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Para-Complex and Born Geometry

Para-Complex and Born Geometry

Para-Complex structure: K ∈ End(TM), K 2 = 1, K 6= ±1, ±1 eigenbundles L, L̃
have same rank

Integrability: ⇔ L, L̃ integrable real distributions
Locally, M = M+ ×M− (such that TM+ = L, TM− = L̃) and we get coordinates
(x i , x̃i ).

Let η be signature (n, n) metric. There are 2 orthogonality options:
η(K ·,K ·) = −η(·, ·): (η,K) is a para-Hermitian
−→ Fundamental form ω = ηK , when dω = 0: (η,K) is called para-Kähler
η(K ·,K ·) = η(·, ·): (η,K) is a chiral structure (customarily denoted (η, J))
−→ ηJ = H is a metric.

Geometry (η,K , J) where K is para-Hermitian and J is chiral and {K , J} = 0 is
called Born geometry

Physics:

This geometry naturally arises as an extended space-time of DFT:
K −→ coordinates x i and x̃i represent spacetime and winding coordinates, respectively
J is equivalent to a choice of a spacetime metric (i.e. metric on L)
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Review of Generalized Geometry

Generalized Geometry

On T ⊕ T ∗ we have a natural pairing 〈·, ·〉:
〈X + α,Y + β〉 = α(Y ) + β(X )

and fixing H ∈ Ω3
cl , we get the (twisted) Dorfman bracket:

[X + α,Y + β] = [X ,Y ] + LXβ − ıY dα + H(X ,Y ).

Generalized para-complex structure:

K ∈ End(T ⊕ T ∗), K2 = 1, 〈K·,K·〉 = −〈·, ·〉

Symplectic

Product, Para-Complex

Poisson, Pre-Symplectic· · ·

Generalized
Para-Complex

Structure

Examples:

(
0 ω−1

ω 0

)
,

(
K 0
0 −K∗

)
,

(
1 Π
0 −1

)
, · · ·

Integrability

dω = 0

Eigenbundles involutive under [ , ]

[Π,Π] = 0 · · ·

Eigenbundles involutive under [ , ]
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Generalized para-complex structures

Generalized product structures:

J ∈ End(T ⊕ T ∗), J 2 = 1, 〈J ·,J ·〉 = 〈·, ·〉

Different from gen. (para-)complex, because their integrability is not well defined by
Dorfman bracket

Generalized metric G is a non-degenerate case of generalized product structure
−→ its eigenbundles C± are isomorphic to T , so that

〈·, ·〉G = 〈G·, ·〉,
defines a metric on T ⊕ T ∗.

Generalized metrics are always given by the pair (g , b)−→ 2D sigma models:

S(1,1)(Φ) =

∫
Σ̂

[g(Φ) + b(Φ)]ijD+ΦiD−Φj ,
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Sigma Models From Commuting Pairs

Geometry of 2D (2, 2) “Twisted” SUSY sigma models

Consider the (1, 1) sigma model:

S(1,1)(Φ) =

∫
Σ̂

[η(Φ) + b(Φ)]ijD+ΦiD−Φj ,

This is invariant under the usual (1, 1) SUSY Q1
± = ∂

∂θ± + θ±∂±

Extension to (2, 2) twisted SUSY amounts to adding supercharges Q2
± that satisfy

{Q2
±,Q

2
±} = −2∂±.

Such SUSY requires an additional structure on the target:

Bi-para-Hermitian

Geometry of

[Abou-Zeid, Hull ’99]
?

(K+,K−, η,H)

K± integrable

∇±K± = 0, ∇± = ∇η ± 1
2
H
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Sigma Models From Commuting Pairs

Generalized para-Kähler geometry

Generalized para-Kähler (GpK) structure is a commuting pair (G,K+), where

G is a split-signature generalized metric, i.e. the metric on T ⊕ T∗ defined by
Note, because (G,K+) commute, K− = K+G is also generalized para-complex

〈·, ·〉G = 〈G·, ·〉,

has split signature.

This is equivalent to the data of two para-Hermitian structures (η,K±) and a b-field:

K± =
1

2

(
1 0
b 1

)(
K+ ± K− ω−1

+ ∓ ω−1
−

ω+ ∓ ω− −(K∗+ ± K∗−)

)(
1 0
−b 1

)
.

The integrability of K± as generalized structures is equivalent to K± being
integrable and

∇±K± = 0, ∇± = ∇η ± 1

2
H.

Canonical example is given by the para-Kähler limit, K+ = ±K−, H = b = 0.

K+ =

(
K 0
0 −K∗

)
, K− =

(
0 ω−1

ω 0

)
, G =

(
0 η−1

η 0

)
.
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Topological twist: The para-Kähler Model

The (2, 2) twisted SUSY has an R-symmetry SO(1, 1)× SO(1, 1) which admits two
different topological twists, each related to either K+ or K− −→ A/B-type twists

In the para-Kähler limit, we get the para-Kähler model:

S(Φ, Φ̃) =

∫
d2xd2θd2θ̃K(Φ, Φ̃),

Here, K is the scalar para-Kähler potential

Recall: in this limit K± take the form

K+ =

(
K 0
0 −K∗

)
, K− =

(
0 ω−1

ω 0

)
.

The A-type twist is given by K−, i.e. by the underlying symplectic structure,
therefore is the same as for usual (complex) Kähler model

The B-type twist is given by K+, i.e. by the para-complex structure, therefore gives
a new example of a topological theory
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Relationship to DFT

Para-Hermitian geometry naturally appears in DFT

GpK manifolds are para-Hermitian in two different ways

[Freidel, Rudolph, DS ’18]: “On any para-Hermitian manifold (M, η,K), there exists
a unique D-bracket [[ , ]] on the tangent bundle appropriately compatible with
(η,K) and satisfying Leibniz property”
−→ Locally, one recovers the D-bracket known from DFT

[[X ,Y ]]J = X I∂IY
J − Y I∂IX

J + ηILη
KJY I∂KX

L

[DS ’18]: “Fluxes of the D-bracket are a relative phenomenon between two
para-Hermitian structures K and K ′”

F(X ,Y ,Z) = η([[X ,Y ]]− [[X ,Y ]]′,Z)

The D-brackets [[ , ]]± associated to the para-Hermitian structures (η,K±) have a
relative flux given by the H-flux of the Courant algebroid:

F(X ,Y ,Z) = η([[X ,Y ]]+ − [[X ,Y ]]−,Z) = H(X ,Y ,Z).
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Generalized Chiral Sigma Models

Let us return to the (1, 1) sigma model on a Riemannian target (M, g):

S(1,1)(Φ) =

∫
Σ̂

[g(Φ) + b(Φ)]ijD+ΦiD−Φj ,

S(1,1) is classically invariant under superconformal symmetries δg± with currents T±

[Stojevic ’10]: Consider a situation when the superconformal symmetries factorize,
δg± = δ1

g± + δ2
g± and the currents split as

T± = T 1
± + T 2

±.

What is the target geometry required for this? −→ M needs to carry a pair of chiral
structures J±, such that

g(J±·, J±·) = g(·, ·), ∇±J± = 0, ