
Classical
dynamics on
fuzzy space

F G Scholtz

Fuzzy Space

Quantum
Mechanics on
Fuzzy Space

Classical
Dynamics
Path Integral Action

Equations and
Constants of Motion

Features of the
Equations of Motion

Underpinning
Lorentz
Geometry

Concluding
Remarks

��������	
�������	���
���������	 �������

�
���

Classical dynamics on fuzzy space1

F G Scholtz

National Institute for Theoretical Physics (NITheP)
Stellenbosch University

Workshop on Quantum Geometry, Field Theory and
Gravity , September 2019

1FG Scholtz, Phys. Rev. D 98 (2018) 104058



Classical
dynamics on
fuzzy space

F G Scholtz

Fuzzy Space

Quantum
Mechanics on
Fuzzy Space

Classical
Dynamics
Path Integral Action

Equations and
Constants of Motion

Features of the
Equations of Motion

Underpinning
Lorentz
Geometry

Concluding
Remarks

��������	
�������	���
���������	 �������

�
��� Outline

1 Fuzzy Space

2 Quantum Mechanics on Fuzzy Space

3 Classical Dynamics
Path Integral Action
Equations and Constants of Motion
Features of the Equations of Motion

4 Underpinning Lorentz Geometry

5 Concluding Remarks



Classical
dynamics on
fuzzy space

F G Scholtz

Fuzzy Space

Quantum
Mechanics on
Fuzzy Space

Classical
Dynamics
Path Integral Action

Equations and
Constants of Motion

Features of the
Equations of Motion

Underpinning
Lorentz
Geometry

Concluding
Remarks

��������	
�������	���
���������	 �������

�
��� Fuzzy Space

The fuzzy sphere commutation relations are

[x̂i , x̂j ] = 2iλεijk x̂k .

where λ is the non-commutative length parameter.
These commutation relations respect the rotational
symmetry. The Casimir operator x̂2 = x̂i x̂i is associated
with the square of the radial distance and its
eigenvalues are determined by the su(2) representation
under consideration: j(j + 1), j = 0,1/2, . . ..

Fuzzy space is the collection of fuzzy spheres with
each allowed radius appearing once.
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��� Fock Space Realisation of Fuzzy Space

A concrete realisation of fuzzy space is provided by the
Schwinger construction, which utilises two sets of boson
creation and annihilation operators to build a represen-
tation of su(2):

[âα, â
†
β] = δαβ and [âα, âβ] = [â†α, â

†
β] = 0, α, β = 1,2.

The coordinates are realised as

x̂i = λâ†ασ
(i)
αβâβ

where σi are the Pauli spin matrices.
The Casimir operator reads x̂2 = x̂i x̂i = λ2n̂(n̂ + 2) with
n̂ = â†1â1 + â†2â2 from which it is clear that each su(2)
representation occurs precisely once.
We denote this realisation of fuzzy space by HFS.
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†
β] = 0, α, β = 1,2.

The coordinates are realised as

x̂i = λâ†ασ
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†
β] = 0, α, β = 1,2.

The coordinates are realised as

x̂i = λâ†ασ
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��� Quantum Mechanics on Fuzzy Space 1/4

The quantum Hilbert spaceHQ is defined as the algebra
of bounded operators on HFS generated by the coordi-
nates (the operators that commute with x̂2) 2 and have
a finite norm with respect to a weighted Hilbert-Schmidt
inner product 3:

HQ =
{
ψ : [ψ, n̂] = 0, trFS

(
ψ† r̂ ψ

)
<∞

}
.

Here trFS denotes the trace over HFS and r̂ = λ(n̂ + 1).
States in HQ are denoted |ψ).

2N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203
3The choice of weight is motivated by the requirement that the

projector that projects on all states in HFS with radius less then or equal
to R (the analogue of the characteristic function of a ball with radius R)
gives the volume of a sphere of radius R for large R (V. Gáliková and
P. Prešnajder, 2013 J. Math. Phys. 54 052102)
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��� Quantum mechanics on fuzzy space 2/4

From here it is standard quantum mechanics.

Quantum observables are identified with self-adjoint
operators acting on HQ. These include:

The coordinates that act through left multiplication as

X̂i |ψ) = |x̂iψ),

The angular momentum operators which act adjointly
according to

L̂i |ψ) = | ~
2λ

[x̂i , ψ]) with [L̂i , L̂j ] = i~εijk L̂k .

The non-commutative analogue of the Laplacian, which
gives the kinetic energy, is defined as

∆̂λ|ψ) = | − 1
λr̂

[â†α, [âα, ψ]]).

It commutes with the angular momenta and is symmetric
on HQ .
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��� Quantum mechanics on fuzzy space 3/4

The Hamiltonian is given by

Ĥ = − ~2

2m
∆̂ + V (R̂)

with R̂ the radius operator that acts as

R̂|ψ) = |λ(n̂ + 1)ψ), n̂ = a†αaα.

The angular momentum operators commute with the Hamil-
tonian and are therefore conserved, but there is a fur-
ther important conserved quantity, which is the operator
Γ̂ that acts as follows

Γ̂|ψ) = |[a†αaα, ψ]).

It can easily be checked that Γ commutes with the Hamil-
tonian. Note that Γ̂|ψ) = 0, ∀ψ ∈ HQ.
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��� Brief summary of results 1/2

The formalism above has been used to solve the free
particle and particle in a well 4, to develop scattering
theory on non-commutative spaces5 and the statistical
physics6. The main results are:

The free particle spectrum is given by

E~k =
2~2

mλ2 sin2

(
|~k |λ

2

)
≤ 2~2

mλ2 , |~k | ∈ [0, π/λ)

For |~k |λ << 2

E~k =
~2|~k |2

2m
Each single particle state occupies a finite volume
V0 = 4πλ3. For Fermions this is an excluded volume.

4N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203
5JN Kriel et al, Phys. Rev. D 95 (2017) 025003
6FG Scholtz et al, Phys. Rev. D 92 (2015) 125013
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��� Brief summary of results 2/2

The resulting equation of state has striking
consequences for the mass-radius relationship of a
white dwarf:

3000 4000 5000 6000 7000
0

5000

10000

15000

R

G
M

Figure: Mass-radius relationship for white dwarf at two
temperatures in arbitrary units.
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��� From Quantum to Classical

Now that we have a quantum theory with a short length
scale, manifest rotational symmetry and the appropriate
low energy limit, we may ask what is the underpinning
classical dynamics, i.e. how may Newton dynamics be
altered? To answer this question, we must compute the
path integral action and extract the equations of motion.

To do this, we enlarge the quantum Hilbert space Hq to
include all Hilbert-Schmidt operators acting on HFS and
not just those commuting with the Casimir. We denote
this enlarged space by H0

q. Clearly Hq ⊂ H0
q. From the

definition of Hq, states that belong to the subspace Hq
must satisfy the constraint

Γ̂|ψ) = 0.

Note that since Γ̂ is conserved, initial states that satisfy
this condition, will do so at all times.
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��� Path Integral Action: General Form

Let |`〉 be a set of overcomplete coherent states, i.e.∫
dµ(`)|`〉〈`| = 1,

then the transition amplitude can be represented as a
path integral

〈`f , tf |`i , ti〉 =

∫ `(tf )=`f

`(ti )=`i
[dµ(`)]e

i
~S,

with action

S =

∫ tf

ti
dt〈`(t)|i~ ∂

∂t
− H|`(t)〉.
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��� Path Integral Action: Fuzzy Space 1/4

We can easily construct a set of coherent states on H0
q:

|zα,wα) = |zα〉〈wα|.

where |zα〉 is a Glauber coherent state on Hc and∫
dz̄αdzαdw̄αdwα

π4 |zα, zα)(zα,wα| = 10
q.

