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Duality symmetries play a fundamental role in String Theory

@ Double Field Theory (DFT) emerges when making explicit T-duality invariance at
the low energy effective level

Poisson-Lie T-duality generalizes Abelian and non-Abelian T-duality

@ Dynamics on group manifolds is a natural framework to investigate such issues in a
proper geometric setting

o Wess-Zumino-Witten (WZW) model is a string solution
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Drinfeld double

Definition

A Drinfeld double is an even-dimensional Lie group D whose Lie algebra 0 can be
decomposed into a pair of maximally isotropic subalgebras, g and g, with respect to a
non-degenerate (ad)invariant bilinear form (-,-) on 0.

(0=g+§,0,§)«——Manin tripe——D =G - G

Since the bilinear form is non-degenerate, we can use it to identify § = g* = ¢
Lie bialgebra

o Choosing T, € g, Te e §, such that (T, 7~"") =Ta€D
(To, Ty =0, (T, T =0, (T., 7" =4.,"—— O(d,d) structure

o Lie bracket on d: [Ta, Tg] = Fag“Tc
[T37 Tb] = f:abc TC7 [-i'-a’ 7~-b] = fabc 7-C7 [Ta7 7~-b] = &bc T — fbac 7-C
@ Jacobi identity on 0 imposes constraints on the structure constants:

f: mz:fbdm _ Fa mbfcdm _ )2; mcfbam + i; mbfcam _ Fmbcfmda =0
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Poisson-Lie symmetry

o Let X': ¥ — M, where (X, h) is a 2-dimensional Lorentzian worldsheet and
(M, g) a (pseudo) Riemannian manifold, together with a B-field, which admits a
free action of a Lie group G from the right

o Consider the non-linear sigma model
S= / dzdz E;0X'dX!,  with Ej = gj + Bj

@ The infinitesimal generators of the group action are the left-invariant vector fields

{vi}
X' = Vie — 65 = / dzdz Ly, E;ox'dX e — / dJa€?,
with J, = V] (E;0X/dz — E;0X/dz) .
If Lv,Ej =0 — dJ, = 0 standard T-duality with isometries

@ This can be generalized:
dJ, = %f‘; be Jo A Je — Ly, Ej = ff:a be V,f VfE,'kEgj no isometries

[Va, Vb] = fab“ Ve — [Lv,, Lv, ) Ej = fap" Ly, Ej  integrability condition
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Poisson-Lie symmetry/plurality

Lv,Eij = —f,"*VFVLEREy;
[Lv., Ly, ) Eij = [CopLv. Eij

—famcfbdm - fambfcdm - fdmcfbam + fdmbfcam - f be mda =0

m

Duality (9,8) < (9,9

l

_'famcfbdm - fambfcdm - fdmcfbam + fdmbfcam - fmbcfmda =0

Ly Eij = — V¥V EEy;

(Lo, Lo Bij = Fourli, Bii |

@ In general, a Drinfeld double has several decompositions — P-L T-plurality

g | T = Ty [P0 = fi T, (1,9 = freTt— 0,
a=0a B

(T, Th) = (T, Tg) === C4" € O(d,d)
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SL(2,C) as a Drinfeld double

@ The algebra of SL(2,C) is spanned by e; = 0;/2, b; = ie; with brackets:

lei, e] = iej*ex, [ei, bj] = iej*bx, [bi, bj] = —iej ex — e su(2) generators

@ Two non-degenerate invariant scalar products:
(v,w) =2Im[Tr(vw)], (v,w) = 2Re[Tr(vw)] Vv,w,€ sl(2,C)
(Cartan-Killing)
@ One can consider the dual vector space su(2)* by introducing a basis {&'} dual to
{ei}
& =5 (bj-l—ekjg, ek) . <§f,ej> =2Im [Tr (éfej)] :(5}
These vectors in turn span sb(2,C): [&,&] = if’, &, with i, = Tess;
and each subalgebra acts on the other one non-trivially, by co-adjoint action:
(&, ¢] = iej 8" + if e
o Both subalgebras su(2) and s6(2,C) are maximally isotropic w. r. t. the scalar
product (-, -)
(ei,6)) =0, (&,&)=0— (sl(2,C),su(2),sb(2,C))is a Manin triple—
— SL(2,C) = SU(2) - SB(2,C)



SL(2,C) as a Drinfeld double:O(3, 3) and Riemannian metrics

@ In doubled notation ¢/ = ( Z’;- ) with e € su(2), & € sb(2,C)

