on the
lattice 7

@ extension of the standard model

e gauge part of SUSY models
e understand non-perturbative sector: check effective actions etc.

@ controlled confinement [unsal yaffe, Poppits] :

e compactified SYM: continuity expected
e small R regime: semiclassical confinement

© connection to QCD [Armoni,Shifman]:

e orientifold planar equivalence: SYM « QCD
o Remnants of SYM in QCD ?
e comparison with one flavor QCD
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Supersymmetric Yang-Mills theory:
Symmetries

SUSY
@ gluino mass term m, = soft SUSY breaking

Ur(1) symmetry, “chiral symmetry”: X — e~05)\
e Ug(1) anomaly: 6= 5‘\,—7; Ur(1) — Zon,

e Ug(1) spontaneous breaking:  Zoy, (AX#£0 Zo



SYM

Supersymmetric Yang-Mills theory on the lattice

Lattice action:

xy

@ Wilson fermions:
4

D,=1-— Ii',z [(1 —Y)as Ty + (L4 Yu)as TJ] + clover
pn=1
gauge invariant transport: T,A(x) = VA (x + [2);
B 1
C 2(mg+4)

@ links in adjoint representation: (V). = 2Tr[U); T2U, TP
of SU(2), SU(3)
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Lattice SYM:
Symmetries

Wilson fermions:

e explicit breaking of symmetries: ehiral-Sym—{Ur{l)}, SUSY
fine tuning:

@ add counterterms to action

@ tune coefficients to obtain signal of restored symmetry
special case of SYM:

@ tuning of mg enough to recover chiral symmetry !

@ same tuning enough to recover supersymmetry 2

1[Bochicchio et al., Nucl.Phys.B262 (1985)]
2[Veneziano, Curci, Nucl.Phys.B292 (1987)]
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Recovering symmetry

Fine-tuning:
chiral limit = SUSY limit +O(2), obtained at critical x(mg)

@ no fine tuning with Ginsparg-Wilson fermions
(overlap/domainwall) fermions>;
but too expensive
practical determination of critical k:
@ limit of zero mass of adjoint pion (a — )
= definition of gluino mass: oc (Ma_r)?
@ cross checked with SUSY Ward identities

3[F|eming, Kogut, Vranas, Phys. Rev. D 64 (2001)], [Endres, Phys. Rev. D 79 (2009)],
[JLQCD, PoS Lattice 2011]
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Low energy effective theory

multiplet! | multiplet®
scalar meson a—fy | glueball 07"
pseudoscalar | meson a—n' | glueball 0~
fermion gluino-glue | gluino-glue

@ confinement: colourless bound states

@ symmetries + confinement — low energy effective theory

@ glueballs, gluino-glueballs, gluinoballs (mesons)

@ build from chiral multiplet type

l[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Low energy effective theory

multiplet! | multiplet®
scalar meson a—fy | glueball 07"
pseudoscalar | meson a—n' | glueball 0~
fermion gluino-glue | gluino-glue

@ confinement: colourless bound states

Supersymmetry

Particles must ha-

Ve same mass.

@ symmetries + confinement — low energy effective theory

@ glueballs, gluino-glueballs, gluinoballs (mesons)
@ build from chiral multiplet type

l[Veneziano, Yankielowicz, Phys.Lett.B113 (1982)]

2[Farrar, Gabadadze, Schwetz, Phys.Rev. D58 (1998)]
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Bound states on the lattice

@ like in YM and QCD: glueball bound states of gluons
@ meson states (like flavour singlet mesons in QCD)

a—fy © A\ a—n" A5\
@ gluino-glue spin-1/2 state
> ot [F*)]
221

Quite challenging to get good signal for the correlators of these
operators. Mass determined from exponential decay of the
correlator.
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The status of the project
Advanced methods of lattice QCD required:
@ disconnected contributions [LatTice2011]
@ eigenvalue measurements (B, wuilloud]

@ variational methods (including mixing of glueball and meson
operators) [LATTICE2017]

SU(2) SYM:
e multiplet formation found in the continuum limit of SU(2)
SYM [3HEeP 1603, 080 (2016)]

SU(3) SYM:
@ adjoint representation much more demanding than
fundamental one (limited to small lattice sizes)
o first SU(3) simulations [LATTICE99,LATTICE2016,LATTICE2017]

@ results presented here: (arxiv:1801.08062], [PRL (2019)]
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o _ - ]
1o =
0.8 =

Fit woMgg Wo Mo++ WO My
linear fit 0.917(91) 1.15(30) 1.05(10)
quadratic fit  0.991(55) 0.97(18) 0.950(63)
SU(2) SYM  0.93(6)  1.3(2)  0.98(6)

More details about Ward identities to appear soon.

