Future Circular Collider Study

OVE / Emmanuel Tsesmelis CERN & University of Oxford **19TH HELLENIC SCHOOL AND WORKSHOPS ON ELEMENTARY PARTICLE PHYSICS AND GRAVITY** Corfu, Greece 6 September 2019

ARIES OF STATA

Gratefully acknowledging input from FCC coordination group

E-JADE http://cern.ch/fcc

FCC

Horizon 2020

European Union funding

for Research & Innovation Wenninger

European

photo:

Commission

Work supported by the European Commission under the HORIZON 2020 projects EuroCirC grant agreement 654305; EASITrain, grant agreement no. 764879; ARIES, grant agreement 720971: and E IADE contract no 645470

LHC

HE-LHC

SPS

Future Circular Collider Study

International FCC collaboration (CERN as host lab) to study:

- ~100 km tunnel infrastructure in Geneva area, linked to CERN
 - e⁺e⁻ collider (FCC-ee), as potential first step
- *pp*-collider (*FCC-hh*)

 long-term goal,
 defining infrastructure

~16 T \Rightarrow 100 TeV *pp* in 100 km

 $f \neq_i y_{ij} \neq_j p + h.c.$ $f p_{m} p^{2} - V(p)$ Physics Cases

• **HE-LHC** with *FCC-hh* technology

FCC Study: Physics & Performance Targets

FCC-ée:

- Exploration of 10 to 100 TeV energy scale via couplings with precision measurements
- Exploration of IO for the precision on many EW quantities • Exploration of IO for the IO for the Parent of the States via Couplings with) precision effects of the forments ible luminosities at Z, WW, ZH and the working points FCC-hh:
- ~20,50 fold improved precision on many EW quantities , Huge production rates for single and multiple production of SM bosops (H,WZ) and quarks Wzachiwe design for 100 TeV CM ENEDRY Szintegrated Turningsity 920 about 10 years ttep://ings)
- Doubling LHC collision energy with FCC-hh 16 T magnet technology • Machine design for highest/possible duminosities at Zç WW, ZH and Machine design within constraints from LHC CE and based on HL-LHC and FCC technologies ttbar Working points

FCC-hh:

- Highest center-of-mass energy for direct production up to 20 30 TeV
- Huge production rates for single and multiple production of SM bosons (H,W,Z) and quarks
- >Machine design for ~100 TeV CM energy & integrated luminosity

Higgs Couplings

Christophe Grojean ECFA-EPS Special Session Ghent, July 2019

Higgscouplings whose sensitivity improves by 2/5/10 compared to HL-LHC

			Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
Hememann Ior Higgs@FU WG	Initial run	CLIC380	9	6	4	7
		FCC-ee240	10	8	3	9
		CEPC	10	8	3	10
		ILC250	10	7	3	11
	2 nd /3rd	FCC-ee365	10	8	6	15
		CLIC1500	10	7	7	17
	Run ee	HE-LHC	1	0	0	20
		ILC500	10	8	6	22
'n	hh	CLIC3000	11	7	7	28
	ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

All future colliders have rich potential to outperform (HL-) LHC in Higgs physics Extensive reach in BSM discoveries

FCC-ee Basic Design Choices

- **Double ring** e+ e- collider ~100 km
- Common footprint with FCC-hh, except around IPs
- Asymmetric IR layout and optics to limit synchrotron radiation towards the detector
- 2 IPs, large horizontal crossing angle 30 mrad, crab-waist optics
- Synchrotron radiation power 50 MW/beam
 at all beam energies
- Top-up injection scheme for high luminosity
- Requires booster synchrotron in collider tunnel

FCC-ee Collider Parameters

parameter	Z	WW	H (ZH)	ttbar
Beam energy [GeV]	45	80	120	182.5
Beam current [mA]	1390	147	29	5.4
No. bunches/beam	16640	2000	393	48
Bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
Total RF voltage [GV]	0.1	0.44	2.0	10.9
Long. damping time [turns]	1281	235	70	20
Horizontal beta* [m]	0.15	0.2	0.3	1
Vertical beta* [mm]	0.8	1	1	1.6
Horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
Vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
Bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
Luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	>200	>25	>7	>1.4
Beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

Lepton Collider Luminosities

h ee he

FCC-ee Operation Model

working point	luminosity/ IP [10 ³⁴ cm ⁻² s ⁻ ¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]	
Z first 2 years	100	26 ab ⁻¹ /year	150 ab -1	4	
Z later	200	48 ab ⁻¹ /year			
W	25	6 ab ⁻¹ /year	10 ab -1	2	
Н	7.0	1.7 ab ⁻¹ /year	5 ab ⁻¹	3	
machine modification for RF installation & rearrangement: 1 year					
top 1st year (350	0.8	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1	
prògramme du	uration: 1	5 years - includ	ing mach	nine mod	
ton later (B65 GeV)	¹ years,	Płaseyza(top):	65years	4	

FCC-ee RF Staging Scenario

Progress with SCRF cavity R&D Programme

5-cell 800 MHz cavity, JLAB prototype for both FCC-ee (t-ah EDI (DEDI

LAB, Oct 25, F. Marhauser et

Seamless 400 MHz singlecell cavity formed by Legnaro, Feb 2018

Palmier

Tooling faurleated and successfully tested with an Aluminium cavity.