0 &
<e/7eJ>=7)u=<5j,; 0

) — O(3, 3) invariant metric
o Consider the scalar product (v, w) = 2Re[Tr(vw)] on sl(2, C), we have another
splitting w. r. t. this
(ei, &) = — (bi, bj) = i, (ei, bj) = 0+— not positive-definite
By denoting C; and C_ the two subspaces spanned by {ei} and {b;} respectively, this
scalar product, with the splitting C; @ C_, defines a positive-definite Riemannian metric
via H = (7)C+ - (7 )C— — ((7 ))
((ei,¢)) == (ei, ) ((bis b)) := = (bi, b)) ((ei, b)) == (e, bj) =0

@ In doubled notation we have

Jij es? T
((er,e))=Hu = ( 4 T Zk) —H nH=n
—€3 0" +e€neid (pseudo-orthogonal O(3,3))
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WZW on SU(2)

o Let ¢ : (t,0) € X — g € SU(2), where X denotes the worldsheet with Minkowski
(1,—1) signature

o Consider the non-linear sigma model

0= ks [ (57 e6) oo (5720

with a WZ term
_ Kk T PO P BT P NPV P
nswz——/Tr[go (g dgNg "dgNg dg)}7
247 [

where B is a 3-manifold whose boundary is the compactification of the original
two-dimensional source space, while g is the extension of g on B.

@ The action S = Sy + kSwz leads to the equations of motion
%
O0:A — 05 Jff—[A J],
0tJ —0-A = —[A,J], (integrability condition)
lim g(o)=1
|o|—o0
where A = (g’latg)i e and J = (g’laag)i e are the su(2)(R)-valued currents



Hamiltonian description of the SU(2) WZW model

@ Introducing canonical momenta / as fiber coordinates of the cotangent bundle
T*SU(2), the model is described the Hamiltonian

H= 4%2/0/0— (5"!’/;/,- +5,-J-J"Jf)
and e.t. Poisson brackets:
(), 10 = 2064 ()30 — ) + " ()il — )
{I(0), P (o)} = 2X2 [ekiij(a)J(U — o) — 88 (o — a’)}
{J(0), F(o")} = 0.
The Poisson algebra is the semi-direct sum of an Abelian algebra and a Kac—Moody

algebra associated to SU(2).

@ We want to deform this algebra to a semi-simple one in such a way that the
resulting brackets, together with the deformed Hamiltonian lead to an equivalent
description of the dynamics
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Hamiltonian description of the SU(2) WZW model, 7-deformation

@ It is possible to give an equivalent description of the dynamics in terms of a new
Poisson algebra and a modified Hamiltonian, with the currents on an equal footing

(a=22 ¢ =2)2(1 - 1))
{li(0), l;(c")} = & [e;jklk(a)é(a — o)+ aepd(0)d(o - o]
{li(0), Y(0)} = & [(ew? I (0) + am? €7 1k(0))5(0 — ') — (1 — 7°)6/6' (0 — 0')]
{Ji(0), F(o")} = &7 [€¥I(0)5(0 — ') + a€l J*(0)5(0 — o)],
with deformed Hamiltonian

1

- ANy
H774)\2(1_T2)2/da (6ht; + 0,0 ) .

@ However, our goal is to recover the SL(2,C) algebra, but this is not easily
understood from these rather complicated brackets.
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Hamiltonian description, 7-deformation and SL(2,C) structure

o Performing the rotation (take 7 to be purely imaginary)

Si(0) = 5(1_713272) [1(0) — a0 J*(0)]
B(c) = ﬁ {—aira'*/k(a) - %J"(a)] ,

C; — (1+327—2) )

we have (C; )

= )\2(1:32,_2)21
{Si(0), Si(0")} = €i* Sk(0)d(0 — o) + C-6;8'(0 — o)
{B'(0), B/ (c")} = 7% Sk (0)d(0 — o) + 7°C,676' (0 — &)
{Si(0), B/ (¢')} = ex/ B*(0)6(0 — 0') + CL6/6' (0 — o).

