

**Workshop on Connecting Insights in Fundamental Physics:** 

Corfy Greece

**Standard Model and Beyond** August 31 - September 11, 2019

# Highlights from ATLAS Louis FAYARD (LAL Orsay) on behalf of the ATLAS Collaboration

Corfou 2-9-2019

Historical introduction , Setting the stage
 Results from (Run-1 and ) Run-2
 Future of ATLAS , Run-3 , HL-LHC
 Conclusions
 Sackup

#### see also recent conferences





#### **Presentation by Andreas Hoecker**



**Presentation by Pierre Savard** 



# Large number of results !

I will be selective with only few details !

For more results : look at backup and references

I will insist more on raw results (less on phenomenological interpretations)

# Rien n'est cru si fermement que ce que l'on sait le moins

Nothing is believed more strongly that which we know the least

Montaigne, Essais

Corfou 2-9-2019

# S Historical introduction, Setting the stage S Results from (run 1 and) run 2 S Future of ATLAS, run 3, HL-LHC S Conclusions S Backup

# **Spontaneous Symmetry breaking**

# **The Brout-Englert-Higgs mechanism**

The LHC





10th september 2008 : first beams around 19th september 2008 : incident

> 14 months of major repairs and consolidation New Quench Protection system

20th november 2009 : first beams around (again) december 2009 : collisions at 2.36 TeV cms

January 2010 : decided scenario 2010-11 7 TeV cms

**30th march 2010 : first collisions at 7 TeV cms** august 2010 : luminosity of 10<sup>31</sup> cm<sup>-2</sup> s<sup>-1</sup> instead of 14 TeV

may 2011 : luminosity > 10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup> november 2011 : integrated luminosity ~ 5 fb<sup>-1</sup> 13<sup>th</sup> december 2011 : first 'signal' around 126 GeV

march 2012 : start again at 8 TeV
 ( 50 ns between bunches )
4<sup>th</sup> July 2012 : evidence for a new boson
 ( 8 TeV integrated luminosity ~ 6 fb<sup>-1</sup> )



(Standard-Model) boson-like properties

peak luminosity 7  $10^{33}$  cm<sup>-2</sup> s<sup>-1</sup> integrated luminosity ~ 5+ 20 fb<sup>-1</sup>

end of Run-1

Muon Spectrometer ( $|\eta|$ <2.7) : air-core toroids ( B ~ 0.5 / 1T in barrel/ end-cap) with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to  $E_{\mu}$  ~ 1 TeV







transverse and longitudinal segmentation of the EM ATLAS (Liquid Argon) accordion calorimeter (very stable - about 200 000 channels)



Corfou 2-9-2019



Corfou 2-9-2019



S Historical introduction, Setting the stage
S Results from (Run-1 and) Run-2
S Future of ATLAS, Run-3, HL-LHC
S Conclusions
S Backup



short summary

# 1 > No new physics (yet) outside the discovery of the H boson

# **2>** We are entering precision physics area

Large sample of various particles produced in Run-2W bosons12 109Z bosons3 109Top300 106B quarks40 1012BEH bosons8 106



#### **ATLAS** New detectors in Run-2:

- **in Run-2** Innermost pixel layer IBL, 3.4cm from interaction point
  - Forward proton detectors (one arm in 2016, 210m from IP)



# Integrated pp luminosity during Run-2

Also collected Pb-Pb p-Pd Xe-Xe data

# low μ data for high precision W physics



# All dogmas need to be revisited

# Like the fact that the response of the calorimeter is constant w.r.t time

(there are also short time-scale variations due to T change)



But the needs for precision physics are very important !





Theory agrees so far with the measured cross sections on 15 orders of magnitude Corfou 2-9-2019

# 4σ evidence for weak triboson production using 2015-2017 data





| Dooon aharmal                                                          | Significance |             |  |  |  |
|------------------------------------------------------------------------|--------------|-------------|--|--|--|
| Decay channel                                                          | Observed     | Expected    |  |  |  |
| WWW combined                                                           | $3.2\sigma$  | $2.4\sigma$ |  |  |  |
| $WWW \rightarrow \ell \nu \ell \nu q q$                                | $4.0\sigma$  | $1.7\sigma$ |  |  |  |
| $WWW \rightarrow \ell \nu \ell \nu \ell \nu$                           | $1.0\sigma$  | $2.0\sigma$ |  |  |  |
| WVZ combined                                                           | $3.2\sigma$  | $2.0\sigma$ |  |  |  |
| $WVZ \rightarrow \ell \nu q q \ell \ell$                               | $0.5\sigma$  | $1.0\sigma$ |  |  |  |
| $WVZ \rightarrow \ell \nu \ell \nu \ell \ell / qq \ell \ell \ell \ell$ | $3.5\sigma$  | $1.8\sigma$ |  |  |  |
| WVV combined                                                           | $4.1\sigma$  | $3.1\sigma$ |  |  |  |

#### For different center-of-mass energies



# Measurement of fiducial and differential W+ Wproduction cross-sections at $\sqrt{S}=13$ TeV with the ATLAS detector

# Suppress top-quark background



events containing jets with a

transverse momentum exceeding 35 GeV

are not included in the measurement phase space

$$WW \to e^{\pm} \nu \mu^{\mp} \nu$$





# Measurement of $Z(\rightarrow |+|-) \gamma$ differential crosssections in pp collisions at $\sqrt{s} = 13$ TeV with the



# FSR and quark/gluon fragmentation removed ( isolation)

Full Run-2



# Inclusive and differential measurements of the charge

asymmetry in t t events at detetafron-inspired) central-forward charged asymmetry is defined

$$A_{C} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
$$\Delta|y| = |y_{t}| - |y_{\bar{t}}|$$

# different from 0 because of interference at NLO



**Full Run-2** 

#### FCNC (Flavour-Changing Neutral Current)

#### window for new physics

JHEP 1905 (2019) 123



arXiv:1908.08461

# **Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector**





**Signal :2** photons with very low  $p_T(\gamma\gamma)$ 

: <1 GeV/c and no further activity in the detector

Field strength up to 10<sup>25</sup> V/m

$$\gamma\gamma$$
 luminosity ~  $Z^4$  ~ 5 10<sup>7</sup>

backgrounds

# Look at low-energy back-to-back photon pairs with no additional activity in detector





Run: 366994 Event: 453765663 2018-11-26 18:32:03 CEST



no additional activity in the detector

Event display for an exclusive  $\gamma\gamma \rightarrow \gamma\gamma$  candidate.

Two back-to-back photons ( $E_T^{\gamma 1} = 11 \text{ GeV}$ and  $E_T^{\gamma 2} = 10 \text{ GeV}$ ) with myy = 29 GeV,  $A_{\phi} = 0.002$  $P_T^{\gamma \gamma} = 1.2 \text{ GeV}$ 

59  $\gamma\gamma \rightarrow \gamma\gamma$  events observed with an expected background of 12±3 (8.2  $\sigma$ )









#### interlude



Search for Physics BSM (Beyond the Standard Model)

Some (temporary) rest

in a lot of places Full Run-2 results

#### **Search for Physics BSM (1)**

# A vast programme covering searches for high and low mass particles, small couplings, long lived particles, forbidden decays, ...