CERN half-cells formed using Electro-Hydro-Forming (EHF) at Bmax.

Croteau, EASITrain PhD S

High strain rate technology using shockwaves in water from HV discharge. EHF investigated for half-cells and seamless Nb and Cu cavities.

Prototypes of FCC-ee Low-power Magnets

Twin-dipole design with 2X power saving 16 MW (at 175 GeV), with Al busbars

first 1 m prototype

1.0 T

0.5 T

twin F/D quad design with 2X power saving 25 MW (at 175 GeV), with Cu conductor

h ee he

parameter	FCC-hh		HE-LHC	HL-LHC	LHC
Collision energy cms [TeV]	100		27	14	14
Dipole field [T]	16		16	8.33	8.33
Circumference [km]	97.75		26.7	26.7	26.7
Beam current [A]	0.5		1.27	1.1	0.58
Bunch intensity [10 ¹¹]	1	1	2.5	2.2	1.15
Bunch spacing [ns]	25	25	25	25	25
Synchr. rad. power / ring [kW]	2400		101	7.3	3.6
SR power / length [W/m/ap.]	28.4		4.1	0.33	0.17
Long. emit. damping time [h]	0.54		1.8	12.9	12.9
Beta* [m]	1.1	0.3	0.45	0.15 (min.)	0.55
Normalized emittance [µm]	2.2		2.5	2.5	3.75
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	16	5 (lev.)	1
Events/bunch crossing	170	1000	460	132	27
Stored energy/beam [GJ]	8.4		1.4	0.7	0.36

here where the second s

- Circumference 97.8 km
- Two high-luminosity experiments (A & G)
- Two other experiments (L & B) combined with injection upstream of experiments
- Two collimation insertions
 - betatron cleaning (J)
 - momentum cleaning (F)
- Extraction/dump insertion (D)
- RF insertion (H)
- Integrated optics for full ring established, beam dynamics ¹³

FCC-hh Injector Options and Transfer Lines

hh ee he

Worldwide FCC Nb₃Sn Programme

Main development goal is wire performance increase:

- J_c (16T, 4.2K) > 1500 A/mm² $\stackrel{i}{=}$ 50% increase wrt HL-LHC wire
- Reduction of coil & magnet cross-section

After only one year development, **prototype Nb₃Sn wires from several new industrial FCC partners already achieve HL-LHC performance**

Conductor activities ongoing for FCC:

- Bochvar Institute (production at TVEL), Russia
- KEK (Jastec and Furukawa), Japan
- KAT, Korea
- Columbus, Italy
- University of Geneva, Switzerland
- Technical University of Vienna, Austria
- SPIN, Italy
- University of Freiburg, Germany

16 T Dipole Design Activities and Options

Russian 16 T magnet programme coordinated by BINP.

hh ee he

U.S. MAGNET DEVELOPMENT 15 T Dipole Demonstrator (US-MDP) CENERGY Office of PROGRAM

Iron Laminations

AL I-Clamps

Fillers

StSt Skin

End Plates

Axial Rods

- Magnet assembly nearly completed at FNAL, electrical tests ongoing
- First magnet test in coming weeks

Supply and Distribution of Electrical Energy

Additional 200 MW available for FCC

Per-point power requirements as input for infrastructure-optimized conceptual design. (Peak FCC-ee 260 - 340 MW, total FCC-hh 550 MW)

3 x 400 kV connections + 135 kV underground power distribution (NC) If one power source goes down fall back to "degraded mode": FCC remains cold, vacuum preserved, controls on, RF off, no beam ("standby"). All FCC points supplied from 2 other 400 kV points, through the power transmission line.