The Hamiltonian is rewritten as

H, = )2 / da[ (1 + 3274) 515:5; + (1 n az) §;B'B' —2a (1 n 72) 5",—5,-31'].
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Hamiltonian description, 7-deformation, Drinfeld double structure

@ To make the Drinfeld double structure explicit we can let .5’ be unchanged since
they already span the su(2) algebra, and transform the B’ generators as follows:

K'(0) = B'(0) — iTé®Si(0),
leading to
{5i(0). S(0")} = ¢ Sk(0)d(0 — o) + C8;8' (o — o)
{K'(0), Ki(')} = iTFI K (0)d(0 — o) + CT2(67 + €,"P*)8' (0 — o)
(5:(0), K'(0))} = [ex K (o) + irfjk,-Sk(a)] 5o — o)+ (c/&,-f n iTCe,-j3) §(o—d')
and Hamiltonian (in doubled notation S; = (S;, K))

H, = )\z/da S (M)Ysy,

with

Mo = (@Y = (14 )6 e (14 a%)e” — a1+ 7%)8;
T i+ D) —a(l + )57 (1+ )5y '
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Poisson-Lie dual models

@ Introduce another imaginary parameter « in such a way to make the role of the
subalgebras su(2)(R) and sb(2, C)(R) symmetric without modifying the dynamics

o Let us go back to the S and B generators and consider the following pair of
Poisson brackets and Hamiltonian:

’ / a / ’
(8(0): 5100} = &S0 =)+ 58t (0 = )
B Bl )} = 2 2 ijks 5 ’ ar’a? sis’ ’
(B'(0). B(0)} = ~r*a’d*Su(0)3(0 — o') = o 50 (0 = o)

1— 227202 )
aT 2(5,‘J(5/(0'—0'/),

15(0). B0} = el B (@)oo — o) + s

Hro = N2 / da[ (1 + 32740/‘) 5755 + (1 + az) 5;B'B —2a (1 - 7202) 5fj5,-Bf].

One can observe this is just the pair in S and B, under the mapping 7 — iaT, so the
equations of motion following from it do not change.
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Poisson-Lie dual models

@ Define new generators as
. i Lo s
U=iaS, V' =-—B —ire”5,.
ia

The algebra satisfied by these new generators is given by

2
{Ul0). U} = i U(@)élo =) = s il (0 = o)
2
(Vi(0), VI(o")} = itfI Vi (0)d(0 — o) + —————— (67 + 6,7 ")5' (0 — o)

X2 (1 + 22r202)

(Ui(o), Vi(o')} = [iaek,f VKo + irfjk,-Uk(a)] 8o — o)

1 2 2 2\ ¢ | Y /
+—[(1—37&)5,J+231TIQE;J:|5 o—o).
2)2 (1—1—327'2@2)2 ( )

e iT = 0—— ¢ = su(2)(R)& a current algebra (original model)

o i — 0——c3 =5b(2,C)(R)D a current algebra.

@ For all the other values of o and 7 this algebra is isomorphic to ¢z ~ sl(2, C)(R)
and upon suitable rescaling we obtain a two-parameter family of models all
equivalent to the WZW model.
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Poisson-Lie dual models

@ The Hamiltonian can be rewritten in terms of U and V as

Hro = /\2/da U (Mr0)” Uy,

with
M. — 7”("”2;0‘4 5 — 72(1 + aZ)epi3epj3 iTio(l 4+ az)ej-i3 —a(l- 72a2)5ij
T Nirio(1 4 a2)e® — a(1 — 7202)67 (io)*(1 + 2°);; '
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Poisson-Lie dual models, T-duality transformation

e U and V play a symmetric role —— we can perform a O(3,3) transformation
V(o) = U(a), U(o) = V(o)

Explicitly, under such a rotation we obtain the dual Hamiltonians
I:I‘r,a == >\2 / do |:(m‘r,o¢)u‘71\7j + (m‘r,a)ijaiaj + \ZUJ(mT,a)ij + \h/jai(mf,a)ij} ;

and the dual Poisson algebras

2

~ - . ~ / aa

{Vi(o), Vi(o")} = ’06€ijk Vi(o)d(o —0') — m505/(0 )
ar?

X2 (1+ 22r202)
(Vi(o), (o)} = [iaek,-j(jk(a) + irff*,»\"/k(a)] 5o — o)

{0"(0)7 Uj(a/)} = irfl, Uk(a)6(a —o')+ (6'7 + epi36jp3)6/(a —0d)

1 2.2 2\ ¢ P
+—2/\2(1+a2r2a2)2 [(1 a7a>5,+2al7'/ae,]5(a c')

@ The new family of models DWZW, has target configuration space the group
manifold of SB(2,C), spanned by the fields V;, while momenta U’ span the fibers
of the target phase space.
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Conclusions and future perspectives

@ Description of T-duality properties of the SU(2) WZW model by means of an
equivalent one-parameter deformation reformulation

@ Introduction of a two-parameter family of dual models with target configuration
space SB(2,C)

o Duality is of Poisson-Lie type

@ It would be relevant to define a natural dual model on SB(2,C)
e Formulation of a doubled theory on the SL(2,C) group manifold
@ Quantization of the interpolating model

o New CFTs?
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