

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks

Classical dynamics on fuzzy space¹

F G Scholtz

National Institute for Theoretical Physics (NITheP) Stellenbosch University

Workshop on Quantum Geometry, Field Theory and Gravity , September 2019

¹FG Scholtz, Phys. Rev. D 98 (2018) 104058, ∢∄ → ∢≣ → ∢≣ → ∖ ⊲ ∾ ⊲ ∾

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks

Fuzzy Space

2 Quantum Mechanics on Fuzzy Space

3 Classical Dynamics

- Path Integral Action
- Equations and Constants of Motion
- Features of the Equations of Motion

- 4 Underpinning Lorentz Geometry
- 5 Concluding Remarks

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The fuzzy sphere commutation relations are

 $[\hat{x}_i, \hat{x}_j] = 2i\lambda \varepsilon_{ijk} \hat{x}_k.$

where λ is the non-commutative length parameter. These commutation relations respect the rotational symmetry. The Casimir operator $\hat{x}^2 = \hat{x}_i \hat{x}_i$ is associated with the square of the radial distance and its eigenvalues are determined by the *su*(2) representation under consideration: j(j + 1), j = 0, 1/2, ...

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The fuzzy sphere commutation relations are

 $[\hat{x}_i, \hat{x}_j] = 2i\lambda \varepsilon_{ijk} \hat{x}_k.$

where λ is the non-commutative length parameter. These commutation relations respect the rotational symmetry. The Casimir operator $\hat{x}^2 = \hat{x}_i \hat{x}_i$ is associated with the square of the radial distance and its eigenvalues are determined by the *su*(2) representation under consideration: j(j + 1), j = 0, 1/2, ...

Fuzzy space is the collection of fuzzy spheres with each allowed radius appearing once.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks A concrete realisation of fuzzy space is provided by the Schwinger construction, which utilises two sets of boson creation and annihilation operators to build a representation of *su*(2):

$$[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta}$$
 and $[\hat{a}_{\alpha}, \hat{a}_{\beta}] = [\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}] = 0, \ \alpha, \beta = 1, 2.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks A concrete realisation of fuzzy space is provided by the Schwinger construction, which utilises two sets of boson creation and annihilation operators to build a representation of *su*(2):

$$[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta}$$
 and $[\hat{a}_{\alpha}, \hat{a}_{\beta}] = [\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}] = 0, \ \alpha, \beta = 1, 2.$

The coordinates are realised as

$$\hat{x}_i = \lambda \hat{a}^{\dagger}_{\alpha} \sigma^{(i)}_{\alpha\beta} \hat{a}_{\beta}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where σ^i are the Pauli spin matrices.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks A concrete realisation of fuzzy space is provided by the Schwinger construction, which utilises two sets of boson creation and annihilation operators to build a representation of su(2):

 $[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta}$ and $[\hat{a}_{\alpha}, \hat{a}_{\beta}] = [\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}] = 0, \ \alpha, \beta = 1, 2.$

The coordinates are realised as

$$\hat{\mathbf{x}}_{i} = \lambda \hat{\mathbf{a}}_{\alpha}^{\dagger} \sigma_{\alpha\beta}^{(i)} \hat{\mathbf{a}}_{\beta}$$

where σ^i are the Pauli spin matrices.

The Casimir operator reads $\hat{x}^2 = \hat{x}_i \hat{x}_i = \lambda^2 \hat{n}(\hat{n}+2)$ with $\hat{n} = \hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2$ from which it is clear that each *su*(2) representation occurs precisely once.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks A concrete realisation of fuzzy space is provided by the Schwinger construction, which utilises two sets of boson creation and annihilation operators to build a representation of su(2):

 $[\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}] = \delta_{\alpha\beta}$ and $[\hat{a}_{\alpha}, \hat{a}_{\beta}] = [\hat{a}_{\alpha}^{\dagger}, \hat{a}_{\beta}^{\dagger}] = 0, \ \alpha, \beta = 1, 2.$

The coordinates are realised as

$$\hat{\mathbf{x}}_{i} = \lambda \hat{\mathbf{a}}_{\alpha}^{\dagger} \sigma_{\alpha\beta}^{(i)} \hat{\mathbf{a}}_{\beta}$$

where σ^i are the Pauli spin matrices.

- The Casimir operator reads $\hat{x}^2 = \hat{x}_i \hat{x}_i = \lambda^2 \hat{n}(\hat{n}+2)$ with $\hat{n} = \hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2$ from which it is clear that each *su*(2) representation occurs precisely once.
- We denote this realisation of fuzzy space by \mathcal{H}_{FS} .

