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Generalized para-complex structures

Generalized product structures:

JeEnd(TOTY), J°=1, (J.T)=1{(,")

o Different from gen. (para-)complex, because their integrability is not well defined by
Dorfman bracket

o Generalized metric G is a non-degenerate case of generalized product structure
— its eigenbundles C. are isomorphic to T, so that

()¢ = (G-, ),
defines a metricon T @ T*.
o Generalized metrics are always given by the pair (g, b)— 2D sigma models:

Sa(®) = /z [g(®) + b(®)];D4d' D_d/,
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o This is invariant under the usual (1,1) SUSY Q} = 52~ + 6% 0.

Extension to (2,2) twisted SUSY amounts to adding supercharges @7 that satisfy
Such SUSY requires an additional structure on the target:
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o Generalized para-Kahler (GpK) structure is a commuting pair (G, K5), where

o G is a split-signature generalized metric, i.e. the metricon T @ T* defined by
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Generalized para-Kahler geometry

o Generalized para-Kahler (GpK) structure is a commuting pair (G, K5), where

o G is a split-signature generalized metric, i.e. the metricon T @ T* defined by
o Note, because (G, K1) commute, K_ = K1G is also generalized para-complex

('7 '>Q = (g7 '>7
has split signature.

@ This is equivalent to the data of two para-Hermitian structures (1, K+) and a b-field:
Ki:;(ﬂ o) (KJriK, witFw! > < 1 o).
2\b 1) \wyFw. —(Kixk®))\-b 1
@ The integrability of XL+ as generalized structures is equivalent to K+ being
integrable and

ViKL =0, VI =V"+ %H.

o Canonical example is given by the para-Kahler limit, Ky = £K_, H=b=0.
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The (2, 2) twisted SUSY has an R-symmetry SO(1,1) x SO(1,1) which admits two
different topological twists, each related to either X, or K- — A/B-type twists

In the para-Kahler limit, we get the para-Kahler model:

S(d,d) = /d2xd20d2§K(¢,5>),

Here, K is the scalar para-Kahler potential
Recall: in this limit 1 take the form

K 0 0 wt
K*‘(o fK*)’ ’C*_(w o)‘

The A-type twist is given by K_, i.e. by the underlying symplectic structure,
therefore is the same as for usual (complex) Kahler model

The B-type twist is given by K, i.e. by the para-complex structure, therefore gives
a new example of a topological theory
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o GpK manifolds are para-Hermitian in two different ways
o [Freidel, Rudolph, DS "18]: “On any para-Hermitian manifold (M, n, K), there exists
a unique D-bracket [, ] on the tangent bundle appropriately compatible with
(n, K) and satisfying Leibniz property”
— Locally, one recovers the D-bracket known from DFT
X, Yl = X'aY! = Y'o, X! + nun' Yok x*

o [DS '18]: “Fluxes of the D-bracket are a relative phenomenon between two
para-Hermitian structures K and K”"

FX,Y,2)=n(X,Y]-[X,Y],2)
@ The D-brackets [, ]+ associated to the para-Hermitian structures (7, K+) have a
relative flux given by the H-flux of the Courant algebroid:

FX,Y,Z2)=n([X,Y]s - [X, Y]-,2) = H(X, Y, 2).
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Generalized Chiral Sigma Models

o Let us return to the (1,1) sigma model on a Riemannian target (M, g):
San(®) = [[g(<1>)+ b(D)]; D+ d' DD,
s

S(1,1) is classically invariant under superconformal symmetries dg, with currents T+

[Stojevic "10]: Consider a situation when the superconformal symmetries factorize,
Sg. = 64, + 65, and the currents split as

Ty =Ti+ T2
What is the target geometry required for this? — M needs to carry a pair of chiral
structures J4, such that

g(Jsr i) = g(), Vile—0, VE—Ve+ %H,

The splitting is then according to projections Pi = $(1+ J+) and P = (1L —Jx)
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Generalized Chiral Sigma Models

o Let us return to the (1,1) sigma model on a Riemannian target (M, g):
San(®) = [[g(<1>)+ b(D)]; D+ b D_ D,
s

S(1,1) is classically invariant under superconformal symmetries dg, with currents T4

[Stojevic "10]: Consider a situation when the superconformal symmetries factorize,
Sg. = 64, + 65, and the currents split as

Ty =Ti+ T2
What is the target geometry required for this? — M needs to carry a pair of chiral
structures J4, such that

g(sr i) = g(), Vile—0, VE—Ve+ %H,

The splitting is then according to projections PL = $(1+ J+) and P = (1L —Jx)
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@ For the superconformal algebra to factorize, the chiral structures J+ need not be
integrable — the generalized chiral structure is weakly integrable
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@ For the superconformal algebra to factorize, the chiral structures J+ need not be
integrable — the generalized chiral structure is weakly integrable
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Generalized chiral Geometry

o Generalized chiral structure: (G, 7,) is a commuting pair (G, J), where

o J4+ and J- = J4+G are a gen. para-complex structures
o G is a generalized metric

@ This is equivalent to the data of two chiral structures (g, J+) and a b-field:
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=2 DG BIk) (G D)
where N+ = gJ+.

@ Canonical example is given by a chiral structure (1, g, J):

_(J 0 (0 n7t (0 H!
@ For the superconformal algebra to factorize, the chiral structures J+ need not be

integrable — the generalized chiral structure is weakly integrable
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@ In contrast to the symmetries d., , the induced symmetries 612 then do not have a
space-time interpretation
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Generalized chiral Geometry

o Generalized chiral structure: (G, 7,) is a commuting pair (G, J), where

o J4+ and J- = J4+G are a gen. para-complex structures
o G is a generalized metric

@ This is equivalent to the data of two chiral structures (g, J+) and a b-field:
Jo= L1 0\ (it o Fn-t\ (1 0
=2 DG BIk) (G D)
where N+ = gJ+.

@ Canonical example is given by a chiral structure (1, g, J):

_(J 0 (0 n7t (0 H!

@ For the superconformal algebra to factorize, the chiral structures J+ need not be
integrable — the generalized chiral structure is weakly integrable

V)i =0 DJ: =0.

@ In contrast to the symmetries d., , the induced symmetries 612 then do not have a
space-time interpretation

@ The author relates this to non-geometric backgrounds
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o For GpK geometry, this is para-Hyper-Kahler geometry:

o {Ki,K_}=0= 1 = K K_ is a complex structure — (K+,/) is a
para-hypercomplex triple

-P=Ki=1
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@ For generalized chiral geometry, one gets again a para-hypercomplex triple
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Born Geometry as Generalized Chiral Geometry

Recall: The commuting pair construction on T & T always yields a pair of tangent
bundle structures and a compatible metric on T

T gen. complex ) (g, I+) bi-Hermitian
K gen. para-complex » + commuting G =< (n, K+) bi-para-Hermitian
J gen. chiral (g, J+) bi-chiral

An important case occurs when the corresponding pair of tangent bundle structures
anti-commute
o For GK geometry, this gives Hyper-Kahler geometry
o For GpK geometry, this is para-Hyper-Kahler geometry:
o {Ki,K_}=0= 1 = K K_ is a complex structure — (K+,/) is a
para-hypercomplex triple
-P=Ki=1

e By contracting n with (/, K+) one gets three different symplectic structures

@ For generalized chiral geometry, one gets again a para-hypercomplex triple
(J+, 1 = JyJ_), but orthogonality is different
— This is Born geometry (7, K, J), upon identifying
n=ny, J=Jy, K=J_
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Conclusions

Thank you for your attention!
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