Note though that in general Γ|zα,wα) 6= 0. However,
if we want to compute transition amplitudes between
states that satisfy Γ|ψ) = 0, we can safely use them to
insert the identity at intermediate times in a time slicing
procedure as Γ is conserved. Indeed, if this is done, the
Γ must appear as a conserved quantity in the resulting
action and we must simply require it to vanish to satisfy
the condition of physicality of the initial state.
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��� Path Integral Action: Fuzzy Space 2/4

The general result for the path integral action can now
be applied to obtain

S =

∫ Tf

Ti

dT
[

i
2

(
z̄αżα − ˙̄zαzα + ˙̄wαwα − w̄αẇα

)
− H

]
Here

H = (f1(R)z̄αzα − f2(R) (z̄αwα + zαw̄α) + f3(R)w̄αwα)

+W (R).
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��� Path Integral Action: Fuzzy Space 3/4

with

R = z̄αzα

f1(R) =
1
2
〈zα|

1
n̂ + 2

|zα〉,

f2(R) =
1
2
〈zα|

1√
(n̂ + 1)(n̂ + 2)

|zα〉,

f3(R) =
1
2
〈zα|

1
n̂ + 1

|zα〉,

W (R) =
1
e0
〈zα|V (R̂)|zα〉+ 2f3(R) ≡ Ṽ (R) + 2f3(R).
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��� Path Integral Action: Fuzzy Space 4/4

Here we introduced the time and energy scales

t0 =
mλ2

~
, e0 =

~
t0
,

and the dimensionless quantities

T =
t
t0
, Xi =

xi

λ
, E =

e
e0
.
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��� Equations of Motion

The equation of motion are easily found:

żα = −i
∂H
∂z̄α

,

˙̄zα = i
∂H
∂zα

,

ẇα = i
∂H
∂w̄α

,

˙̄wα = −i
∂H
∂w̄α

.
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��� Constants of Motion

There are five constants of motion

Γ = z̄αzα − w̄αwα,

Li = z̄ασ
(i)
αβzβ − w̄ασ

(i)
αβwβ,

E = H(z, z̄,w , w̄).

It is important to note that we must require Γ = 0.
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�
��� Equations of Motion for Coordinates 1/3

We are interested in the equation of motion for the
physical coordinates of a particle Xi = 〈zα|X̂i |zα〉.
These can be extracted from the results above and
read in the limit R >> 1 for the dimensionless
coordinates

~̈X± =
W ′(R)

R

[(
~X × ~̇X

)
±
√

1− ~̇X · ~̇X ~X

]
.

The dimensionless conserved quantities are

~L± =

√
1− ~̇X · ~̇X

(
~X × ~̇X

)
±
((
~X × ~̇X

)
× ~̇X

)
,

E± = 1±
√

1− ~̇X · ~̇X + W (R).
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��� Equations of motion for coordinates 2/3

The dimensionful version of the equation of motion is

~̈x± =
w ′(r)

mr

mλ
~

(
~x × ~̇x

)
±

√
1−

(
mλ
~

)2
~̇x · ~̇x ~x

 ,
and the conserved quantities

~̀± = ~~L = m

√1−
(

mλ
~

)2
~̇x · ~̇x

(
~x × ~̇x

)
±mλ

~

((
~x × ~̇x

)
× ~̇x

)]
,

e± =
~2

mλ2

1±

√
1−

(
mλ
~

)2
~̇x · ~̇x

+ w(r).
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�
��� General Features of the Equations of Motion

These equations have several remarkable features:

They predict a limiting speed of v0 = ~
mλ ,

They predict a cut-off in kinetic energy of ek ≤ 2~2

mλ2 ,
They predict two branches, depending on the energy,
One branch reduces to standard Newton dynamics at
speeds v << v0.
From

~L± · ~̇X = 0, ~L± · ~̈X± = 0, ~L± · ~X = ∓~L · ~L ≡ ∓L2,

we conclude that the motion is still planar, but displaced
as ~L · ~X 6= 0 as for central Newtonian dynamics.
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�
��� Effective Radial Potential for Gravity

From the conserved energy, we can construct an
effective radial potential. In the case of gravity this
reads in dimensionless units (β = GMm2λ

~2 > 0)

Ṙ2 +
2(E − 1)β

R
+
β2 + L2

R2 ≡ Ṙ2 + Veff = E(2− E).

We immediately observe that the energy must be
limited by E < 2 for this to have a solution.

E<0 0<E<1 E>1
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�
��� Precession in a Gravitational Potential

The equations of motion in general lead to precession
of the orbitals. In the case of gravity one can compute
this to leading order in the non-commutative parameter,
with the result

∆φ = π +
πGM

8a
(
1− ε2

)
v2

0
.

where a is the length of the semi-major axis and ε the
eccentricity.