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The quantum Hilbert space \mathcal{H}_Q is defined as the algebra of bounded operators on \mathcal{H}_{FS} generated by the coordinates (the operators that commute with \hat{x}^2) ² and have a finite norm with respect to a weighted Hilbert-Schmidt inner product ³:

$$\mathcal{H}_{\boldsymbol{Q}} = \left\{ \psi : [\psi, \hat{\boldsymbol{n}}] = \boldsymbol{0}, \ \operatorname{tr}_{\operatorname{FS}}\left(\psi^{\dagger} \, \hat{\boldsymbol{r}} \, \psi\right) < \infty \right\}$$

Here tr_{FS} denotes the trace over \mathcal{H}_{FS} and $\hat{r} = \lambda(\hat{n} + 1)$. States in \mathcal{H}_Q are denoted $|\psi\rangle$.

²N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203 ³The choice of weight is motivated by the requirement that the projector that projects on all states in \mathcal{H}_{FS} with radius less then or equal to *R* (the analogue of the characteristic function of a ball with radius *R*) gives the volume of a sphere of radius *R* for large *R* (V. Gáliková and P. Prešnajder, 2013 *J. Math. Phys.* **54** 052102

Quantum mechanics on fuzzy space 2/4

Classical		
dynan	nics	or
fuzzy	spa	ce

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior
- Underpinning Lorentz Geometry
- Concluding Remarks

From here it is standard quantum mechanics.

Quantum mechanics on fuzzy space 2/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion
- Underpinning Lorentz Geometry
- Concluding Remarks

- From here it is standard quantum mechanics.
- Quantum observables are identified with self-adjoint operators acting on H_Q. These include:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quantum mechanics on fuzzy space 2/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion
- Underpinning Lorentz Geometry
- Concluding Remarks

- From here it is standard quantum mechanics.
- Quantum observables are identified with self-adjoint operators acting on H_Q. These include:
 - The coordinates that act through left multiplication as

$$\hat{X}_i|\psi)=|\hat{x}_i\psi),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior
- Underpinning Lorentz Geometry
- Concluding Remarks

- From here it is standard quantum mechanics.
- Quantum observables are identified with self-adjoint operators acting on H_Q. These include:
 - The coordinates that act through left multiplication as

$$\hat{X}_i|\psi)=|\hat{x}_i\psi),$$

The angular momentum operators which act adjointly according to

$$\hat{L}_i|\psi) = |rac{\hbar}{2\lambda}[\hat{x}_i,\psi]) \quad ext{with} \quad [\hat{L}_i,\hat{L}_j] = i\hbararepsilon_{ijk}\hat{L}_k.$$

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks

- From here it is standard quantum mechanics.
- Quantum observables are identified with self-adjoint operators acting on H_Q. These include:
 - The coordinates that act through left multiplication as

$$\hat{X}_i|\psi)=|\hat{x}_i\psi),$$

The angular momentum operators which act adjointly according to

$$\hat{L}_i|\psi) = |rac{\hbar}{2\lambda}[\hat{x}_i,\psi]) \quad ext{with} \quad [\hat{L}_i,\hat{L}_j] = i\hbararepsilon_{ijk}\hat{L}_k.$$

The non-commutative analogue of the Laplacian, which gives the kinetic energy, is defined as

$$\hat{\Delta}_{\lambda}|\psi) = |-rac{1}{\lambda \hat{m{ extsf{i}}}}[\hat{m{a}}^{\dagger}_{lpha},[\hat{m{a}}_{lpha},\psi]]).$$

It commutes with the angular momenta and is symmetric on \mathcal{H}_Q .

Quantum mechanics on fuzzy space 3/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior
- Underpinning Lorentz Geometry
- Concluding Remarks

The Hamiltonian is given by

$$\hat{H}=-rac{\hbar^2}{2m}\hat{\Delta}+V(\hat{R})$$

with \hat{R} the radius operator that acts as

1

$$\hat{R}|\psi) = |\lambda(\hat{n}+1)\psi), \ \hat{n} = a_{\alpha}^{\dagger}a_{\alpha}.$$

・ロット (雪) ・ (日) ・ (日)

ъ

Quantum mechanics on fuzzy space 3/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion
- Underpinning Lorentz Geometry
- Concluding Remarks