|                                                                                                                                             |                          | ATLA<br>July 20                                   | ATLAS SUSY Searches* - 95% CL Lower Limits |                                                                               |                                        |                            |                  |                 |                                                                                                                       | ATLAS Preliminary                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|----------------------------|------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                                                                                             |                          | Mo                                                | del                                        | Signature $\int \mathcal{L} dt \left[ fb^{-1} \right]$                        |                                        | Mass limit                 |                  |                 |                                                                                                                       | Reference                                                |
|                                                                                                                                             |                          | şq. q⊣<br>on                                      | φίζ <sup>D</sup> Ο c,μ<br>mono-jet         | 2-6 jets E <sup>min</sup> 36.1<br>1-3 jets E <sup>min</sup> <sub>7</sub> 36.1 | ¢ [2x, 8x Degen.]<br>≬ [1x, 8x Degen.] | 0.43 0                     | 0.9              | 1.55            | m(t <sup>0</sup> ];<100 GeV<br>m(t),-5 GeV                                                                            | 1712.02332<br>1711.03301                                 |
|                                                                                                                                             |                          | <b>₽</b> . ₽                                      | φφτ <sup>0</sup> 0 e,μ                     | 2-6 jets E <sub>7</sub> min 36.1                                              | £<br>£                                 |                            | Forbidden        | 2.0<br>0.95-1.6 | m(t <sup>0</sup> <sub>1</sub> )<200 GeV<br>m(t <sup>0</sup> <sub>1</sub> )=900 GeV                                    | 1712.02332<br>1712.02332                                 |
|                                                                                                                                             |                          |                                                   | að(tt)i <sup>0</sup> . 3 e, µ              | 4 jets 36.1                                                                   | £                                      |                            |                  | 1.85            | m(2)-m(2)-50 GeV                                                                                                      | 1706.03731<br>1805.11381                                 |
| ATLAS Exotics Searches*                                                                                                                     | - 95% CL                 | Upper Exclusion Limits                            |                                            | ATLA                                                                          | S Preliminary                          |                            |                  | 1.8             | m(t) = 200 GeV                                                                                                        | 1708.02794<br>ATLAS.CONE-2019.015                        |
| Model for late                                                                                                                              | Emiss (Cd+f              | h-11 Limit                                        | $\int \mathcal{L} dt = (t)$                | 3.2 – 139) fb <sup>-1</sup>                                                   | $\sqrt{s} = 8, 13 \text{ TeV}$         |                            |                  | 1.25            | m(t) = 200 GeV                                                                                                        | ATLAS-CONF-2018-041                                      |
|                                                                                                                                             | μ <sub>T</sub> j2 α(     |                                                   | 77.764                                     |                                                                               | 1711 02201                             | dden                       | 0.9              |                 | m(k <sup>0</sup> ) - 300 GeV, BR(M <sup>0</sup> ) - 1                                                                 | 1708.09266, 1711.03301                                   |
| ADD $G_{KK} + g/q$ $G_{e,\mu}$ $I = 4$<br>ADD non-resonant $\gamma\gamma$ $2\gamma$ –<br>$2\gamma$ – $2i$                                   | - 36.7<br>- 37.0         | M <sub>D</sub><br>M <sub>S</sub>                  | 8.6 TeV                                    | $n \equiv 2$<br>n = 3 HLZ NLO<br>n = 6                                        | 1707.04147                             | Forbidden 0.<br>Forbidden  | .58-0.82<br>0.74 | m(2))-20        | )-300 GeV, BR(bt <sup>0</sup> )-BR(dt <sup>1</sup> )-0.5<br>0 GeV, m(t <sup>1</sup> )-300 GeV, BR(dt <sup>1</sup> )-1 | 1708.09266<br>ATLAS-CONF-2019-015                        |
| ADD BH high $\sum p_T$ $\geq 1 e, \mu \geq 2 j$<br>ADD BH multilet $- > 3 j$                                                                | - 3.2                    | M <sub>th</sub>                                   | 8.2 TeV<br>9 55 TeV                        | $n = 6$ , $M_D = 3$ TeV, rot BH<br>$n = 6$ , $M_D = 3$ TeV, rot BH            | 1606.02265                             | 0.23.0.40                  | (                | 0.23-1.35 An    | (\$2, \$0)=130 GeV, m(\$0)=100 GeV                                                                                    | SUSY-2018-31                                             |
| RS1 $G_{KK} \rightarrow \gamma \gamma$ 2 $\gamma$ -                                                                                         | - 36.7                   | G <sub>KK</sub> mass                              | 4.1 TeV                                    | $k/\overline{M}_{Pl} = 0.1$                                                   | 1707.04147                             | 0.20 0.40                  | 1.0              |                 | mR <sup>0</sup> =1 GeV                                                                                                | 1506.08616, 1709.04183, 1711.1152                        |
| Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ 0 $e, \mu$ 2 J                                                                             | - 139                    | G <sub>KK</sub> mass                              | 1.6 TeV                                    | $k/M_{Pl} = 1.0$<br>$k/\overline{M}_{Pl} = 1.0$                               | ATLAS-CONF-2019-003                    | 0.44-0.59                  |                  |                 | m(1)=400 GeV                                                                                                          | ATLAS-CONF-2019-017                                      |
| Bulk RS $g_{KK} \rightarrow tt$<br>2   IED / BPP<br>$1 e, \mu \ge 1 b, \ge 1$<br>$1 e, \mu \ge 2 b, \ge 1$                                  | LJ/2jYes 36.1            | g <sub>KK</sub> mass<br>KK mase                   | 3.8 TeV                                    | $\Gamma/m = 15\%$<br>Tier (1.1) $\mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$   | 1804.10823                             |                            | 0.05             | 1.16            | m(fr)=800 GeV                                                                                                         | 1803.10178                                               |
| SSM $Z' \rightarrow \ell \ell$ 2 e, $\mu$ -                                                                                                 | - 139                    | Z' mass                                           | 5.1 TeV                                    | $\operatorname{hor}(1,1), \mathcal{D}(2^{n-1} \to 1^n) = 1$                   | 1903.06248                             | 0.46                       | 0.00             |                 | m(t_1)=0 GeV<br>m(t_1))=0 GeV<br>m(t_1)=5 GeV                                                                         | 1805.01649                                               |
| SSM $Z' \rightarrow \tau \tau$ $2\tau$ -<br>Lentophobic $Z' \rightarrow bb$ - 2b                                                            | - 36.1                   | Z' mass<br>Z' mass                                | 2.42 TeV                                   |                                                                               | 1709.07242                             |                            | 0 32.0 00        |                 | 10. 0.0 - (1 - (1 - (1 - (1 - (1 - (1 - (1 - (                                                                        | 1700 03000                                               |
| Leptophobic $Z' \rightarrow tt$ 1 e, $\mu \ge 1$ b, $\ge 1$                                                                                 | LJ/2j Yes 36.1           | Z' mass                                           | 3.0 TeV                                    | $\Gamma/m = 1\%$                                                              | 1804.10823                             | Forbidden                  | 0.86             | mp              | (1)=360 GeV, m(1)-m(1)= 180 GeV                                                                                       | ATLAS-CONF-2019-016                                      |
| $SSM W' \rightarrow \ell \nu$ 1 e, $\mu$ -<br>$SSM W' \rightarrow \tau \nu$ 1 $\tau$ -                                                      | Yes 139<br>Yes 36.1      | W' mass<br>W' mass                                | 6.0 TeV                                    |                                                                               | CERN-EP-2019-100<br>1801.06992         | 0.6                        |                  |                 | m@ <sup>0</sup> i=0                                                                                                   | 1403.5294, 1806.02293                                    |
| HVT $V' \rightarrow WZ \rightarrow qqqq \text{ model B}  0 e, \mu \qquad 2 \text{ J}$                                                       | - 139                    | V' mass                                           | 3.6 TeV                                    | $g_V = 3$                                                                     | ATLAS-CONF-2019-003                    |                            |                  |                 | m(t1)-m(t1)=5 GeV                                                                                                     | ATLAS-CONF-2019-014                                      |
| LRSM $W_R \rightarrow tb$ multi-channel                                                                                                     | 36.1                     | V mass<br>W <sub>R</sub> mass                     | 3.25 TeV                                   | $g_V = 3$                                                                     | 1712.06518<br>1807.10473               | 0.42                       |                  |                 | m(*1)-0                                                                                                               | ATLAS-CONF-2019-008                                      |
| LRSM $W_R \rightarrow \mu N_R$ 2 $\mu$ 1 J                                                                                                  | - 80                     | W <sub>R</sub> mass                               | 5.0 TeV                                    | $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$                                         | 1904.12679                             |                            | 0.74             |                 | m(2)-70 GeV                                                                                                           | ATLAS-CONF-2019-019, ATLAS-CONF-2<br>ATLAS-CONE-2019-008 |
| Cl qqqq – 2j                                                                                                                                | - 37.0                   | ٨                                                 |                                            | 21.8 TeV 11                                                                   | 1703.09127                             | 6-0.3 0.12-0.39            |                  |                 | m(t_s)=0.3(m(t_1)=0                                                                                                   | ATLAS-CONF-2019-018                                      |
| Cl tttt $\geq 1 e_{,\mu} \geq 1 b_{,} \geq$                                                                                                 | - 36.1<br>1 j Yes 36.1   | Λ                                                 | 2.57 TeV                                   | $ C_{4t}  = 4\pi$                                                             | 1811.02305                             |                            | 0.7              |                 | m(2)-0                                                                                                                | ATLAS-CONF-2019-008<br>ATLAS-CONF-2019-014               |
| Axial-vector mediator (Dirac DM) 0 $e, \mu$ 1 – 4                                                                                           | j Yes 36.1               | m <sub>med</sub>                                  | 1.55 TeV                                   | $g_q$ =0.25, $g_{\chi}$ =1.0, $m(\chi) = 1 \text{ GeV}$                       | 1711.03301                             |                            | 0.29-0.88        |                 | BROT - hO-1                                                                                                           | 1806.04030                                               |
| Colored scalar mediator (Dirac DM) $0 e_{,\mu}$ 1 – 4<br>$VV_{YY}$ EET (Dirac DM) $0 e_{,\mu}$ 1 J < 1                                      | j Yes 36.1<br>Li Yes 3.2 | Maneed 700 GeV                                    | 1.67 TeV                                   | $g=1.0, m(\chi) = 1 \text{ GeV}$<br>$m(\chi) < 150 \text{ GeV}$               | 1711.03301                             | 0.3                        |                  |                 | $BR(\ell_1^d \rightarrow ZG)=1$                                                                                       | 1804.03602                                               |
| Scalar reson. $\phi \rightarrow t_{\chi}$ (Dirac DM) 0-1 $e, \mu$ 1 b, 0-1                                                                  | J Yes 36.1               | m <sub>4</sub>                                    | 3.4 TeV                                    | $y = 0.4, \lambda = 0.2, m(\chi) = 10 \text{ GeV}$                            | 1812.09743                             | 0.46                       |                  |                 | Pure Wino                                                                                                             | 1712.02118                                               |
| Scalar LQ 1 <sup>st</sup> gen 1,2 e ≥ 2 j                                                                                                   | Yes 36.1                 | LQ mass                                           | .4 TeV                                     | $\beta = 1$                                                                   | 1902.00377                             |                            |                  |                 | Pure Higgsino                                                                                                         | ATL-PHY8-PUB-2017-019                                    |
| Scalar LQ 2 <sup>nd</sup> gen $1,2 \mu \ge 2j$<br>Scalar LQ 3 <sup>rd</sup> gen $2 \tau$ 2 b                                                | Yes 36.1                 | LQ mass<br>LQ" mass 1.03 Te                       | 1.56 TeV                                   | $\beta = 1$<br>$\beta(LO_{1}^{\nu} \rightarrow b\tau) = 1$                    | 1902.00377 1902.08103                  |                            |                  | 2.0             |                                                                                                                       | 1902.01636,1808.04095                                    |
| Scalar LQ 3 <sup>rd</sup> gen 0-1 e, µ 2 b                                                                                                  | Yes 36.1                 | LQ <sup>3</sup> mass 970 GeV                      |                                            | $\mathcal{B}(LQ_3^d \rightarrow t\tau) = 0$                                   | 1902.08103                             |                            |                  | 2.00 2.4        | m(x <sub>1</sub> )=100 GeV                                                                                            | 1710304901,1608304095                                    |
| $VLQ TT \rightarrow Ht/Zt/Wb + X$ multi-channel                                                                                             | 36.1                     | T mass 1.3                                        | 7 TeV                                      | SU(2) doublet                                                                 | 1808.02343                             |                            | 0.02             | 1.9             | X <sub>511</sub> =0.11, X <sub>102/133/233</sub> =0.07                                                                | 1607.08079                                               |
| VLQ $BB \rightarrow Wt/2b + X$ multi-channel<br>VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt + X$ 2(SS)/ $\geq$ 3 e, $\mu \geq$ 1 b, $\geq$ 1 | 36.1<br>1 i Yes 36.1     | B mass 1.3<br>T <sub>5/3</sub> mass               | 4 TeV<br>1.64 TeV                          | $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$                   | 1808.02343<br>1807.11883               | vi                         | 0.01             | 1.3 1.9         | Large X'12                                                                                                            | 1804.03568                                               |
| VLQ $Y \rightarrow Wb + X$ 1 e, $\mu \ge 1$ b, $\ge$                                                                                        | 1j Yes 36.1              | Y mass                                            | 1.85 TeV                                   | $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$                              | 1812.07343                             |                            | 1.0              | 6 2.0           | m(t <sup>0</sup> 1)=200 GeV, bino-like                                                                                | ATLAS-CONF-2018-003                                      |
| $VLQ B \rightarrow Hb + X$ $0 e, \mu, 2\gamma \ge 1 b, \ge$<br>$VLQ QQ \rightarrow WqWq$ $1 e, \mu \ge 4 i$                                 | 1j Yes 79.8<br>Yes 20.3  | B mass 1.21<br>Q mass 690 GeV                     | TeV                                        | $\kappa_B = 0.5$                                                              | ATLAS-CONF-2018-024<br>1509.04261      | 0.55                       | 1.0              | 15              | m(1)=200 GeV, bino-like                                                                                               | ATLAS-CONF-2018-003                                      |
| Excited quark $a^* \rightarrow ag$ – 2 j                                                                                                    | - 139                    | o' mass                                           | 6 7 TeV                                    | only $u^*$ and $d^*$ . $\Lambda = m(a^*)$                                     | ATLAS-CONE-2019-007                    | 0.42 0.61                  |                  | 0.4-1.45        | BB/ help/help20%                                                                                                      | 1710.07171                                               |
| Excited quark $q^* \rightarrow q\gamma$ 1 $\gamma$ 1 j                                                                                      | - 36.7                   | q* mass                                           | 5.3 TeV                                    | only $u^*$ and $d^*$ , $\Lambda = m(q^*)$                                     | 1709.10440                             | 0< X <sub>228</sub> <39-9] | 1.0              | 1.6             | BR#1-40)-100%, cose,=1                                                                                                | ATLAS-CONF-2019-006                                      |
| Excited quark $b^* \rightarrow bg - 1 b, 1$<br>Excited lepton $\ell^* - 3e \mu - 1$                                                         | j - 36.1<br>- 20.3       | b' mass                                           | 2.6 TeV<br>3.0 TeV                         | $\Lambda = 3.0 \text{ TeV}$                                                   | 1805.09299                             |                            |                  |                 |                                                                                                                       |                                                          |
| Excited lepton $v^*$ 3 e, $\mu$ , $\tau$ –                                                                                                  | - 20.3                   | v" mass                                           | 1.6 TeV                                    | $\Lambda = 1.6 \text{ TeV}$                                                   | 1411.2921                              |                            |                  | <u>с с</u>      | 10 10 01 10                                                                                                           | 2                                                        |
| Type III Seesaw 1 e, µ ≥ 2 j                                                                                                                | Yes 79.8                 | N <sup>0</sup> mass 560 GeV                       |                                            |                                                                               | ATLAS-CONF-2018-020                    |                            |                  | 1               | Mass scale [TeV]                                                                                                      |                                                          |
| LHSM Majorana v $2\mu$ 2 j<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ 2.3.4 e $\mu$ (SS) -                                          | - 36.1<br>- 36.1         | N <sub>R</sub> mass 870 GeV                       | 3.2 TeV                                    | $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$<br>DY production                        | 1809.11105<br>1710.09748               |                            |                  |                 |                                                                                                                       |                                                          |
| Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ 3 e, $\mu$ , $\tau$ –                                                                      | - 20.3                   | H <sup>±±</sup> mass 400 GeV                      |                                            | DY production, $\mathcal{B}(H_{L}^{\pm\pm} \rightarrow \ell \tau) = 1$        | 1411.2921                              |                            |                  |                 |                                                                                                                       |                                                          |
| Multi-charged particles – – –<br>Magnetic monopoles – –                                                                                     | - 36.1<br>- 34.4         | multi-charged particle mass 1.22<br>monopole mass | 2.37 TeV                                   | DY production, $ q  = 5e$<br>DY production, $ g  = 1g_D$ , spin 1/2           | 1812.03673 1905.10130                  |                            |                  |                 |                                                                                                                       |                                                          |
| $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} =$                                                                         | 13 TeV                   | L                                                 |                                            |                                                                               | 1000110100                             |                            |                  |                 |                                                                                                                       |                                                          |
| partial data full                                                                                                                           | data                     | 10-1                                              | 1 1                                        | <sup>0</sup> Mass scale [TeV]                                                 |                                        | C                          |                  |                 | •                                                                                                                     | 26                                                       |
| Only a selection of the available mass limits on ne                                                                                         | ew states or phe         | enomena is shown.                                 |                                            |                                                                               |                                        |                            | <b>AA</b>        | nack            | mn I                                                                                                                  | 30                                                       |
| Small-radius (large-radius) jets are denoted by th                                                                                          | ne letter j (J).         |                                                   |                                            |                                                                               |                                        |                            |                  | varn            | up.                                                                                                                   |                                                          |
Search for Physics BSM (2)