This is remarkably similar to the GR result

∆φ = π +
3πGM

c2a(1− ε2)
,

This comparison must be done with care as the
noncommutative result is a noncommutative
perturbation of flat space and not curved space as in
the case of GR.
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���
Stable Circular Orbitals in a Gravitational
Potential 1/2

Let us make the following ansatz for circular orbitals

x(t) = r sin θ cos(ωt), y(t) = r sin θ sin(ωt), z(t) = r cos θ.

Note that θ is time-independent.

We can now compute the radial dependence of the
velocity (velocity curve):

v(r) = v0

√√√√√ 2

1 +

√
1 + 4

(
r
r0

)2
,

cot θ =

√√√√√ 2√
1 + 4

(
r
r0

)2
− 1

.

where v0 is the limiting velocity and r0 = GM
v2

0
.
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Stable Circular Orbitals in a Gravitational
Potential 2/2

We note the following interesting behaviour

v(r) = v0, r << r0,

v(r) =

√
GM

r
, r >> r0.

If v0 > c the length scale r0 is rather small so that there
can be no observational consequences, i.e. we cannot
explain the flatness of galactic rotational curves.
If v0 < c and of the order of observed plateau velocities
in galaxies (200-300 km.s−1), we still need a much
higher included mass to explain the flatness of the
velocity curves on the observed length scales, but all
the mass can now be concentrated in the centre of the
galaxy.
In this scenario Newton dynamics applied to orbits of
stars close to the centre will lead to a severe
underestimation of included mass.
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��� Lorentz Geometry 1/2

The equations of motion can explicitly be written in
covariant form

d2xµ

dτ2 + Γ̃µλν
dxλ

dτ
dxν

dτ
= Sµ

λν

dxλ

dτ
dxν

dτ

where Γ̃µλν are the Levi-Civita connections and dτ the
proper time of the metric (to leading order in λ)

gµν =


1− λ

r 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Note: We use as fiducial frame for the connections the
one in which the metric has the above form.
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��� Lorentz Geometry 2/2

The Sµ
λν are the differences of two sets of connections

and explicitly read in the fiducial frame (to leading order
in λ)

Si
00 =

λ

2r3

1 +

(
mv2

0 − e
mv2

0

)2
 x i ,

S0
0j = − λ

2r3 xj ,

Si
0j =

λ
(
e −mv2

0
)

2mv2
0 r3

εijkxk ,

Si
jk =

λ

4r3

(
xjδ

i
k + xkδ

i
j

)
.

Note that all the Sµ
λν vanish in the commutative limit and

that gµν reduces to the Minkowski metric.
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λν are the differences of two sets of connections

and explicitly read in the fiducial frame (to leading order
in λ)

Si
00 =

λ

2r3

1 +

(
mv2

0 − e
mv2

0

)2
 x i ,

S0
0j = − λ

2r3 xj ,

Si
0j =

λ
(
e −mv2

0
)

2mv2
0 r3

εijkxk ,

Si
jk =

λ

4r3

(
xjδ

i
k + xkδ

i
j

)
.

Note that all the Sµ
λν vanish in the commutative limit and

that gµν reduces to the Minkowski metric.
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The emergence of a mass dependent limiting speed is
problematic. This can be bypassed by assuming that λ
is mass dependent such that v0 is mass independent.

If in this scenario v0 > c there are no observational
consequences, but then it is also not possible to falsify
this scenario of noncommutativity.
The more exiting scenario is one where v0 < c,
perhaps even locally, in which case there are
observational consequences, but it is not clear that this
can be done consistently.
The emergence of the Lorentz geometry is a surprise.
It is not that easy to introduce a short length sale and
preserve the rotational symmetry and any such
construction may share the features above. We
therefore expect these to be rather generic.
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problematic. This can be bypassed by assuming that λ
is mass dependent such that v0 is mass independent.
If in this scenario v0 > c there are no observational
consequences, but then it is also not possible to falsify
this scenario of noncommutativity.
The more exiting scenario is one where v0 < c,
perhaps even locally, in which case there are
observational consequences, but it is not clear that this
can be done consistently.
The emergence of the Lorentz geometry is a surprise.
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