The Hamiltonian is given by

$$\hat{H} = -rac{\hbar^2}{2m}\hat{\Delta} + V(\hat{R})$$

with \hat{R} the radius operator that acts as

$$\hat{\boldsymbol{R}}|\psi)=|\lambda(\hat{\boldsymbol{n}}+\boldsymbol{1})\psi),\ \hat{\boldsymbol{n}}=\boldsymbol{a}_{lpha}^{\dagger}\boldsymbol{a}_{lpha}.$$

The angular momentum operators commute with the Hamiltonian and are therefore conserved, but there is a further important conserved quantity, which is the operator Γ that acts as follows

$$\hat{\mathsf{\Gamma}}|\psi) = |[\boldsymbol{a}^{\dagger}_{\alpha}\boldsymbol{a}_{\alpha},\psi]).$$

Quantum mechanics on fuzzy space 3/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion
- Underpinning Lorentz Geometry
- Concluding Remarks

$$\hat{H} = -rac{\hbar^2}{2m}\hat{\Delta} + V(\hat{R})$$

with \hat{R} the radius operator that acts as

$$\hat{\boldsymbol{R}}|\psi) = |\lambda(\hat{\boldsymbol{n}}+1)\psi), \ \hat{\boldsymbol{n}} = \boldsymbol{a}_{\alpha}^{\dagger}\boldsymbol{a}_{\alpha}.$$

The angular momentum operators commute with the Hamiltonian and are therefore conserved, but there is a further important conserved quantity, which is the operator Γ that acts as follows

$$\hat{\mathsf{\Gamma}}|\psi) = |[\boldsymbol{a}_{\alpha}^{\dagger}\boldsymbol{a}_{\alpha},\psi]).$$

It can easily be checked that Γ commutes with the Hamiltonian. Note that Γ̂|ψ) = 0, ∀ψ ∈ ℋ_Q.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion
- Underpinning Lorentz Geometry
- Concluding Remarks

The formalism above has been used to solve the free particle and particle in a well ⁴, to develop scattering theory on non-commutative spaces⁵ and the statistical physics⁶. The main results are:

⁴N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203 ⁵JN Kriel et al, Phys. Rev. D 95 (2017) 025003 ⁶FG Scholtz et al, Phys. Rev. D 92 (2015) 125013

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The formalism above has been used to solve the free particle and particle in a well ⁴, to develop scattering theory on non-commutative spaces⁵ and the statistical physics⁶. The main results are:

The free particle spectrum is given by

$$E_{\vec{k}} = \frac{2\hbar^2}{m\lambda^2}\sin^2\left(\frac{|\vec{k}|\lambda}{2}\right) \le \frac{2\hbar^2}{m\lambda^2}, \quad |\vec{k}| \in [0, \pi/\lambda)$$

⁴N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203 ⁵JN Kriel et al, Phys. Rev. D 95 (2017) 025003 ⁶FG Scholtz et al, Phys. Rev. D 92 (2015) 125013

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The formalism above has been used to solve the free particle and particle in a well ⁴, to develop scattering theory on non-commutative spaces⁵ and the statistical physics⁶. The main results are:

The free particle spectrum is given by

$$E_{\vec{k}} = \frac{2\hbar^2}{m\lambda^2} \sin^2\left(\frac{|\vec{k}|\lambda}{2}\right) \le \frac{2\hbar^2}{m\lambda^2}, \quad |\vec{k}| \in [0, \pi/\lambda)$$

For $|\vec{k}|\lambda << 2$
 $E_{\vec{k}} = \frac{\hbar^2 |\vec{k}|^2}{2m}$

⁴N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203 ⁵JN Kriel et al, Phys. Rev. D 95 (2017) 025003 ⁶FG Scholtz et al, Phys. Rev. D 92 (2015) 125013

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The formalism above has been used to solve the free particle and particle in a well ⁴, to develop scattering theory on non-commutative spaces⁵ and the statistical physics⁶. The main results are:

The free particle spectrum is given by

$$E_{\vec{k}} = \frac{2\hbar^2}{m\lambda^2} \sin^2\left(\frac{|\vec{k}|\lambda}{2}\right) \le \frac{2\hbar^2}{m\lambda^2}, \quad |\vec{k}| \in [0, \pi/\lambda)$$
For $|\vec{k}|\lambda << 2$

$$E_{\vec{k}} = \frac{\hbar^2 |\vec{k}|^2}{2m}$$

 Each single particle state occupies a finite volume V₀ = 4πλ³. For Fermions this is an excluded volume.
 ⁴N Chandra et al, J.Phys. A: Math.Theor 47 (2014) 445203
 ⁵JN Kriel et al, Phys. Rev. D 95 (2017) 025003
 ⁶FG Scholtz et al, Phys. Rev. D 92 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 125013
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 12501
 (2015) 125

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

- Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior
- Underpinning Lorentz Geometry
- Concluding Remarks

The resulting equation of state has striking consequences for the mass-radius relationship of a white dwarf:

Figure: Mass-radius relationship for white dwarf at two temperatures in arbitrary units.

From Quantum to Classical

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics

Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Now that we have a quantum theory with a short length scale, manifest rotational symmetry and the appropriate low energy limit, we may ask what is the underpinning classical dynamics, i.e. how may Newton dynamics be altered? To answer this question, we must compute the path integral action and extract the equations of motion.

From Quantum to Classical

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics

Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Now that we have a quantum theory with a short length scale, manifest rotational symmetry and the appropriate low energy limit, we may ask what is the underpinning classical dynamics, i.e. how may Newton dynamics be altered? To answer this question, we must compute the path integral action and extract the equations of motion.

■ To do this, we enlarge the quantum Hilbert space \mathcal{H}_q to include all Hilbert-Schmidt operators acting on \mathcal{H}_{FS} and not just those commuting with the Casimir. We denote this enlarged space by \mathcal{H}_q^0 . Clearly $\mathcal{H}_q \subset \mathcal{H}_q^0$. From the definition of \mathcal{H}_q , states that belong to the subspace \mathcal{H}_q must satisfy the constraint

$$\hat{\Gamma}|\psi) = 0.$$

Note that since $\hat{\Gamma}$ is conserved, initial states that satisfy this condition, will do so at all times.

Path Integral Action: General Form

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Let $|\ell\rangle$ be a set of overcomplete coherent states, i.e.

$$\int d\mu(\ell) |\ell
angle \langle \ell| = \mathbf{1},$$

then the transition amplitude can be represented as a path integral

$$\langle \ell_f, t_f | \ell_i, t_i \rangle = \int_{\ell(t_i) = \ell_i}^{\ell(t_f) = \ell_f} [d\mu(\ell)] e^{\frac{i}{\hbar}S},$$

with action

$$\mathcal{S} = \int_{t_i}^{t_f} dt \langle \ell(t) | i\hbar rac{\partial}{\partial t} - \mathcal{H} | \ell(t)
angle.$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks • We can easily construct a set of coherent states on \mathcal{H}_q^0 :

$$|z_{\alpha}, w_{\alpha}) = |z_{\alpha}\rangle \langle w_{\alpha}|.$$

where $|z_{\alpha}\rangle$ is a Glauber coherent state on \mathcal{H}_{c} and

$$\int \frac{d\bar{z}_{\alpha} dz_{\alpha} d\bar{w}_{\alpha} dw_{\alpha}}{\pi^4} |z_{\alpha}, z_{\alpha}) (z_{\alpha}, w_{\alpha}| = \mathbf{1}_{\mathbf{q}}^{\mathbf{0}}$$

Note though that in general $\Gamma|z_{\alpha}, w_{\alpha}) \neq 0$. However, if we want to compute transition amplitudes between states that satisfy $\Gamma|\psi\rangle = 0$, we can safely use them to insert the identity at intermediate times in a time slicing procedure as Γ is conserved. Indeed, if this is done, the Γ must appear as a conserved quantity in the resulting action and we must simply require it to vanish to satisfy the condition of physicality of the initial state.

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The general result for the path integral action can now be applied to obtain

$$S = \int_{T_i}^{T_f} dT \left[\frac{i}{2} \left(\bar{z}_{\alpha} \dot{z}_{\alpha} - \dot{\bar{z}}_{\alpha} z_{\alpha} + \dot{\bar{w}}_{\alpha} w_{\alpha} - \bar{w}_{\alpha} \dot{w}_{\alpha} \right) - H \right]$$

Here

 $H = (f_1(R)\bar{z}_{\alpha}z_{\alpha} - f_2(R)(\bar{z}_{\alpha}w_{\alpha} + z_{\alpha}\bar{w}_{\alpha}) + f_3(R)\bar{w}_{\alpha}w_{\alpha}) + W(R).$