**Full Run-2** 

highest-mass dijet event the two central high-p<sub>T</sub> jets each have  $p_T$  of 3.74 TeV their invariant mass is 8.02 TeV.





dielectron candidate with the highest invariant mass in the 2015-2018 data taking period with  $m_{ee} = 4.06$  TeV search for Z' and W'

Corfou 2-9-2019

#### **Search for Physics BSM (3) Full Run-2**

# **Analysis and detector improvements very important !**

2 b-jets



Search for Physics BSM (4) Full Run-2

#### Resonances decaying to VV (WW, WZ, ZZ)

The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets

diboson resonances with masses greater than 1.3 TeV

Highest m<sub>JJ</sub>(=4440 GeV) diboson candidate

**The leading** (*subleading*) **jet has a p**<sub>T</sub> **of 2136 GeV** (*2291 GeV*), **a mass of 89.5 GeV** (*62.5 GeV*)



### **Search for Physics BSM (5)**

# SUSY Electroweak production ( could dominate if squarks and gluinos heavy )







 $\tilde{\chi}_1^{\pm}$ 

p



#### Search for Physics BSM (6) Full Run-2

#### SUSY Strong production of Squarks and Gluinos Golden mode

Sensitive searches for squarks and gluinos (in R-parity conserving scenarios) with neutralino as LSP (no leptons)

Many different scenarios investigated with cut-based analyses and BDTs

$$M_{eff} = sum (p_T jets > 50 \text{ GeV} + E_T^{miss})$$







# **Search for Physics BSM (8)** Fluctuation reported in $m_{\mu\mu}$ spectrum



#### **Full Run-2** ~ same cuts than CMS



no significant excess observed

44

#### long lived particles

Multiple reasons to be long lived .. small couplings .. intermediate states

#### many challenging signatures





#### The (Brout-Englert-) Higgs = BEH boson(s)

**1 Additional BEH bosons** 

2 The SM BEH boson

**3** Search for a pair of BEH bosons

**1 Additional BEH bosons (1)** 

General recipe : SM Higgs Doublet + Additional Field = Additional H bosons SM + 1 additional H doublet = 2HDM (Two Higgs Doublet

## Model ) that corresponds to 5 physical Higgs bosons h, H, A, H<sup>+</sup>, H<sup>-</sup>

| Four | Va | Coupling scale factor | Туре І                     | Type II                     | Lepton-specific             | Flipped                     |
|------|----|-----------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
|      |    | KV                    | $\sin(\beta - \alpha)$     |                             |                             |                             |
|      |    | K <sub>u</sub>        | $\cos(\alpha)/\sin(\beta)$ |                             |                             |                             |
|      |    | Kd                    | $\cos(\alpha)/\sin(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $\cos(\alpha)/\sin(\beta)$  | $-\sin(\alpha)/\cos(\beta)$ |
|      |    | κ <sub>ℓ</sub>        | $\cos(\alpha)/\sin(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $\cos(\alpha)/\sin(\beta)$  |

# MSSM ⊂ type II HDM .. Numerous benchmark models like hMSSM

1 Additional BEH bosons (2)



tan β

1 Additional BEH bosons (3) γγ excess at 95 GeV

#### comparison between CMS and ATLAS results (Sven Heinemeyer)





© Sven Heinemeyer Higgs Hunting 2019

#### **2** The SM BEH boson (1) executive summary

7 years after the discovery we have now a much clearer picture of the BEH boson properties
A It is spin 0 and its interactions with bosons are mainly CP-even
A We know its mass at 0.2% accuracy

BEH boson couples to mass → couplings to be measured

#### **Increasing precision in all measurements**

- bosonic sector : inclusive measurement at ~10% precision differential measurements probing extended phase space with increasing accuracy
- fermionic sector : 3rd generation (τ, t, b) established with uncertainties approaching ~20% level . Most promising channel for 2<sup>nd</sup> generation is H→μμ







#### 2 The SM BEH boson (4) The H mass



#### uncertainty on mass < 0.2 %

Remember ATLAS has an uncertainty on W mass of 19 MeV Eur.Phys.J. C78 (2018) no.2, 110 note that  $\Delta m_{\rm H} = 0.1 \text{ GeV} \rightarrow \Delta (\text{BR}(\text{H}\rightarrow\text{ZZ})) / \text{BR}(\text{H}\rightarrow\text{ZZ}) \sim 1\%$ 

At longer term uncertainty will be dominated by 41 ( for  $H \rightarrow \gamma \gamma$  : need to extrapolate from e to  $\gamma$  !)



Interference depends of S/B, therefore is <u>smaller at high p<sub>T</sub>(H)</u> where S/B is larger some work can be done at high pT (H+2j) see for instance Phys.Rev. D92 (2015) no.1, 013004

## **2** The SM BEH boson (6) Mass shift



2 The SM BEH boson (7) definition of **µ** 

# $\mu = (\sigma . BR) / (\sigma . BR)_{SM}$

#### **2** The SM BEH boson (8) some fermionic results



Observation of H→ττ (6.4 σ obs - 5.4 σ exp ) when combined with Run-

### H→bb

Main analysis is targetting VH but also start to look at ggH and VBF modes



Phys.Lett. B786 (2018) 59-86

#### **Combination of VH channels gives**

significance obs(exp) of  $5.3 \sigma$  (4.8  $\sigma$ )

## 2 The SM BEH boson (9) ttH



Phys.Lett. B784 (2018) 173-191



Combined with Run-1 obs(exp) significance of 6.3 (5.1) σ



### 2 The SM BEH boson (10) dileptons







## 2 The SM BEH boson (12) invisible H decays



#### 2 The SM BEH boson (13) $H \rightarrow 4l H \rightarrow \gamma \gamma$



### **2** The SM BEH boson (14) combined $H \rightarrow 4l$ and $H \rightarrow \gamma\gamma$



Combined inclusive pp $\rightarrow$ H cross section  $55.4^{+4.3}_{-4.2}$  pb ( ±3.1(stat.)  $^{+3.0}_{-2.8}$ (sys.) ) SM = 55.6 ± 2.5 pb

### 2 The SM BEH boson (15) H combination



**3** Search for a pair of BEH bosons (1)

After discovering the Higgs boson, the ultimate probe of the Standard Model is to fully measure the Higgs potential.



 $\Phi \rightarrow \nu + h$   $V(\phi) = \frac{1}{2}\mu^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4} = \frac{\lambda\nu^{2}h^{2}}{4} + \frac{\lambda\nu h^{3}}{4} + \frac{1}{4}\lambda h^{4}$ mass term self coupling terms  $\frac{1}{2}m_{h}^{2}h^{2}$   $-h^{h} + \frac{h^{2}}{4}h^{2}$ 

Kolymbari-July-18

#### **3** Search for a pair of BEH bosons (2)





#### arXiv:1906.02025

#### **3** Search for a pair of BEH bosons (3)



see also new result on 4b channel (VBF) ATLAS-CONF-2019-030 and (better) new result on bblvlv arXiv:1908.06765

#### **3** Search for a pair of BEH bosons (4) constraint of the H self-coupling from H differential production and decay mesurements

The Higgs boson cross sections, the branching fractions and the Higgs boson kinematics are affected by the Higgs-boson self coupling contribution through next to leading order electroweak corrections.



#### With the

assumption that new physics affects only the Higgs boson self-coupling ( $\lambda_{HHH}$ ), the ratio  $\lambda_{HHH}/\lambda_{HHH}^{SM}$  is determined to be  $\lambda_{HHH}/\lambda_{HHH}^{SM} = 4.0^{+4.3}_{-4.1}$ , excluding values outside the interval  $-3.2 < \lambda_{HHH}/\lambda_{HHH}^{SM} < 11.9$  at the 95% C.L.

#### **Results similar to di-Higgs direct search**

69



#### EW weak boson scattering

#### **Full Run-2**

#### H boson regularizes the EW weak boson scattering at high energies





also EW Zy atlas-conf-2019-039

Observed (expected) significance for EW production: 5.5σ (4.3σ)

 $\sigma_{fid}(EW) = 0.82 \pm 0.21 \text{ fb}$ 

SM pred.=  $0.61 \pm 0.03$  fb

ATLAS observed vector boson scattering at:

- 6.9σ in WW channel
- 5.3σ in WZ channel

WW ZZ WZ observed S Historical introduction, Setting the stage
S Results from (run 1 and) run 2
S Future of ATLAS, run 3, HL-LHC
S Conclusions
S Backup


# **ATLAS Phase-I Upgrade**

#### (i) Liquid Argon Calorimeter Electronics

Aim to improve the Level-1 calorimeter decision for Run 3 and beyond (enhanced jet-rejection and pile-up subtraction)

(ii) Trigger / DAQ upgrade

Take full advantage of the finer segmentation available with LAr electronics upgrade, and improved muon trigger information (NSW)

#### (iii) Muon System: New Small Wheel

Replacement of the inner muon stations in the endcap regions of the detector; → reduced muon fake trigger rate, preserve position resolution and efficiency at HL-LHC







# **ATLAS Phase-II Upgrade**



## It is very hard to predict, especially the future. N.Bohr





∆ m<sub>w</sub> [MeV]

# S Historical introduction, Setting the stage S Results from (run 1 and) run 2 S Future of ATLAS, run 3, HL-LHC S Conclusions S Backup

Fantastic Run-2 dataset , thanks to the outstanding performance of the LHC and ATLAS

During Run-3 emphasis on precision

< 5% of the data that will be delivered by HL-LHC ⇒ a lot to do !

**Thanks for your attention** 

S Historical introduction, Setting the stage
S Results from (run 1 and) run 2
S Future of ATLAS, run 3, HL-LHC
S Conclusions

S Backup

# S Historical introduction, Setting the stage S Results from (run 1 and) run 2 S Future of ATLAS, run 3, HL-LHC S Conclusions S Backup

S Historical introduction, Setting the stage
S Results from (Run-1 and) Run-2
S Future of ATLAS, run 3, HL-LHC
S Conclusions
S Backup







 $\Delta t = 50 \text{ ns}$ 

2/19 calibration



*Pile up* increases at higher energy (higher luminosity + higher cross sections) → *Experiments have requested 25 ns* (instead of 50 ns) operation at 13 TeV

But if the time constant is larger than 50 ns (i.e integrating time of the LAr calorimeter ) then the pile-up is independent of the bunch spacing ( for a given luminosity )

Corfou 2-9-2019



Comparison between the energy scale corrections derived from  $Z \rightarrow ee$  events in 2015 and 2016 as a function of  $\eta$ . The difference of the energy scales measured in the data are compared with predictions taking into account the luminosity-induced high-voltage reduction and LAr temperature changes as well as the small overgll difference in LAr temperature between 2015 and 2016

## additional constant term c as a function of eta



## Data driven energy calibraton of standard particle flow jets w.r.t $p_T$



Corfou 2-9-2019

87

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2018-006/fig\_01a.png

## Data driven b-jet tagging efficiency w.r.t $p_T$







https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-024/fig\_19.png



91

### 4σ evidence for weak triboson production using 2015-2017 data



Figure 5: (a) Extracted signal strengths  $\mu$  for the four analysis regions and for the combination. (b) Event yields as a function of  $\log_{10}$  (S/B) for data, background B and the signal S. Events in all eleven signal regions are included. The background and signal yields are shown after the global signal-plus-background fit. The hatched band corresponds to the systematic uncertainties, and the statistical uncertainties are represented by the error bars on the data points. The lower panel shows the ratio of the data to the expected background estimated from the fit, compared to the expected distribution including the signal (red line).

## Measurement of fiducial and differential W+ Wproduction cross-section



Figure 4: Kinematic distributions of the selected data events after the full event selection (from left to right and top to bottom):  $p_1^{\text{lead} \ell}$ ,  $m_{e\mu}$ ,  $p_T^{e\mu}$ ,  $|y_{e\mu}|$ ,  $\Delta \phi_{e\mu}$  and  $|\cos \theta^*|$ . Data are shown together with the predictions of the signal and background production processes. Statistical and systematic uncertainties in the predictions are shown as hatched bands. The lower panels show the ratio of the data to the total prediction. An arrow indicates that the point is off-scale. The last bin includes the overflow.

93

ector



Figure 8: Measured fiducial cross-sections of  $WW \rightarrow e\mu$  production for two of the six observables:  $\Delta \phi_{e\mu}$  and  $|\cos \theta^*|$ . The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The results are compared with the NNLO prediction with extra NLO EW corrections and NLO corrections for  $gg \rightarrow WW$  production, and with NLO+PS predictions from PowHEG-Box+PYTHIA 8, PowHEG-Box+HERWIG++ and SHERPA 2.2.2 for  $q\bar{q}$  initial states, combined with SHERPA+OPENLOOPS (LO+PS) for the gg initial states. All three  $q\bar{q}$  NLO+PS predictions are normalized to the NNLO theoretical prediction for the total cross-section, with the gg LO+PS contribution normalized to NLO. Theoretical predictions are indicated as markers with hatched bands denoting PDF+scale uncertainties.



Figure 7: Measured fiducial cross-sections of  $WW \rightarrow e\mu$  production for four of the six observables (from left to right and top to bottom):  $p_T^{\text{lead}}, m_{e\mu}, p_T^{e\mu}$ , and  $|y_{e\mu}|$ . The measured cross-section values are shown as points with error bars giving the statistical uncertainty and solid bands indicating the size of the total uncertainty. The results are compared with the NNLO prediction with extra NLO EW corrections and NLO corrections for  $gg \rightarrow WW$  production, and with NLO+PS predictions from POWHEG-BOX+PYTHIA 8, POWHEG-BOX+HERWIG++ and SHERPA 2.2.2 for  $q\bar{q}$  initial states, combined with SHERPA+OPENLOOPS (LO+PS) for the gg initial states. All three  $q\bar{q}$  NLO+PS predictions are normalized to the NNLO theoretical prediction for the total cross-section, with the gg LO+PS contribution normalized to NLO. Theoretical predictions are indicated as markers with hatched bands denoting PDF+scale uncertainties.

# Measurement of $Z(\rightarrow |+|-) \gamma$ differential crosssections in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector



#### **Inclusive and differential measurements of the** charge asymmetry in t + eve $p\bar{p} \quad A_{FB} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \quad \Delta y = y_t - y_{\bar{t}}$ detector different from 0 because of interference q0000 0000 positive asymmetry 0000 $\mathbf{b}$ (a)00000 0000 negative asymmetry (d) (c)

in pp collisions a FB asymmetry with a fixed  $\hat{z}$  axis vanishes



$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$
$$\Delta|y| = |y_t| - |y_{\bar{t}}|$$

# **Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector**



Figure 3: Kinematic distributions for  $\gamma\gamma \rightarrow \gamma\gamma$  event candidates: (a) diphoton invariant mass, (b) diphoton transverse momentum. Data (points) are compared with the sum of signal and background expectations (histograms). Systematic uncertainties of the signal and background processes, excluding that of the luminosity, are shown as shaded bands.

$$A_{\phi} = (1 - |\Delta \phi_{\gamma \gamma}|/\pi) < 0.01$$

Corfou 2-9-2019



FIG. 1: The inclusive asymmetry in pure QCD (black) and QCD+EW[28] (red). Capital letters (NLO, NNLO) correspond to the unexpanded definition (2), while small letters (nlo, nnlo) to the definition (3). The CDF/DØ (naive) average is from Ref. [29]. Error bands are from scale variation only. Our final prediction corresponds to scenario 10.

#### FCNC (Flavour-Changing Neutral Current)



Figure 1: Tree-level Feynman diagrams for top-quark production (left) and decay (right) via FCNCs. The  $tq\gamma$  vertex, which is not present in the SM, is highlighted.

|                                           | 8                         | ening factor for the former, the energy seale is assume |      |                        |  |  |  |  |
|-------------------------------------------|---------------------------|---------------------------------------------------------|------|------------------------|--|--|--|--|
| Observable                                | Vertex                    | Coupling                                                | Obs. | Exp.                   |  |  |  |  |
| $C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$ | tuγ                       | LH                                                      | 0.19 | $0.22^{+0.04}_{-0.03}$ |  |  |  |  |
| $C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}$   | tuγ                       | RH                                                      | 0.27 | $0.27_{-0.04}^{+0.05}$ |  |  |  |  |
| $C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*}$ | tcγ                       | LH                                                      | 0.52 | $0.57_{-0.09}^{+0.11}$ |  |  |  |  |
| $C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}$   | tcγ                       | RH                                                      | 0.48 | $0.59_{-0.09}^{+0.12}$ |  |  |  |  |
| $\sigma(pp \rightarrow t\gamma)$ [ft      | $b$ ] $tu\gamma$          | LH                                                      | 36   | $52^{+21}_{-14}$       |  |  |  |  |
| $\sigma(pp \to t\gamma)$ [ft              | $b$ ] $tu\gamma$          | RH                                                      | 78   | $75^{+31}_{-21}$       |  |  |  |  |
| $\sigma(pp \rightarrow t\gamma)$ [ft      | $b$ ] $tc\gamma$          | LH                                                      | 40   | $49_{-14}^{+20}$       |  |  |  |  |
| $\sigma(pp \to t\gamma)$ [ft              | $b$ ] $tc\gamma$          | RH                                                      | 33   | $52_{-14}^{+22}$       |  |  |  |  |
| $\mathcal{B}(t \to q\gamma) [10^{-1}]$    | <sup>5</sup> ] tuγ        | LH                                                      | 2.8  | $4.0^{+1.6}_{-1.1}$    |  |  |  |  |
| $\mathcal{B}(t \to q\gamma) [10^{-1}]$    | <sup>5</sup> ] $tu\gamma$ | RH                                                      | 6.1  | $5.9^{+2.4}_{-1.6}$    |  |  |  |  |
| $\mathcal{B}(t \to q\gamma) [10^{-1}]$    | <sup>5</sup> ] $tc\gamma$ | LH                                                      | 22   | $27^{+11}_{-7}$        |  |  |  |  |
| $\mathcal{B}(t \to q\gamma)  [10^{-}$     | <sup>5</sup> ] tcγ        | RH                                                      | 18   | $28^{+12}_{-8}$        |  |  |  |  |
|                                           |                           |                                                         |      |                        |  |  |  |  |

Table 1: Observed (expected) 95% CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be  $\Lambda = 1$  TeV.



## FCNC (Flavour-Changing Neutral Current)



Table 3: Summary of 95% CL upper limits on  $\mathscr{B}(t \to Hc)$  and  $\mathscr{B}(t \to Hu)$ , in each case neglecting the other decay mode. Signatures with two same-charge (three) leptons and no  $\tau_{had}$  candidates are denoted by  $2\ell SS$  ( $3\ell$ ).

|                                                                                                                                                                                                                                             | 95% CL upper limits<br>on $\mathscr{B}(t \to Hc)$<br>Observed (Expected)                                                                                                            | 95% CL upper limits<br>on $\mathscr{B}(t \to Hu)$<br>Observed (Expected)                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{split} H &\to b\bar{b} \\ H &\to \tau\tau \; (\tau_{\text{lep}}\tau_{\text{had}}, \tau_{\text{had}}\tau_{\text{had}}) \\ H &\to WW^*, \tau\tau, ZZ^* \; (2\ell\text{SS}, 3\ell) \; [22] \\ H &\to \gamma\gamma \; [21] \end{split}$ | $\begin{array}{c} 4.2\times10^{-3}~(4.0\times10^{-3})\\ 1.9\times10^{-3}~(2.1\times10^{-3})\\ 1.6\times10^{-3}~(1.5\times10^{-3})\\ 2.2\times10^{-3}~(1.6\times10^{-3})\end{array}$ | $ \begin{array}{c} 5.2 \times 10^{-3} \ (4.9 \times 10^{-3}) \\ 1.7 \times 10^{-3} \ (2.0 \times 10^{-3}) \\ 1.9 \times 10^{-3} \ (1.5 \times 10^{-3}) \\ 2.4 \times 10^{-3} \ (1.7 \times 10^{-3}) \end{array} $ |
| Combination                                                                                                                                                                                                                                 | $1.1 \times 10^{-3} (8.3 \times 10^{-4})$                                                                                                                                           | $1.2 \times 10^{-3} (8.3 \times 10^{-4})$                                                                                                                                                                         |

# **EW precision measurements Weak angle** $sin^2\theta_{eff}^{I}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\mathrm{d}y^{\ell\ell}\,\mathrm{d}m^{\ell\ell}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\mathrm{d}y^{\ell\ell}\,\mathrm{d}m^{\ell\ell}} \\ \left\{ (1+\cos^2\theta) + \frac{1}{2}\,A_0(1-3\cos^2\theta) + A_1\,\sin2\theta\,\cos\phi \right. \\ \left. + \frac{1}{2}\,A_2\,\sin^2\theta\,\cos2\phi + A_3\,\sin\theta\,\cos\phi + A_4\,\cos\theta \right. \\ \left. + A_5\,\sin^2\theta\,\sin2\phi + A_6\,\sin2\theta\,\sin\phi + A_7\,\sin\theta\,\sin\phi \right\} \right\}$$

$$A_{\rm FB} = 3/8 \times A_4$$



## $m_W = 80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$ = 80369.5 ± 18.5 MeV,

| Combined                                                             | Value   | Stat. | Muon | Elec. | Recoil | Bckg. | QCD  | EW   | PDF  | Total | $\chi^2/dof$ |
|----------------------------------------------------------------------|---------|-------|------|-------|--------|-------|------|------|------|-------|--------------|
| categories                                                           | [MeV]   | Unc.  | Unc. | Unc.  | Unc.   | Unc.  | Unc. | Unc. | Unc. | Unc.  | of Comb.     |
| $m_{\mathrm{T}}$ - $p_{\mathrm{T}}^{\ell}$ , $W^{\pm}$ , $e$ - $\mu$ | 80369.5 | 6.8   | 6.6  | 6.4   | 2.9    | 4.5   | 8.3  | 5.5  | 9.2  | 18.5  | 29/27        |
|                                                                      |         |       |      |       |        |       |      |      |      |       |              |

arXiv:1701.07240



Figure 8: Dimuon invariant mass distributions in the unblinded data, in the four intervals of BDT output. Superimposed is the result of the maximum-likelihood fit. The total fit is shown as a continuous line, with the dashed lines corresponding to the observed signal component, the  $b \rightarrow \mu\mu X$  background, and the continuum background. The signal components are grouped in one single curve, including both the  $B_s^0 \rightarrow \mu^+\mu^-$  and the (negative)  $B^0 \rightarrow \mu^+\mu^-$  component. The curve representing the peaking  $B_{(s)}^0 \rightarrow hh'$  background lies very close to the horizontal axis in all BDT bins.

# **B** physics



Figure 9: (a) Likelihood contours for the simultaneous fit to  $\mathcal{B}(B_s^0 \to \mu^+\mu^-)$  and  $\mathcal{B}(B^0 \to \mu^+\mu^-)$ , for values of  $-2\Delta \ln(\mathcal{L})$  equal to 2.3, 6.2 and 11.8. The SM prediction with uncertainties is indicated. (b) Neyman contours in the  $\mathcal{B}(B_s^0 \to \mu^+\mu^-) - \mathcal{B}(B^0 \to \mu^+\mu^-)$  plane for 68.3%, 95.5% and 99.7% coverage. At each  $-2\Delta \ln(\mathcal{L})$  or coverage value, the inner contours are statistical uncertainty only, while the outer ones include statistical and systematic uncertainties. The construction of these contours makes use of both the dimuon (26.3 fb<sup>-1</sup>) and the reference channel (15.1 fb<sup>-1</sup>) datasets.