([Eur.Phys.J. C78 (2018) no.5, 404])
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SU(2) supersymmetric Yang-Mills theory at finite
temperature
Deconfinement:
@ above Td°eonf plasma of gluons and gluinos
@ Order parameter: Polyakov loop
Chiral phase transitions:

o above Tl fermion condensate melts and chiral symmetry
gets restored
o order parameter: (A))
In QCD:
@ quarks add screening effects
@ explicit chiral symmetry breaking
— both transitions become crossover

In SYM: two independent transitions (at mg = 0)
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Lattice results SYM at finite T
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@ coincidence of deconfinement and chiral transition
Tghlral = Tgeconf' (Within current precision) [JHEP 1411 (2014) 049]
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Compactified SYM with periodic boundary conditions
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e fermion boundary conditions: thermal — periodic
e at small m (large k) no signal of deconfinement
@ intermediate masses: two phase transitions (deconfinement +

reconﬁnement) [GB,Piemonte], [GB, Piemonte, Unsal]
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Phase diagram at finite temperature/compactification

R;1)T 8

confined

_ 1
T(zr*umir T

thermal b.c. deconfined

hermal and period. b.c. deconfined

o change of boundary conditions in compact direction
Z(Bs) — Z(BB) (Witten index)

@ Witten index can not have g dependence: states can only be
lifted pairwise = continuity in SYM
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From N =1 to N = 4 supersymmetric Yang-Mills theory

N = 4 supersymmetric Yang-Mills theory is obtained from N =1

supersymmetric Yang-Mills theory in 10 dimensions via dimensional
reduction.

@ 1 Majorana-Weyl fermion — 4 Majorana fermions

@ 6 additional gauge fields become scalars X;
@ Yukawa interactions

Additional bosonic term:

1 ) 1.
SB:/d4X [QDHX’D”X’+4[X’,XJ]2



N = 4 supersymmetric Yang-Mills theory

Interesting theory:
@ gauge-gravity duality, string theory. ..
But:
@ large supersymmetry group, scalar fields
@ naive expectation: large fine tuning
Idea: turn “bug” into a “feature”
@ large number of super-charges allows to construct a sub-group
that is preserved on the lattice
@ subgroup is (nearly) enough to recover the complete
symmetry in the continuum limit



SYM

Twisted formulation: example ' = (2,2) SYM in two
dimensions

Field content:
@ 2 Majorana fermions )/
e two scalar fields B', and two gauge fields A;
Twisted symmetry group:
@ SO(2)g Lorentz group, SO(2), flavour symmetry
e decompose fields according to SO(2)'=diag(SO(2)exSO(2)/)

@ becomes a matrix:

Q= ql + quyu + qr2m72

Scalar supercharge {g,q} = 0: g can be preserved on the lattice
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Example N' = (2,2) SYM in two dimensions

@ action is a g-exact form

@ scalar fields transform as vectors and are combined with A
into complexified gauge field

@ Dirac-Kahler fermions (1, ¢y, x12)
Lattice structure:

@ 1, A, on links, x12 on (backward) diagonal
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N = 4 supersymmetric Yang-Mills theory on the lattice

Similar construction:

@ SO(4)g Lorentz group, SU(4) R-symmetry contains
SO(4)rxU(1) part

@ choose diagonal SO(4)’ part

@ 5 complex “gauge” fields

@ 16 fermionic degrees of freedom (1,2, Xab)
@ lattice structure with 5 basis vectors

= interesting approach, needs further work concerning stabilizing
the simulations [catterall, Giedt, Jha (2018)]
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Gerneralizing the tuning approach

General tuning approach:
e O(a) SUSY breaking on the lattice

@ radiative corrections lead to relevant breaking, compensated
by counterterms — tuning

e SQCD: depending on the formulation O(10) tuning
coefficients [u. Giedt,Int.J.Mod.Phys. A24 (2009)]

@ estimate tuning in perturbation theory
= provide a more general approach for 4D SUSY gauge theories
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Conclusions

@ simulation of supersymmetric theories on the lattice is still in
some aspects an open theoretical problem
Simple solutions, non-trivial applications
@ matrix models, supersymmetric Yang-Mills in 1D and 2D
4D supersymmetric Yang-Mills theory:
@ theoretical problem is solvable, practical challenges

@ interesting non-perturbative physics like the phase diagram
can be investigated on the lattice

Open challenges and ongoing efforts:

@ generalizing the tuning approach: Can we simulate SQCD and
N = 2 supersymmetric Yang-Mills?
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The sign problem in supersymmetric Yang-Mills
Majorana fermions:

/meéfmA = Pf(CD) = (—1)"V/det D

n = number of degenerate real negative eigenvalue pairs
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