Path Integral Action: Fuzzy Space 3/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks with

$$\begin{split} R &= \bar{z}_{\alpha} z_{\alpha} \\ f_{1}(R) &= \frac{1}{2} \langle z_{\alpha} | \frac{1}{\hat{n} + 2} | z_{\alpha} \rangle, \\ f_{2}(R) &= \frac{1}{2} \langle z_{\alpha} | \frac{1}{\sqrt{(\hat{n} + 1)(\hat{n} + 2)}} | z_{\alpha} \rangle, \\ f_{3}(R) &= \frac{1}{2} \langle z_{\alpha} | \frac{1}{\hat{n} + 1} | z_{\alpha} \rangle, \\ W(R) &= \frac{1}{e_{0}} \langle z_{\alpha} | V(\hat{R}) | z_{\alpha} \rangle + 2f_{3}(R) \equiv \tilde{V}(R) + 2f_{3}(R). \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Path Integral Action: Fuzzy Space 4/4

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Here we introduced the time and energy scales

$$t_0 = rac{m\lambda^2}{\hbar}, \quad e_0 = rac{\hbar}{t_0},$$

and the dimensionless quantities

$$T=rac{t}{t_0}, \quad X_i=rac{x_i}{\lambda}, \quad E=rac{e}{e_0}$$

・ロット (雪) ・ (日) ・ (日)

ъ

Equations of Motion

Classical dynamics on fuzzy space

F......

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Actio

Equations and Constants of Motion

Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The equation of motion are easily found:

$$\dot{z}_{\alpha} = -i\frac{\partial H}{\partial \bar{z}_{\alpha}},$$

$$\dot{\bar{z}}_{\alpha} = i\frac{\partial H}{\partial z_{\alpha}},$$

$$\dot{\bar{w}}_{\alpha} = i\frac{\partial H}{\partial \bar{w}_{\alpha}},$$

$$\dot{\bar{w}}_{\alpha} = -i\frac{\partial H}{\partial \bar{w}_{\alpha}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Constants of Motion

Classical dynamics on fuzzy space

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Actio

Equations and Constants of Motion

Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks

There are five constants of motion

$$\begin{split} \Gamma &= \bar{z}_{\alpha} z_{\alpha} - \bar{w}_{\alpha} w_{\alpha}, \\ L_i &= \bar{z}_{\alpha} \sigma^{(i)}_{\alpha\beta} z_{\beta} - \bar{w}_{\alpha} \sigma^{(i)}_{\alpha\beta} w_{\beta}, \\ E &= H(z, \bar{z}, w, \bar{w}). \end{split}$$

イロト 不得 トイヨト イヨト

3

Constants of Motion

Classical dynamics on fuzzy space

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Actio Equations and

Constants of Motion Features of the

Underpinning Lorentz Geometry

Concluding Remarks There are five constants of motion

$$\begin{split} \Gamma &= \bar{z}_{\alpha} z_{\alpha} - \bar{w}_{\alpha} w_{\alpha}, \\ L_i &= \bar{z}_{\alpha} \sigma^{(i)}_{\alpha\beta} z_{\beta} - \bar{w}_{\alpha} \sigma^{(i)}_{\alpha\beta} w_{\beta}, \\ E &= H(z, \bar{z}, w, \bar{w}). \end{split}$$

イロト 不得 トイヨト イヨト

3

It is important to note that we must require $\Gamma = 0$.

Equations of Motion for Coordinates 1/3

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks • We are interested in the equation of motion for the physical coordinates of a particle $X_i = \langle z_\alpha | \hat{X}_i | z_\alpha \rangle$. These can be extracted from the results above and read in the limit R >> 1 for the dimensionless coordinates

$$\ddot{ec{X}}_{\pm} = rac{W'(R)}{R} \left[\left(ec{X} imes \dot{ec{X}}
ight) \pm \sqrt{1 - \dot{ec{X}} \cdot \dot{ec{X}}} \; ec{X}
ight].$$

The dimensionless conserved quantities are

$$\begin{split} \vec{L}_{\pm} &= \sqrt{1 - \dot{\vec{X}} \cdot \dot{\vec{X}}} \left(\vec{X} \times \dot{\vec{X}} \right) \pm \left(\left(\vec{X} \times \dot{\vec{X}} \right) \times \dot{\vec{X}} \right), \\ \vec{E}_{\pm} &= 1 \pm \sqrt{1 - \dot{\vec{X}} \cdot \dot{\vec{X}}} + W(R). \end{split}$$