# **B** physics

- $\phi_s = -0.076 \pm 0.034 \text{ (stat.)} \pm 0.019 \text{ (syst.)} \text{ rad}$
- $\Delta \Gamma_s = 0.068 \pm 0.004 \text{ (stat.)} \pm 0.003 \text{ (syst.) } \text{ps}^{-1}$
- $\Gamma_s = 0.669 \pm 0.001 \text{ (stat.)} \pm 0.001 \text{ (syst.) } \text{ps}^{-1}$

# Measurement of $\Delta\Gamma_{g}$ and $\phi_{g}$ in $B_{g} \rightarrow J/\psi(\mu\mu) \phi(KK)$

- CP violation in  $B_s \! \to \! J/\psi \; \phi$  occurs through the interference in mixing and decay.
- The time evolution of flavour tagged is very sensitive New Physics
- B<sub>s</sub> mixing:
  - Mass difference
  - $-\Delta m = m_H m_L$
  - Mixing phase фз





- Decay width difference  $\Delta\Gamma s = \Gamma_L \Gamma_H$
- 9 Physics parameters describe  $B_s \rightarrow J/\psi \phi$  decay:  $\phi_s \approx 2\beta_s$  $|A_0|^2, |A_1|^2$
- decay with and decay width difference CP violating phase CP state amplitudes Strong phases S-wave parameters

Corfou 2-9-2019

106

ATLAS-CONF-2019-009 Barton@EPS2019

 $\Gamma_{\rm s}, \Delta \Gamma_{\rm s}$ 

 $\delta_{\rm H}, \delta_{\rm L}$ 

 $|\mathbf{A}_{e}|^{2}, \delta_{e}$ 



## **Search for Physics BSM**

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

| A                  | TLAS SUSY Sea                                                                                                                | rches*             | - 95%                            | 6 CI                         | Lo                  | ver                                                  | Limits                                      |                              |                          |           |                                                                                                                                                                                                            |                                                                                                                                                                                | ATLAS Preliminary<br>$\sqrt{s} = 13 \text{ TeV}$            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|------------------------------|---------------------|------------------------------------------------------|---------------------------------------------|------------------------------|--------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                    | Model                                                                                                                        | S                  | ignatur                          | e J                          | L dt [fb            | 1]                                                   | N                                           | lass limit                   |                          |           |                                                                                                                                                                                                            |                                                                                                                                                                                | Reference                                                   |
| s                  | $\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{t}_1^D$                                                                          | 0 c, μ<br>mono-jet | 2-6 jets<br>1-3 jets             | $E_T^{miss}$<br>$E_T^{miss}$ | 36.1<br>36.1        | 4  2x,<br>4  1x,                                     | 8x Degen.]<br>8x Degen.]                    | 0.43                         | 0.9                      | 1.5       |                                                                                                                                                                                                            | m(t <sup>0</sup> <sub>1</sub> )<100 GeV<br>m(g)-m(t <sup>0</sup> <sub>1</sub> )=5 GeV                                                                                          | 1712.02332<br>1711.03301                                    |
| Inclusive Searcher | <u>22</u> . 2→4921                                                                                                           | 0 e, µ             | 2-6 jets                         | Erita                        | 36.1                | 8<br>8                                               |                                             |                              | Farbidden                | 0.95-1    | 2.0<br>6                                                                                                                                                                                                   | m(t <sup>0</sup> <sub>1</sub> )<200 GeV<br>m(t <sup>0</sup> <sub>1</sub> )=900 GeV                                                                                             | 1712.02332<br>1712.02332                                    |
|                    | $\underline{R}\underline{P}, \underline{P} \rightarrow \underline{q}\underline{q}(\ell\ell)\underline{\tilde{\chi}}_{1}^{0}$ | 3 c. µ<br>cc. µµ   | 4 jets<br>2 jets                 | Eria                         | 36.1                | 2<br>2                                               |                                             |                              |                          | 1.2       | 1.85                                                                                                                                                                                                       | m( <sup>2</sup> 1)<800 GeV<br>m(2)-m( <sup>2</sup> 1)=50 GeV                                                                                                                   | 1706.03731<br>1805.11381                                    |
|                    | <u>R</u> g, <u>R</u> →qqWZ <sub>ℓ</sub> <sup>D</sup>                                                                         | 0 e,µ<br>SS e,µ    | 7-11 jets<br>6 jets              | Erin                         | 36.1<br>139         | 8<br>8                                               |                                             |                              |                          | 1.15      | 1.8                                                                                                                                                                                                        | m(2 <sup>-0</sup> ) <400 GeV<br>m(2)-m(2)-200 GeV                                                                                                                              | 1708.02794<br>ATLAS-CONF-2019-015                           |
|                    | <u>pp</u> , p→ux <sup>0</sup>                                                                                                | 0-1 ε.μ<br>SS ε.μ  | 3 b<br>6 jets                    | Enton                        | 79.8<br>139         | 8<br>8                                               |                                             |                              |                          | 1.25      | 2.25                                                                                                                                                                                                       | m(t <sup>0</sup> )<200 GeV<br>m(t)-m(t <sup>0</sup> )=300 GeV                                                                                                                  | ATLAS-CONF-2018-041<br>ATLAS-CONF-2019-015                  |
| rks<br>on          | $b_1b_1, b_1 \rightarrow b \overline{c}_1^0/\overline{a} \overline{c}_1^*$                                                   |                    | Multiple<br>Multiple<br>Multiple |                              | 36.1<br>36.1<br>139 | b1<br>b1<br>b1                                       | Forbidde                                    | en<br>Farbidden<br>Farbidden | 0.9<br>0.58-0.82<br>0.74 |           | ៣(ខ្ <sup>0</sup> )-200                                                                                                                                                                                    | m( <sup>\$1</sup> )-300 GeV, BR(b <sup>\$1</sup> )-1<br>-300 GeV, BR(b <sup>\$1</sup> )-BR(b <sup>\$1</sup> )-0.5<br>GeV, m( <sup>\$1</sup> )-300 GeV, BR(b <sup>\$1</sup> )-1 | 1708.09266, 1711.03301<br>1708.09266<br>ATLAS-CONF-2019-015 |
|                    | $b_1b_1, b_1 \rightarrow b\overline{\ell}_2^0 \rightarrow bb\overline{\ell}_1^0$                                             | 0 e,µ              | 6.6                              | Errisa                       | 139                 | b1<br>b1                                             | Forbidden                                   | 0.23-0.48                    |                          | 0.23-1.35 | $\Delta m(\hat{t}_{2}^{0}, \hat{t}_{1}^{0}) = 130 \text{ GeV}, m(\hat{t}_{1}^{0}) = 100 \text{ GeV}$<br>$\Delta m(\hat{t}_{2}^{0}, \hat{t}_{1}^{0}) = 130 \text{ GeV}, m(\hat{t}_{1}^{0}) = 0 \text{ GeV}$ |                                                                                                                                                                                | SUSY-2018-31<br>SUSY-2018-31                                |
| 35                 | $\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow W b \tilde{k}_1^0 \text{ or } L \tilde{k}_1^0$                             | 0-2 e, µ           | 0-2 jets/1-2                     | b Erniss                     | 36.1                | 1                                                    |                                             |                              | 1.0                      | )         |                                                                                                                                                                                                            | m(t <sup>0</sup> )=1 GeV                                                                                                                                                       | 1506.08616, 1709.04183, 1711.11520                          |
| 5 °S               | $r_1r_1, r_1 \rightarrow W h \bar{\chi}_1^0$                                                                                 | 1 c.µ              | 3 jets/1 b                       | Ernisa                       | 139                 | 71                                                   |                                             | 0.44-0.                      | .59                      |           |                                                                                                                                                                                                            | m(2)=400 GeV                                                                                                                                                                   | ATLAS-CONF-2019-017                                         |
| 85                 | $\bar{i}_1\bar{i}_1, \bar{i}_1 \rightarrow \bar{\tau}_1 bv, \bar{\tau}_1 \rightarrow rG$                                     | 1 + 1 e, µ, 2      | 2 jets/1 b                       | Erita                        | 36.1                | 71                                                   |                                             |                              |                          | 1.16      |                                                                                                                                                                                                            | m(#1)-800 GeV                                                                                                                                                                  | 1803.10178                                                  |
| 3.4<br>Qre         | $i_1i_1, i_1 \rightarrow c \bar{\chi}_1^0 / 2 t, t \rightarrow c \bar{\chi}_1^0$                                             | 0 e, µ             | 2 c<br>mono-jet                  | ET ET                        | 36.1                | 2<br>11<br>11                                        |                                             | 0.46<br>0.43                 | 0.85                     |           |                                                                                                                                                                                                            | m( $l_1^0$ )=0 GeV<br>m( $l_1$ ,2)-m( $l_1^0$ )=50 GeV<br>m( $l_1$ ,2)-m( $l_1^0$ )=5 GeV                                                                                      | 1805.01649<br>1805.01649<br>1711.03301                      |
|                    | the local at the                                                                                                             | 1.2                | 4.6                              | press                        | 36.1                | 2.                                                   |                                             |                              | 0 32-0 99                |           |                                                                                                                                                                                                            | A                                                                                                                                                                              | 1706 03086                                                  |
|                    | $I_2I_2, I_2 \rightarrow I_1 + Z$                                                                                            | 3 e. µ             | 1.6                              | Erita                        | 139                 | 12                                                   |                                             | Forbidden                    | 0.86                     |           | mg                                                                                                                                                                                                         | ()=360 GeV, m(ž)-m(ž <sup>0</sup> )= 40 GeV                                                                                                                                    | ATLAS-CONF-2019-016                                         |
|                    | $\bar{x}_{1}^{*}\bar{x}_{2}^{0}$ via WZ                                                                                      | 2-3 c. µ<br>cc. µµ | ≥ 1                              | Enter<br>Enter               | 36.1<br>139         | $\hat{X}_1^*\hat{R}_2^0$<br>$\hat{X}_1^*\hat{R}_2^0$ | 0.205                                       |                              | 0.6                      |           |                                                                                                                                                                                                            | m(t <sup>2</sup> 1)-0<br>m(t <sup>2</sup> 1)-5 GeV                                                                                                                             | 1403.5294, 1806.02293<br>ATLAS-CONF-2019-014                |
|                    | $\bar{\chi}_1^* \bar{\chi}_1^*$ via WW                                                                                       | 2 c. µ             |                                  | Errisa                       | 139                 | X.                                                   |                                             | 0.42                         |                          |           |                                                                                                                                                                                                            | m(#1)-0                                                                                                                                                                        | ATLAS-CONF-2019-008                                         |
|                    | $\bar{\chi}_1^* \bar{\chi}_2^0$ via Wh                                                                                       | 0-1 c, µ           | 2 b/2 y                          | Erita                        | 139                 | X11X2                                                | Forbidden                                   |                              | 0.74                     |           |                                                                                                                                                                                                            | m(21)-70 GeV                                                                                                                                                                   | ATLAS-CONF-2019-019, ATLAS-CONF-2019-XY2                    |
| ≥ 00               | $\tilde{\chi}_1^* \tilde{\chi}_1$ via $\tilde{\ell}_L / \tilde{\nu}$                                                         | 2 e, µ             |                                  | Erita                        | 139                 | $\tilde{X}_{1}^{*}$                                  |                                             |                              | 1.0                      | )         |                                                                                                                                                                                                            | $m(\tilde{\xi},\tilde{v})=0.5(m(\tilde{x}_{1}^{T})+m(\tilde{x}_{1}^{0}))$                                                                                                      | ATLAS-CONF-2019-008                                         |
| 비송                 | ₹₹, ₹→₹₹1                                                                                                                    | 21                 | 1000                             | Errisa                       | 139                 | T [TL                                                | *R.I.] 0.16-0                               | 3 0.12-0.39                  |                          |           |                                                                                                                                                                                                            | m(**)-0                                                                                                                                                                        | ATLAS-CONF-2019-018                                         |
|                    | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{X}_1^0$                                          | 2 e,µ<br>2 e,µ     | 0 jets<br>≥ 1                    | Entra<br>ET                  | 139<br>139          | 1                                                    | 0.256                                       |                              | 0.7                      |           |                                                                                                                                                                                                            | m(2)-m(2)-10 GeV                                                                                                                                                               | ATLAS-CONF-2019-008<br>ATLAS-CONF-2019-014                  |
|                    | ĤĤ,Ĥ→hĜ/ZG                                                                                                                   | 0 c.μ<br>4 c.μ     | ≥3b<br>0 jets                    | Enter                        | 36.1<br>36.1        | A<br>A                                               | 0.13-0.23                                   | .3                           | 0.29-0.88                |           |                                                                                                                                                                                                            | $BR(\tilde{x}_1^0 \rightarrow hG)=1$<br>$BR(\tilde{x}_1^0 \rightarrow ZG)=1$                                                                                                   | 1806.04030<br>1804.03602                                    |
| lived              | $Direct \tilde{\chi}_1^+ \tilde{\chi}_1^- \operatorname{prod.}, long-lived \tilde{\chi}_1^+$                                 | Disapp. trk        | 1 jet                            | Emisa                        | 36.1                | χ.<br>χ. ο                                           | .15                                         | 0.46                         |                          |           |                                                                                                                                                                                                            | Pure Wino<br>Pure Higgsino                                                                                                                                                     | 1712.02118<br>ATL-PHYS-PUB-2017-019                         |
| 6 La               | Stable & R-hadron                                                                                                            |                    | Multiple                         |                              | 36.1                | 8                                                    |                                             |                              |                          |           | 2.0                                                                                                                                                                                                        |                                                                                                                                                                                | 1902.01636,1808.04095                                       |
| 3 9                | Metastable g R-hadron, $g \rightarrow qq \bar{\chi}_1^0$                                                                     |                    | Multiple                         |                              | 36.1                | 8 [1]                                                | ) =10 ns, 0.2 ns]                           |                              |                          |           | 2.05 2.4                                                                                                                                                                                                   | m(2 <sup>0</sup> )=100 GeV                                                                                                                                                     | 1710.04901, 1808.04095                                      |
|                    | LFV $pp \rightarrow p_r + X, p_r \rightarrow e\mu/er/\mu r$                                                                  | eµ,er,µT           |                                  |                              | 3.2                 | P <sub>T</sub>                                       |                                             |                              |                          |           | 1.9                                                                                                                                                                                                        | Ani=0.11, Ana/m/m=0.07                                                                                                                                                         | 1607.08079                                                  |
|                    | $\tilde{\chi}_1^* \tilde{\chi}_1^* / \tilde{\chi}_2^0 \rightarrow WW/Zttttvv$                                                | 4 c. µ             | 0 jets                           | Errisa                       | 36.1                | X11/2                                                | $[\lambda_{123}\neq 0,\lambda_{124}\neq 0]$ |                              | 0.82                     | 1.33      |                                                                                                                                                                                                            | m(2 <sup>0</sup> )-100 GeV                                                                                                                                                     | 1804.03602                                                  |
|                    | $\underline{R}\underline{P}, \underline{P} \rightarrow qq \overline{k}_{1}^{0}, \overline{k}_{1}^{0} \rightarrow qq q$       | 4                  | -5 large-R ja                    | ets                          | 36.1                | ž (mį)                                               | E200 GeV, 1100 GeV]                         |                              |                          | 1.3       | 1.9                                                                                                                                                                                                        | Large .2%                                                                                                                                                                      | 1804.03568                                                  |
| 2                  |                                                                                                                              |                    | Multiple                         |                              | 36.1                | 8 141                                                | 1=38-4, 38-5j                               |                              | 1.                       | 16        | 2.0                                                                                                                                                                                                        | m(l)=200 GeV, bino-like                                                                                                                                                        | ATLAS-CONF-2018-003                                         |
| <b>C</b>           | II, $I \rightarrow t \overline{\chi}_1^0, \ \overline{\chi}_1^0 \rightarrow t b s$                                           |                    | Multiple                         |                              | 36.1                | 1 132                                                | ,=20-4, 10-2]                               | 0.55                         | 1.                       | 05        |                                                                                                                                                                                                            | m(1)=200 GeV, bino-like                                                                                                                                                        | ATLAS-CONF-2018-003                                         |
|                    | $\bar{i}_1\bar{i}_1, \bar{i}_1 \rightarrow bx$                                                                               |                    | 2 jets + 2 l                     | ,                            | 36.7                | 1 99                                                 | bs]                                         | 0.42 0                       | 0.61                     |           |                                                                                                                                                                                                            | 1000                                                                                                                                                                           | 1710.07171                                                  |
|                    | $i_1i_1, i_1 \rightarrow qt$                                                                                                 | 2 e.µ<br>1 µ       | 2.b<br>DV                        |                              | 36.1                | l <sub>1</sub><br>l <sub>1</sub> [10                 | -10< X <sub>238</sub> <10-8, 30-10<         | K <sub>28</sub> <30-9]       | 1.0                      | 0.4-1.45  | 6                                                                                                                                                                                                          | BR(¢ <sub>1</sub> → <i>bc/bµ</i> )>20%<br>BR(¢ <sub>1</sub> → <i>gµ</i> )=100%, cose;=1                                                                                        | 1710.05544<br>ATLAS-CONF-2019-006                           |
| "Only              | a selection of the available ma                                                                                              | ass limits on I    | new state                        | sor                          | 1                   | 0-1                                                  | 1                                           |                              |                          | 1         |                                                                                                                                                                                                            | Mass scale [TeV]                                                                                                                                                               |                                                             |

\*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
#### ATLAS Exotics Searches\* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: May 2019

 $\int \mathcal{L} dt = (3.2 - 139) \, \text{fb}^{-1}$   $\sqrt{s} = 8, \, 13 \, \text{TeV}$ 

|                  | Model                                                                                                                                                                                                                                                                                                                                                                            | <i>ℓ</i> ,γ                                                                                                                                                                                                | Jets†                                                                                                                                              | E                                    | ∫£ dt[fb                                                                  | <sup>-1</sup> ] Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference                                                                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extra dimensions | ADD $G_{KK} + g/q$<br>ADD non-resonant $\gamma\gamma$<br>ADD QBH<br>ADD BH high $\sum p_T$<br>ADD BH multipt<br>RS1 $G_{KK} \rightarrow \gamma\gamma$<br>Bulk RS $G_{KK} \rightarrow WW/ZZ$<br>Bulk RS $G_{KK} \rightarrow tt$<br>2UED / RPP                                                                                                                                     | $\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ \end{array}$ $\begin{array}{c} - \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$ | $\begin{array}{c} 1-4 \ j \\ -\\ 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ -\\ 2 \ J \\ \geq 1 \ b, \geq 1 \ J/2 \\ \geq 2 \ b, \geq 3 \ j \end{array}$ | Yes<br><br><br><br><br>2j Yes<br>Yes | 36.1<br>36.7<br>37.0<br>3.2<br>3.6<br>36.7<br>36.1<br>139<br>36.1<br>36.1 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1711.03301<br>1707.04147<br>1703.09127<br>1606.02265<br>1512.02586<br>1707.04147<br>1808.02380<br>ATLAS-CONF-2019-003<br>1804.10823<br>1803.09678       |
| Gauge bosons     | $\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \text{ model B} \\ \text{HVT } V' \to WH/ZH \text{ model B} \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$ | $\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ r, \mu \\ 1 \ \tau \end{array}$ $\begin{array}{c} 8  0 \ e, \mu \\ multi-channe \\ 2 \ \mu \end{array}$                                 | _<br>2 b<br>≥ 1 b, ≥ 1J/2<br>_<br>2 J<br>el<br>el<br>1 J                                                                                           | _<br>_<br>Yes<br>Yes<br>_<br>_       | 139<br>36.1<br>36.1<br>139<br>36.1<br>139<br>36.1<br>36.1<br>36.1<br>80   | Z' mass         5.1 TeV           Z' mass         2.42 TeV           Z' mass         2.1 TeV           Z' mass         3.0 TeV           Y' mass         6.0 TeV           W' mass         3.6 TeV           Y' mass         3.6 TeV           Y' mass         3.6 TeV           Y' mass         3.6 TeV           W' mass         3.293 TeV           Wa mass         3.25 TeV           Wa mass         5.0 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1903.06248<br>1709.07242<br>1805.09299<br>1804.10823<br>CERN-EP-2019-100<br>1801.06992<br>ATLAS-CONF-2019-003<br>1712.06518<br>1807.10473<br>1904.12679 |
| CI               | Cl qqqq<br>Cl ℓℓqq<br>Cl tttt                                                                                                                                                                                                                                                                                                                                                    | _<br>2 e, μ<br>≥1 e,μ                                                                                                                                                                                      | 2 j<br>                                                                                                                                            | _<br>Yes                             | 37.0<br>36.1<br>36.1                                                      | A         21.8 TeV $\eta_{\tilde{t}L}$ A         40.0 TeV $\eta_{\tilde{L}L}$ A         2.57 TeV $ C_{4t}  = 4\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1703.09127<br>1707.02424<br>1811.02305                                                                                                                  |
| MD               | Axial-vector mediator (Dirac DM)<br>Colored scalar mediator (Dirac D<br>$VV\chi\chi$ EFT (Dirac DM)<br>Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)                                                                                                                                                                                                                         | 0 e, μ<br>M) 0 e, μ<br>0 e, μ<br>0 -1 e, μ                                                                                                                                                                 | $\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$                                                  | Yes<br>Yes<br>Yes<br>Yes             | 36.1<br>36.1<br>3.2<br>36.1                                               | $\begin{tabular}{ c c c c c c c } \hline $m_{med}$ & 1.55 \mbox{ TeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_t = 1.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $m(\chi) = 1 \mbox{ GeV}$ & $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $m(\chi) = 1 \mbox{ GeV}$ & $g_0 = 0.25, $g_0 = 0.0, $$ | 1711.03301<br>1711.03301<br>1608.02372<br>1812.09743                                                                                                    |
| ГØ               | Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                 | 1,2 e<br>1,2 μ<br>2 τ<br>0-1 e, μ                                                                                                                                                                          | ≥ 2 j<br>≥ 2 j<br>2 b<br>2 b                                                                                                                       | Yes<br>Yes<br>-<br>Yes               | 36.1<br>36.1<br>36.1<br>36.1                                              | LQ mass         1.4 TeV $\beta = 1$ LQ mass         1.55 TeV $\beta = 1$ LQ <sup>a</sup> mass         1.03 TeV $\beta = 1$ LQ <sup>a</sup> mass         900 GeV $\beta (LQ^a_2 \rightarrow t\tau) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1902.00377<br>1902.00377<br>1902.08103<br>1902.08103                                                                                                    |
| Heavy<br>quarks  | $\begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X\\ VLQ\;BB \rightarrow Wt/Zb + X\\ VLQ\;BT_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow Wt + X\\ VLQ\;Y \rightarrow Wb + X\\ VLQ\;Y \rightarrow Wb + X\\ VLQ\;B \rightarrow Hb + X\\ VLQ\;QQ \rightarrow WqWq \end{array}$                                                                                                              | multi-channe<br>multi-channe<br>$2(SS)/\geq 3 e, \mu$<br>$1 e, \mu$<br>$0 e, \mu, 2 \gamma$<br>$1 e, \mu$                                                                                                  | el<br>el<br>u ≥ 1 b, ≥ 1 j<br>≥ 1 b, ≥ 1j<br>≥ 1 b, ≥ 1j<br>≥ 4 j                                                                                  | Yes<br>Yes<br>Yes<br>Yes             | 36.1<br>36.1<br>36.1<br>36.1<br>79.8<br>20.3                              | T mass         1.37 TeV         SU(2) doublet           B mass         1.34 TeV         SU(2) doublet           T $_{5/3}$ mass         1.64 TeV         SU(2) doublet           Y mass         1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3} Wt) = 1$ B mass         1.85 TeV $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ B mass         1.21 TeV $\kappa_B = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1808.02343<br>1808.02343<br>1807.11883<br>1812.07343<br>ATLAS-CONF-2018-024<br>1509.04261                                                               |
| Excited fermions | Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited lepton $\ell^*$<br>Excited lepton $\nu^*$                                                                                                                                                                                                         | -<br>1 γ<br>-<br>3 e,μ<br>3 e,μ,τ                                                                                                                                                                          | 2 j<br>1 j<br>1 b, 1 j<br>–                                                                                                                        |                                      | 139<br>36.7<br>36.1<br>20.3<br>20.3                                       | q* mass         6.7 TeV         only u* and d*, A = m(q*)           q* mass         5.3 TeV         only u* and d*, A = m(q*)           b* mass         2.6 TeV         only u* and d*, A = m(q*)           t* mass         3.0 TeV         A = 3.0 TeV           v* mass         1.6 TeV         A = 1.6 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATLAS-CONF-2019-007<br>1709.10440<br>1805.09299<br>1411.2921<br>1411.2921                                                                               |
| Other            | Type III Seesaw<br>LRSM Majorana $\gamma$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$<br>Multi-charged particles<br>Magnetic monoples                                                                                                                                                                                | 1 e, μ<br>2 μ<br>2,3,4 e, μ (SS<br>3 e, μ, τ<br>-<br>-                                                                                                                                                     | $\geq 2j$ $2j$ $5) -$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$                                                                                          | Yes<br><br><br><br>                  | 79.8<br>36.1<br>36.1<br>20.3<br>36.1<br>34.4                              | N <sup>a</sup> mass     560 GeV       N <sub>R</sub> mass     3.2 TeV $H^{\pm\pm}$ mass     870 GeV $H^{\pm\pm}$ mass     870 GeV $H^{\pm\pm}$ mass     1.22 TeV       monopole mass     2.37 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ATLAS-CONF-2018-020<br>1809.11105<br>1710.09748<br>1411.2921<br>1812.03673<br>1905.10130                                                                |
|                  | $\sqrt{s} = 8 \text{ TeV}$                                                                                                                                                                                                                                                                                                                                                       | rtial data                                                                                                                                                                                                 | full da                                                                                                                                            | ata                                  |                                                                           | 10 <sup>-1</sup> 1 <sup>10</sup> Mass scale [TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                       |

 $^{\ast}\textsc{Only}$  a selection of the available mass limits on new states or phenomena is shown.