FCC Implementation - Baseline Footprint

Present baseline position was established considering:

lowest risk for construction

h ee he

- fastest and cheapest construction
- feasible positions for large span caverns (most challenging structures)

Next step: review of surface site locations and machine layout

FCC – Tunnel Integration in Arcs

h ee he

CE Schedule Studies

- Total construction duration 7 years
- First sectors ready after 4.5 years

FCC Work with Host States

General Secretariat of the Region Auvergne-Rhône-Alpes and notified body "Centre d'études et d'expertise sur les risques, l'environnement, la mobilité et l'aménagement"

- Working group with representatives of Federation, Canton and State of Geneva and representation of Switzerland at the international organisations and consultancy companies
- Administrative processes for project preparatory phase developed.
- First review of tunnel placement performed.
- Requirements for urbanistic, environmental, economic impact, land acquisition and construction permit related processes defined.
- For 2019, common optimization of collider tunnel and surface site infrastructure planned.

FCC Integrated Project Technical Timeline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 15 years operation 34 35 36 37 38 39 40 41 42 43 ~ 25 years operation 70

hh ee he

Input to Cost Estimates

- Consultants cost study for complete CE construction (including access roads, spoil transport and removal cost (normalized with ~10 large European tunnel projects).
- Machine technical designs as available.
- Scaling from LEP & LHC costs, HL-LHC & LIU activities.
- Further input from other machines and research centres, e.g. SuperKEKB injector linac, etc.

FCC-ee Cost Estimate

Total construction cost Phase 1 (Z, W, H) amounts to 10,500 MCHF

- 5,400 MCHF for civil engineering (51%)
- 2,000 MCHF for technical infrastructure (19%)
- 3,100 MCHF accelerator and injector (20%)

Complement cost for Phase 2 (ttbar) amounts to 1,100 MCHF

- 900 MCHF for RF, 200 MCHF for associated technical infrastructure

FCC-hh Cost Estimate

Total construction cost in "stand-alone" is 24,000 MCHF

- 13,600 MCHF accelerator and injector (57%)
 - Major part corresponds to the 4,700 Nb₃Sn 16 T main dipole magnets, totalling 9,400 MCHF, at cost target of 2 MCHF/magnet.
- 6,000 MCHF construction cost for surface and underground civil engineering (25%)
- 4,400 MCHF for technical infrastructures (18%)
- Total construction cost in "combined mode" following FCC-ee is 17,000 MCHF.
- CE and TI from FCC-ee re-used
- 600 MCHF for additional CE structures:
 - Two experiment caverns for the lower luminosity experiments
 - Beam dump tunnels and the two transfer lines from LHC
- 2,800 MCHF for additional TI, driven by cryogenics infrastructure

FCC-integrated Cost Estimate

Domain	Cost in MCHF	Stage 1: Civil Engineering
Stage 1 - Civil Engineering	5,400	19%
Stage 1 - Technical Infrastructure	2,200	Stage 1 Technical Infrastructure Stage 2 FCC-hh Machine and Injector complex
Stage 1 - FCC-ee Machine and Injector Complex	4,000	8% 47%
Stage 2 - Civil Engineering complement	600	Stage 1 FCC-ee Machine and Injector Complex 14%
Stage 2 - Technical Infrastructure adaptation	2,800	Stage 2 Technical
Stage 2 - FCC-hh Machine and Injector complex	13,600	Infrastructure adaptation 10%
TOTAL construction cost for integral FCC project	28,600	Stage 2 Civil Engineering complement 2%

- FCC-Conceptual Design Reports:
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - Preprints available since 15 January 2019 on http://fcc-cdr.web.cern.ch/
 - CDRs submitted to European Physical Journal C (Vol 1) and ST (Vol 2 4)

- Summary documents provided to EPPSU SG in December 2018
 - FCC-integral, FCC-ee, FCC-hh, HE-LHC
 - Accessible on http://fcc-cdr.web.cern.ch/

Status of Global FCC Collaboration

From Greece AUTH, Thesaloniki HOU, Patras UOA, Athens UPATRAS, Patras

13 6

Institutes

25

Companies

Countries

Final meeting of EuroCirCol DS (H2020 financed)

Some key topics:

BRUSSELS, BELGIUM FCC physics 24 - 28 JUNE 2019

Crowne Plaza Brussels

http://fccweek2019.web.cern.ch/

Le Palace

Studies on Tunnel Implementation and subsequent machine adaptation

R&D progress on SRF and SCM

FCC-ee : Injector chain MDI/IR optimization Machine optimisation

Future of HEP

Conclusions

- The FCC study focuses on high-performance energy frontier circular colliders for the post-LHC era.
- First phase of FCC conceptual design studies is completed with established baseline machine designs and performance matching the demanding physics requirements, documented in four Conceptual Design Reports.
- Worldwide R&D programmes in place on Nb₃Sn superconductor, high-field magnets and highly-efficient SC RF.
- International FCC collaboration is growing steadily, there are many R&D opportunities and all the community is invited to join.
- Next step, in parallel to ESU process, is development of a specific implementation scenario, accompanied by machine optimization, physics studies and technology R&D.