NITheP

Equations of motion for coordinates 2/3

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the

Equations of Motion

Lorentz Geometry

Concluding Remarks The dimensionful version of the equation of motion is

$$\ddot{\vec{x}}_{\pm} = \frac{w'(r)}{mr} \left[\frac{m\lambda}{\hbar} \left(\vec{x} \times \dot{\vec{x}} \right) \pm \sqrt{1 - \left(\frac{m\lambda}{\hbar} \right)^2 \dot{\vec{x}} \cdot \dot{\vec{x}}} \vec{x} \right],$$

and the conserved quantities

$$\vec{\ell}_{\pm} = \hbar \vec{L} = m \left[\sqrt{1 - \left(\frac{m\lambda}{\hbar}\right)^2 \dot{\vec{x}} \cdot \dot{\vec{x}}} \left(\vec{x} \times \vec{x} \right) \right. \\ \left. \pm \frac{m\lambda}{\hbar} \left(\left(\vec{x} \times \dot{\vec{x}} \right) \times \dot{\vec{x}} \right) \right], \\ \vec{e}_{\pm} = \frac{\hbar^2}{m\lambda^2} \left[1 \pm \sqrt{1 - \left(\frac{m\lambda}{\hbar}\right)^2 \dot{\vec{x}} \cdot \dot{\vec{x}}} \right] + w(r).$$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:

・ロット (雪) ・ (日) ・ (日)

ъ

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:
 They predict a limiting speed of v₀ = ^ħ/_m,

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Actio Equations and Constants of Motic

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:

- They predict a limiting speed of $v_0 = \frac{\hbar}{m\lambda}$,
- They predict a cut-off in kinetic energy of $e_k \leq \frac{2\hbar^2}{m\lambda^2}$,

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:

- They predict a limiting speed of $v_0 = \frac{\hbar}{m\lambda}$,
- They predict a cut-off in kinetic energy of $e_k \leq \frac{2\hbar^2}{m\lambda^2}$,
- They predict two branches, depending on the energy,

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:

- They predict a limiting speed of $v_0 = \frac{\hbar}{m\lambda}$,
- They predict a cut-off in kinetic energy of $e_k \leq \frac{2\hbar^2}{m\lambda^2}$,
- They predict two branches, depending on the energy,
- One branch reduces to standard Newton dynamics at speeds v << v₀.

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks These equations have several remarkable features:

- They predict a limiting speed of $v_0 = \frac{\hbar}{m\lambda}$,
- They predict a cut-off in kinetic energy of $e_k \leq \frac{2\hbar^2}{m\lambda^2}$,
- They predict two branches, depending on the energy,
- One branch reduces to standard Newton dynamics at speeds v << v₀.

From

 $ec{L}_{\pm}\cdot\dot{ec{X}}=0, \quad ec{L}_{\pm}\cdot\ddot{ec{X}}_{\pm}=0, \quad ec{L}_{\pm}\cdotec{X}=\mpec{L}\cdotec{L}\equiv\mp L^2,$

we conclude that the motion is still planar, but displaced as $\vec{L} \cdot \vec{X} \neq 0$ as for central Newtonian dynamics.

(日) (日) (日) (日) (日) (日) (日)

Effective Radial Potential for Gravity

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks From the conserved energy, we can construct an effective radial potential. In the case of gravity this reads in dimensionless units ($\beta = \frac{GMm^2\lambda}{\hbar^2} > 0$)

$$\dot{R}^2 + rac{2(E-1)\beta}{R} + rac{\beta^2 + L^2}{R^2} \equiv \dot{R}^2 + V_{\rm eff} = E(2-E).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Effective Radial Potential for Gravity

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks From the conserved energy, we can construct an effective radial potential. In the case of gravity this reads in dimensionless units ($\beta = \frac{GMm^2\lambda}{\hbar^2} > 0$)

$$\dot{R}^2 + rac{2(E-1)\beta}{R} + rac{\beta^2 + L^2}{R^2} \equiv \dot{R}^2 + V_{\rm eff} = E(2-E).$$

We immediately observe that the energy must be limited by *E* < 2 for this to have a solution.</p>

Precession in a Gravitational Potential

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The equations of motion in general lead to precession of the orbitals. In the case of gravity one can compute this to leading order in the non-commutative parameter, with the result

$$\Delta \phi = \pi + \frac{\pi GM}{8a(1-\epsilon^2) v_0^2}.$$

where *a* is the length of the semi-major axis and ϵ the eccentricity.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Precession in a Gravitational Potential

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The equations of motion in general lead to precession of the orbitals. In the case of gravity one can compute this to leading order in the non-commutative parameter, with the result

$$\Delta \phi = \pi + \frac{\pi GM}{8a(1-\epsilon^2) v_0^2}$$

where *a* is the length of the semi-major axis and ϵ the eccentricity.