*†Small-radius (large-radius) jets are denoted by the letter j (J).* 

Full Run-2

parton-level generators assuming spin- $\frac{1}{2}$  excited quarks with the same coupling constants as SM quarks the intrinsic width of the  $q^*$  signals is comparable to the detector resolution



### **Full Run-2**



Observed and expected 95% CL lower limits on  $m_{Z'}$  for three Z' gauge boson models

|                | Lower limits on $m_{Z'}$ [TeV] |     |          |     |            |     |  |
|----------------|--------------------------------|-----|----------|-----|------------|-----|--|
| Model          | e                              | e   | $\mu\mu$ |     | $\ell\ell$ |     |  |
|                | obs                            | exp | obs      | exp | obs        | exp |  |
| $Z'_{\psi}$    | 4.3                            | 4.3 | 4.0      | 3.8 | 4.5        | 4.5 |  |
| $Z'_{\chi}$    | 4.6                            | 4.6 | 4.2      | 4.1 | 4.8        | 4.7 |  |
| $Z'_{\rm SSM}$ | 4.9                            | 4.9 | 4.5      | 4.4 | 5.1        | 5.0 |  |

111

# arXiv:1906.05609

**Full Run-2** 

## **Search for Physics BSM**



arXiv:1906.08589

**Full Run-2** 



arXiv:1906.08589

**Full Run-2** 



Jet mass distribution for data in the region enhanced in V+jets events after boson tagging

#### ATLAS-CONF-2019-008 **Search for Physics BSM** l p $\tilde{\chi}_1^0$ $\widetilde{I}_{L,R}^{*}\widetilde{I}_{L,R} \to I^{*} \mathrel{\textrm{I}} \widetilde{\chi}_{1}^{0} \; \widetilde{\chi}_{1}^{0}$ $\tilde{\chi}_1^0$ $m(\widetilde{\chi}_1^0)$ [GeV] **ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Expected Limit (±1 $\sigma_{exp}$ ) p500 - - -Observed Limit (±1 of susy before the observed Limit (±1 of susy before the observed Limit (±1 of sustained to be observed Limit (±1 of subserved Limit (±1 of s l All limits at 95% CL ATLAS 13 TeV, arXiv:1803.02762 400 300 200 100 500 600 700 100 200 300 400 $m(\tilde{I})$ [GeV]

|                                                                                        | MB-SSd | MB-GGd | MB-C   |
|----------------------------------------------------------------------------------------|--------|--------|--------|
| Nj                                                                                     | ≥ 2    | ≥ 4    | ≥ 2    |
| $p_{\mathrm{T}}(j_1)$ [GeV]                                                            | > 200  | > 200  | > 600  |
| $p_{\rm T}(j_{i=2,,N_{j_{\rm min}}})$ [GeV]                                            | > 100  | > 100  | > 50   |
| $ \eta(j_{i=1,,N_{j_{\min}}}) $                                                        | < 2.0  | < 2.0  | < 2.8  |
| $\Delta \phi(j_{1,2,(3)}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$ | > 0.8  | > 0.4  | > 0.4  |
| $\Delta \phi(j_{i>3}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}}$     | > 0.4  | > 0.2  | > 0.2  |
| Aplanarity                                                                             | -      | > 0.04 | -      |
| $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}  [{\rm GeV}^{1/2}]$                             | > 10   | > 10   | > 10   |
| $m_{\rm eff}[{\rm GeV}]$                                                               | > 1000 | > 1000 | > 1600 |

Table 3: Summary of preselection criteria used for the multi-bin search.



Figure 8: Observed  $m_{\text{eff}}$  distributions for the (a) MB-SSd, (b) MB-GGd and (c) MB-C regions obtained after applying the selection criteria from Table 3, before the final binning selections on this quantity. The histograms show the MC background predictions prior to the fits described in the text, normalized to the cross-section times integrated luminosity. The hatched (red) error bands indicate the combined experimental and MC statistical uncertainties. Expected distributions for benchmark signal model points, normalized using NLO+NLL cross-section (Section 3) times integrated luminosity, are also shown for comparison (masses in GeV).

118

## **Search for Physics BSM**

Table 1: Event selection in the two search regions. A dash means that the variable is not used for selection.

| Event                            | SR1                                                        | SR2                                                    |  |  |  |
|----------------------------------|------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| category                         | Additional forward jet                                     | Additional central jet                                 |  |  |  |
| Muons                            | OS, $p_{\rm T} > 250$                                      | GeV, $ \eta  < 2.1$                                    |  |  |  |
| $m_{\mu\mu}$                     | $m_{\mu\mu} >$                                             | 12 GeV                                                 |  |  |  |
| b-tagged jet                     | $p_{\rm T} > 30 {\rm GeV},  \eta  \le 2.4$                 |                                                        |  |  |  |
| Additional jet                   | $p_{\mathrm{T}} > 30  \mathrm{GeV}$ , $2.4 <  \eta  < 4.7$ | $p_{\rm T} > 30 { m GeV},  \eta  \le 2.4$              |  |  |  |
| Jet veto                         | No other jets $p_{\rm T} > 30 {\rm GeV},  \eta  \le 2.4$   | No jets $p_{\rm T} > 30 {\rm GeV}, 2.4 <  \eta  < 4.7$ |  |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$ | —                                                          | $<\!40\mathrm{GeV}$                                    |  |  |  |
| $\Delta \phi(\mu \mu, jj)$       | —                                                          | >2.5 rad                                               |  |  |  |

Table 3: The local significances, the measured fiducial signal cross sections with  $\pm 1$  s.d. uncertainties, and the upper limits at 95% CL, together with the values of  $N_{\rm S}$  for the two SRs and two collision energies. The reconstruction efficiencies and the integrated luminosities are also listed.

| $\sqrt{s}$ (TeV)                                | 8            | 3            | 13              |                |
|-------------------------------------------------|--------------|--------------|-----------------|----------------|
| Event category                                  | SR1          | SR2          | SR1             | SR2            |
| Local significance (s.d.)                       | 4.2          | 2.9          | 2.0             | 1.4 deficit    |
| Ns                                              | $22.0\pm7.6$ | $22.8\pm9.5$ | $14.5\pm9.3$    | $-14.9\pm10.1$ |
| N <sub>S</sub> observed upper limit at 95% CL   | 40.4         | 44.7         | 36.9            | 32.2           |
| N <sub>S</sub> expected upper limit at 95% CL   | 18.3         | 27.6         | 27.6            | 35.6           |
| $\varepsilon^{ m reco}$                         | 0.27 =       | ± 0.01       | $0.28 \pm 0.01$ |                |
| Integrated luminosity, ${\cal L}$ (fb $^{-1}$ ) | 19.7         | $\pm 0.5$    | $35.9 \pm 0.9$  |                |
| $\sigma_{\rm fid}$ (fb)                         | $4.1\pm1.4$  | $4.2\pm1.7$  | $1.4 \pm 0.9$   | $-1.5\pm1.0$   |
| Observed upper limit at 95% CL (fb)             | 7.6          | 8.4          | 3.7             | 3.2            |
| Expected upper limit at 95% CL (fb)             | 3.4          | 5.2          | 2.7             | 3.5            |



|                             | 8 T            | eV             | 13 TeV         |              |  |
|-----------------------------|----------------|----------------|----------------|--------------|--|
| Region                      | SR1            | SR2            | SR1            | SR2          |  |
| Local significance (28 GeV) | 0.5            | 0.5            | 0.7            | 0.2          |  |
| Max. significance           | 0.9 (29.5 GeV) | 1.1 (29.5 GeV) | 0.8 (27.5 GeV) | 2.1 (26 GeV) |  |

Table 2: Local significance for a dimuon excess at 28 GeV in each signal region and the maximum observed significance in the dimuon invariant mass probed from 26 to 30 GeV in steps of 0.5 GeV are quoted.

## Search for Physics BSM dark matter

If produced at the LHC, DM interactions will be mediated by particles that can also be directly searched for - complementarity

ATLAS released combination of  $E_{T,miss}$  based DM searches involving  $E_{T,miss}$  + X, X = jet,  $\gamma$ , W, Z, H, b(b), t(t) using large number of models

arXiv:1903.01400, up to 37 fb-1

If light enough, Higgs boson can decay to DM (H  $\rightarrow$  invisible) ATLAS combination: BR(H  $\rightarrow$  invisible) < 0.26 (0.17 expected)

arXiv:1904.05105, 36 fb-1







Corfou 2-9-2019

tan ß

$$\begin{aligned} \kappa_V &= \frac{s_d(m_A, \tan\beta) + \tan\beta \ s_u(m_A, \tan\beta)}{\sqrt{1 + \tan^2\beta}} \\ \kappa_u &= s_u(m_A, \tan\beta) \frac{\sqrt{1 + \tan^2\beta}}{\tan\beta} \\ \kappa_d &= s_d(m_A, \tan\beta) \sqrt{1 + \tan^2\beta} \quad , \end{aligned}$$

where the functions  $s_u$  and  $s_d$  are given by:

$$s_{u} = \frac{1}{\sqrt{1 + \frac{(m_{A}^{2} + m_{Z}^{2})^{2} \tan^{2}\beta}{(m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta))^{2}}}}$$
$$s_{d} = \frac{(m_{A}^{2} + m_{Z}^{2}) \tan\beta}{m_{Z}^{2} + m_{A}^{2} \tan^{2}\beta - m_{h}^{2}(1 + \tan^{2}\beta)} s_{u}}$$



Figure 14: Regions of the  $[m_A, \tan \beta]$  plane in the hMSSM excluded by fits to the measured rates of Higgs boson production and decays. Likelihood contours at 95% CL, defined in the asymptotic approximation by  $-2 \log \Lambda = 5.99$ , are drawn for both the data and the expectation of the SM Higgs sector. The regions to the left of the solid contour are excluded. The decoupling limit, in which all Higgs boson couplings tend to their SM value, corresponds to  $m_A \rightarrow \infty$ . The hMSSM is a good approximation of the MSSM only for moderate values of  $\tan \beta$ . For  $\tan \beta \gtrsim 10$ the scenario is approximate due to missing supersymmetry corrections in the Higgs boson coupling to b-quarks, and for  $\tan \beta$  of O(1) the precision of the approximation depends on  $m_A$  [34].

The Higgs boson couplings to vector bosons, up-type fermions and down-type fermions relative to the corresponding SM predictions are expressed as functions of the ratio of the vacuum expectation values of the Higgs doublets,  $\tan \beta$ , and the masses of the CP-odd scalar ( $m_A$ ), the Z boson, and of h.

#### © A.Kaczmarska Higgs Hunting 2019

#### H<sup>±</sup> predicted by 2HDM, Higgs triplets,... In Type II 2HDM:

- Main production in association with a top quark
- At high mass  $H^{\pm} \rightarrow tb$  is the dominant decay mode
- BR(H<sup>±</sup>  $\rightarrow$   $\tau$ v) significant for a large range of masses for high tanß





H<sup>±±</sup> predicted by Left-Right Symmetric Models (LRSM), Higgs Triplet Model (HTM), Zee-Babu and Georgi-Machacek models In LRSM and HTM:

- Dominant production at the LHC: DY pair production
- Decays:  $H^{\pm\pm} \rightarrow I^{\pm}I^{\pm}$  or  $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 
  - BR ~  $f(m_{H_{\pm\pm}}$ , vev of Higgs triplet)
  - Low m<sub>H±±</sub> and low vev : H<sup>±±</sup> → I<sup>±</sup>I<sup>±</sup> dominates

- H<sup>±</sup>→τν
- H⁺→ tb
- H±±H∓⇒4W
- H<sup>±±</sup>H<sup>∓∓</sup>→4l
- JHEP 09 (2018) 139 JHEP 11 (2018) 085 Eur. Phys. J. C (2019) 79 Eur. Phys. J. C78 (2018) 199

• H± -> W±Z Phys. Lett. B 787 (2019) 68

• H<sup>±</sup> -> cs Eur. Phys. J. C, 73 6 (2013) 2465, Run1



CMS PAS HIG-17-013

these yield an excess with approximately  $2.8\sigma$ local ( $1.3\sigma$  global) significance for the same hypothesis mass as for the 13 TeV dataset alone, mass of 95.3 GeV.









# Search for the standard model Higgs boson at LEP





hep-ex/0107029



ATLAS-CONF-2018-025

110

.. Worse limit







2 The SM BEH boson (final Run-1 ATLAS + CMS result)



Remember ATLAS has an uncertainty on W mass of 19 MeV Eur.Phys.J. C78 (2018) no.2, 110 note that  $\Delta m_{\rm H} = 0.1 \text{ GeV} \rightarrow \Delta (\text{BR}(\text{H}\rightarrow\text{ZZ})) / \text{BR}(\text{H}\rightarrow\text{ZZ}) \sim 1\%$ 

At longer term uncertainty will be dominated by 41 ( for  $H \rightarrow \gamma \gamma$  : need to extrapolate from e to  $\gamma$  !)

# 2 The SM BEH boson ( $H \rightarrow \tau \tau$ )



**2** The SM BEH boson ( $H \rightarrow \tau \tau$ )



# 2 The SM BEH boson $(H \rightarrow \tau \tau)$



140

## 2 The SM BEH boson ( $H \rightarrow \tau \tau$ ) $\tau$ reconstruction



reconstruction of Higgs mass with collinear approximation and angle between the two  $\tau$ 



Improvement comes from requiring that the relative orientations of the neutrinos and other decay products are consistent with the mass and kinematics of a  $\tau$  lepton decay

# 2 The SM BEH boson (H→bb) targetting VBF



#### © K.Becker Higgs Hunting 2019

# 2 The SM BEH boson (H→bb) targetting gg→H J

ATLAS-CONF-2018-052 Events / 5 GeV Boosted analysis: 2 large-R jets V+Jets (µ., = 1.5) 2 b-tagged track jets in one large R-jet Signal Region - Top Higgs-candidate jet: p<sub>T</sub> > 480 GeV  $H \rightarrow bb$ decay Fit to the jet-mass spectrum 10 • Significance:  $1.6\sigma$  obs.  $(0.28\sigma \text{ exp.})$ Data-QCD-tī Needs more data • Analysis is sensitive to  $p_T^H > 480 \ GeV$ Data-QCD-tī-V Promising analysis to test for deviations from the SM and to include in STXS cross sections! 80 120 140 160 180 220 Signal candidate large-R jet mass [GeV] Higgs peak

© K.Becker Higgs Hunting 2019

# 2 The SM BEH boson STXS = simplified template cross sections



144
designed to measure the different Higgs boson production processes in specific regions of phase space and in a way that can be easily combined with other decay channels

Compared to the signal strength measurements they provide finer granularity

theory uncertainties are smaller

In fact there are 31 STXS, but measure 9 (lack of statistics)

arXiv:1802.04146



# **2** The SM BEH boson ( $H \rightarrow bb$ ) STXS







# 2 The SM BEH boson ( $H \rightarrow bb$ )







# **2** The SM BEH boson $ttH (\rightarrow \gamma \gamma)$

| Category         | $\sigma_{68}$ (GeV) | σ <sub>90</sub> (GeV) |
|------------------|---------------------|-----------------------|
| "Lep" Category 1 | 1.56                | 2.80                  |
| "Lep" Category 2 | 1.75                | 3.13                  |
| "Lep" Category 3 | 1.85                | 3.30                  |
| "Had" Category 1 | 1.39                | 2.48                  |
| "Had" Category 2 | 1.58                | 2.84                  |
| "Had" Category 3 | 1.65                | 2.96                  |
| "Had" Category 4 | 1.67                | 3.00                  |





# 2 The SM BEH boson categories

Several categories are made in order to enhance the sensitivity in order to have different S/B , based on

- number of jets
- different resolutions
- different kinematics giving different S/B

S/B has to be different for various categories This is needed if we want to gain in statistical significance if  $S_1 / B_1 = S_2 / B_2$ then  $S_1 / \sqrt{B_1} \oplus S_2 / \sqrt{B_2} = (S_1 + S_2) / \sqrt{(B_1 + B_2)}$ 

and one does not gain making categories

(one of) the work of the experimentalist is to find categories with different S/B !

# 2 The SM BEH boson invisible H decays

three bins of  $m_{jj}$  defined by boundaries at [1, 1.5, 2, -] TeV

For the SR, an event is required to have

- no isolated electron or muon,
- a leading jet with  $p_{\rm T} > 80 \,{\rm GeV}$ ,
- a subleading jet with  $p_{\rm T} > 50 \,{\rm GeV}$ ,
- no additional jets with  $p_{\rm T} > 25 \,{\rm GeV}$ ,
- $E_{\rm T}^{\rm miss} > 180 \,{\rm GeV},$
- $H_{\rm T}^{\rm miss} > 150 \,{\rm GeV}$ .

The two jets are required to have the following properties:

- not be aligned with  $\vec{E}_{T}^{\text{miss}}$ ,  $|\Delta \phi_{j-\text{MET}}| > 1$ ,
- not be back-to-back,  $|\Delta \phi_{jj}| < 1.8$ ,
- be well separated in  $\eta$ ,  $|\Delta \eta_{jj}| > 4.8$ ,
- be in opposite  $\eta$  hemispheres,  $\eta_{j_1} \cdot \eta_{j_2} < 0$ ,
- $m_{jj} > 1$  TeV.



| Category     | Data   | $S_{SM}$ | S   | В      | $S/\sqrt{B}$ | <i>S/B</i> [%] |
|--------------|--------|----------|-----|--------|--------------|----------------|
| VBF High     | 40     | 4.5      | 2.3 | 34     | 0.39         | 6.6            |
| VBF Medium   | 109    | 5.5      | 2.8 | 100    | 0.28         | 2.8            |
| VBF Low      | 450    | 9.6      | 4.9 | 420    | 0.24         | 1.2            |
| 2-jet High   | 3400   | 38       | 19  | 3440   | 0.33         | 0.6            |
| 2-jet Medium | 13938  | 70       | 35  | 13910  | 0.30         | 0.3            |
| 2-jet Low    | 40747  | 75       | 38  | 40860  | 0.19         | 0.1            |
| 1-jet High   | 2885   | 32       | 16  | 2830   | 0.31         | 0.6            |
| 1-jet Medium | 24919  | 107      | 54  | 24890  | 0.35         | 0.2            |
| 1-jet Low    | 77482  | 134      | 68  | 77670  | 0.24         | 0.1            |
| 0-jet High   | 24777  | 85       | 43  | 24740  | 0.27         | 0.2            |
| 0-jet Medium | 85281  | 155      | 79  | 85000  | 0.27         | 0.1            |
| 0-jet Low    | 180478 | 144      | 73  | 180000 | 0.17         | < 0.1          |

ATLAS-CONF-2019-028

**2** The SM BEH boson  $H \rightarrow 4l$ 



# 2 The SM BEH boson $H \rightarrow \gamma \gamma$

Table 3: The breakdown of uncertainties on the inclusive diphoton fiducial cross section measurement. The uncertainties from the statistics of the data and the systematic sources affecting the signal extraction are shown. The remaining uncertainties are associated with the unfolding correction factor and luminosity.

| Source                                 | Uncertainty (%) |
|----------------------------------------|-----------------|
| Statistics                             | 6.9             |
| Signal extraction syst.                | 7.9             |
| Photon energy scale & resolution       | 4.6             |
| Background modelling (spurious signal) | 6.4             |
| Correction factor                      | 2.6             |
| Pile-up modelling                      | 2.0             |
| Photon identification efficiency       | 1.2             |
| Photon isolation efficiency            | 1.1             |
| Trigger efficiency                     | 0.5             |
| Theoretical modelling                  | 0.5             |
| Photon energy scale & resolution       | 0.1             |
| Luminosity                             | 1.7             |
| Total                                  | 11.0            |

### ATLAS-CONF-2019-029 139 fb<sup>-1</sup>

| Source                                | Uncertainty (%)  |  |
|---------------------------------------|------------------|--|
| Fit (stat.)                           | 10               |  |
| Fit (syst.)                           | 8.3              |  |
| Photon energy scale & resolution      | 4.0              |  |
| Background modeling (spurious signal) | 7.3              |  |
| Correction factor                     | 5.2              |  |
| Photon isolation efficiency           | 4.6              |  |
| Pileup                                | 1.9              |  |
| Photon ID efficiency                  | 1.3              |  |
| Trigger efficiency                    | 0.7              |  |
| Dalitz Decays                         | 0.4              |  |
| Theoretical modeling                  | $^{+0.3}_{-0.4}$ |  |
| Diphoton vertex selection             | 0.1              |  |
| Photon energy scale & resolution      | 0.1              |  |
| Luminosity                            | 2.0              |  |
| Total                                 | 14               |  |

## ATLAS-CONF-2018-028 **80 fb**<sup>-1</sup>

### Uncertainty in fiducial cross section

| Source                             |          |
|------------------------------------|----------|
|                                    | Diphoton |
| Fit (stat.)                        | 17%      |
| Fit (syst.)                        | 6%       |
| Photon energy scale & resolution   | 4.3%     |
| Background modelling               | 4.2%     |
| Photon efficiency                  | 1.8%     |
| Jet energy scale/resolution        | -        |
| b-jet flavor tagging               | -        |
| Lepton selection                   | -        |
| Pileup                             | 1.1%     |
| Theoretical modeling               | 0.1%     |
| Signal composition                 | 0.1%     |
| Higgs boson $p_{\rm T}^H \&  y_H $ | 0.1%     |
| UE/PS                              | -        |
| Luminosity                         | 3.2%     |
| Total                              | 18%      |

| Uncertainty Group                         | $\sigma_{\mu}^{\text{syst.}}$ |
|-------------------------------------------|-------------------------------|
| Theory (QCD)                              | 0.041                         |
| Theory $(B(H \rightarrow \gamma \gamma))$ | 0.028                         |
| Theory (PDF+ $\alpha_S$ )                 | 0.021                         |
| Theory (UE/PS)                            | 0.026                         |
| Luminosity                                | 0.031                         |
| Experimental (yield)                      | 0.017                         |
| Experimental (migrations)                 | 0.015                         |
| Mass resolution                           | 0.029                         |
| Mass scale                                | 0.006                         |
| Background shape                          | 0.027                         |
|                                           |                               |

Phys.Rev. D98 (2018) 052005

**36 fb**<sup>-1</sup>

# **2** The SM BEH boson $H \rightarrow \gamma \gamma$



Figure 14: The modification of the  $p_T^{\gamma\gamma}$  differential cross section for different values of  $\kappa_c$ , shown separately for the cross sections of the ggF and  $c\bar{c} \rightarrow H$  production modes. As expected, for a given value of  $\kappa_c$ , the effect on the  $c\bar{c} \rightarrow H$  production cross section is larger than that on the ggF production.



Figure 15: The profile likelihood ratio,  $\lambda$ , shown as a function of  $\kappa_c$  for the fit to the  $p_T^{\gamma\gamma}$  distribution. The intersection of the  $-2 \ln \Lambda$  curve with the horizontal line provides the 95% confidence intervals.

# **3** Search for a pair of BEH bosons constraint of the H self-coupling from H differential production and decay mesurements



Figure 3: Schematic diagram of the VBF + V(had)H (left) and V(lep)H (right) STXS regions.  $p_T^{Hjj}$  is the  $p_T$  of the Higgs boson plus two jets system,  $p_T^V$  is the  $p_T$  of the vector boson V in the VH production mode,  $p_T^{j1}$  is the  $p_T$  of the jet with the highest  $p_T$ . In the VH,  $H \rightarrow b\bar{b}$  analysis, the separation in jet number of the  $p_T^V$  [150, 250] region in the VH production mode has been ignored, merging the 0 and the  $\geq 1$  jet regions. The diagrams are obtained from Ref. [14].





Figure 2: The cross-sections for longitudinal gauge-boson scattering resulting from subsets of the tree-level diagrams: (a) diagrams involving only three-gauge-boson couplings, (b) diagram involving only four-gauge-boson couplings, (c) diagrams involving Higgs bosons.

J Historical introduction, Setting the stage
J Results from (run 1 and) run 2
J Future of ATLAS, run 3, HL-LHC
J Conclusions
J Backup

# S Historical introduction, Setting the stage S Results from (run 1 and) run 2 S Future of ATLAS, run 3, HL-LHC S Conclusions S Backup