This is remarkably similar to the GR result

$$\Delta \phi = \pi + rac{3\pi GM}{c^2 a(1-\epsilon^2)},$$

Precession in a Gravitational Potential

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The equations of motion in general lead to precession of the orbitals. In the case of gravity one can compute this to leading order in the non-commutative parameter, with the result

$$\Delta \phi = \pi + \frac{\pi GM}{8a\left(1 - \epsilon^2\right)v_0^2}$$

where *a* is the length of the semi-major axis and ϵ the eccentricity.

This is remarkably similar to the GR result

$$\Delta \phi = \pi + \frac{3\pi GM}{c^2 a(1-\epsilon^2)},$$

This comparison must be done with care as the noncommutative result is a noncommutative perturbation of flat space and not curved space as in the case of GR.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

```
Classical
Dynamics
Path Integral Action
Equations and
Constants of Motio
```

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Let us make the following ansatz for circular orbitals

$$x(t) = r \sin \theta \cos(\omega t), \ y(t) = r \sin \theta \sin(\omega t), \ z(t) = r \cos \theta.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Note that θ is time-independent.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks Let us make the following ansatz for circular orbitals

 $x(t) = r \sin \theta \cos(\omega t), \ y(t) = r \sin \theta \sin(\omega t), \ z(t) = r \cos \theta.$

Note that θ is time-independent.

We can now compute the radial dependence of the velocity (velocity curve):

$$v(r) = v_0 \sqrt{\frac{2}{1 + \sqrt{1 + 4\left(\frac{r}{r_0}\right)^2}}},$$

$$\cot \theta = \sqrt{\frac{2}{\sqrt{1 + 4\left(\frac{r}{r_0}\right)^2 - 1}}}.$$

where v_0 is the limiting velocity and $r_0 = \frac{GM}{v_0^2}$.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Actio Equations and Constants of Motic

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks We note the following interesting behaviour

$$egin{array}{rll} v(r) &=& v_0, & r << r_0, \ v(r) &=& \sqrt{rac{GM}{r}}, & r >> r_0. \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics of Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks We note the following interesting behaviour

$$u(r) = v_0, \quad r << r_0, \\
u(r) = \sqrt{\frac{GM}{r}}, \quad r >> r_0.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If v₀ > c the length scale r₀ is rather small so that there can be no observational consequences, i.e. we cannot explain the flatness of galactic rotational curves.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks We note the following interesting behaviour

$$u(r) = v_0, \quad r << r_0,
u(r) = \sqrt{\frac{GM}{r}}, \quad r >> r_0.$$

- If v₀ > c the length scale r₀ is rather small so that there can be no observational consequences, i.e. we cannot explain the flatness of galactic rotational curves.
- If v₀ < c and of the order of observed plateau velocities in galaxies (200-300 km.s⁻¹), we still need a much higher included mass to explain the flatness of the velocity curves on the observed length scales, but all the mass can now be concentrated in the centre of the galaxy.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motio

Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks We note the following interesting behaviour

$$u(r) = v_0, \quad r << r_0, \\
u(r) = \sqrt{\frac{GM}{r}}, \quad r >> r_0.$$

- If v₀ > c the length scale r₀ is rather small so that there can be no observational consequences, i.e. we cannot explain the flatness of galactic rotational curves.
- If v₀ < c and of the order of observed plateau velocities in galaxies (200-300 km.s⁻¹), we still need a much higher included mass to explain the flatness of the velocity curves on the observed length scales, but all the mass can now be concentrated in the centre of the galaxy.
- In this scenario Newton dynamics applied to orbits of stars close to the centre will lead to a severe underestimation of included mass.

Lorentz Geometry 1/2

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The equations of motion can explicitly be written in covariant form

$$rac{d^2 x^\mu}{d au^2}+ ilde{\Gamma}^\mu_{\lambda
u}rac{dx^\lambda}{d au}rac{dx^
u}{d au}=S^\mu_{\lambda
u}rac{dx^\lambda}{d au}rac{dx^
u}{d au}$$

where $\tilde{\Gamma}^{\mu}_{\lambda\nu}$ are the Levi-Civita connections and $d\tau$ the proper time of the metric (to leading order in λ)

$$g_{\mu
u}=\left(egin{array}{cccc} 1-rac{\lambda}{r} & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight)$$

Lorentz Geometry 1/2

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The equations of motion can explicitly be written in covariant form

$$rac{d^2 x^\mu}{d au^2}+ ilde{\Gamma}^\mu_{\lambda
u}rac{dx^\lambda}{d au}rac{dx^
u}{d au}=S^\mu_{\lambda
u}rac{dx^\lambda}{d au}rac{dx^
u}{d au}$$

where $\tilde{\Gamma}^{\mu}_{\lambda\nu}$ are the Levi-Civita connections and $d\tau$ the proper time of the metric (to leading order in λ)

$$g_{\mu
u}=\left(egin{array}{cccc} 1-rac{\lambda}{r} & 0 & 0 & 0\ 0 & -1 & 0 & 0\ 0 & 0 & -1 & 0\ 0 & 0 & 0 & -1 \end{array}
ight)$$

Note: We use as fiducial frame for the connections the one in which the metric has the above form.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lorentz Geometry 2/2

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The S^μ_{λν} are the differences of two sets of connections and explicitly read in the fiducial frame (to leading order in λ)

$$S_{00}^{i} = \frac{\lambda}{2r^{3}} \left(1 + \left(\frac{mv_{0}^{2} - e}{mv_{0}^{2}} \right)^{2} \right) x^{i},$$

$$S_{0j}^{0} = -\frac{\lambda}{2r^{3}} x_{j},$$

$$S_{0j}^{i} = \frac{\lambda \left(e - mv_{0}^{2} \right)}{2mv_{0}^{2}r^{3}} \epsilon_{ijk} x^{k},$$

$$S_{jk}^{i} = \frac{\lambda}{4r^{3}} \left(x_{j} \delta_{k}^{i} + x_{k} \delta_{j}^{i} \right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Lorentz Geometry 2/2

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks The S^μ_{λν} are the differences of two sets of connections and explicitly read in the fiducial frame (to leading order in λ)

$$S_{00}^{i} = \frac{\lambda}{2r^{3}} \left(1 + \left(\frac{mv_{0}^{2} - e}{mv_{0}^{2}} \right)^{2} \right) x^{i},$$

$$S_{0j}^{0} = -\frac{\lambda}{2r^{3}} x_{j},$$

$$S_{0j}^{i} = \frac{\lambda (e - mv_{0}^{2})}{2mv_{0}^{2}r^{3}} \epsilon_{ijk} x^{k},$$

$$S_{jk}^{i} = \frac{\lambda}{4r^{3}} \left(x_{j} \delta_{k}^{i} + x_{k} \delta_{j}^{i} \right).$$

Note that all the $S^{\mu}_{\lambda\nu}$ vanish in the commutative limit and that $g_{\mu\nu}$ reduces to the Minkowski metric.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks The emergence of a mass dependent limiting speed is problematic. This can be bypassed by assuming that λ is mass dependent such that v₀ is mass independent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics or Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks

- The emergence of a mass dependent limiting speed is problematic. This can be bypassed by assuming that λ is mass dependent such that v₀ is mass independent.
- If in this scenario v₀ > c there are no observational consequences, but then it is also not possible to falsify this scenario of noncommutativity.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motior Features of the Equations of Motior

Underpinning Lorentz Geometry

Concluding Remarks

- The emergence of a mass dependent limiting speed is problematic. This can be bypassed by assuming that λ is mass dependent such that v₀ is mass independent.
- If in this scenario v₀ > c there are no observational consequences, but then it is also not possible to falsify this scenario of noncommutativity.
- The more exiting scenario is one where v₀ < c, perhaps even locally, in which case there are observational consequences, but it is not clear that this can be done consistently.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks

- The emergence of a mass dependent limiting speed is problematic. This can be bypassed by assuming that λ is mass dependent such that v₀ is mass independent.
- If in this scenario v₀ > c there are no observational consequences, but then it is also not possible to falsify this scenario of noncommutativity.
- The more exiting scenario is one where v₀ < c, perhaps even locally, in which case there are observational consequences, but it is not clear that this can be done consistently.
- The emergence of the Lorentz geometry is a surprise.

Classical dynamics on fuzzy space

F G Scholtz

Fuzzy Space

Quantum Mechanics on Fuzzy Space

Classical Dynamics Path Integral Action Equations and Constants of Motion Features of the Equations of Motion

Underpinning Lorentz Geometry

Concluding Remarks

- The emergence of a mass dependent limiting speed is problematic. This can be bypassed by assuming that λ is mass dependent such that v₀ is mass independent.
- If in this scenario v₀ > c there are no observational consequences, but then it is also not possible to falsify this scenario of noncommutativity.
- The more exiting scenario is one where v₀ < c, perhaps even locally, in which case there are observational consequences, but it is not clear that this can be done consistently.
- The emergence of the Lorentz geometry is a surprise.
- It is not that easy to introduce a short length sale and preserve the rotational symmetry and any such construction may share the features above. We therefore expect these to be rather generic.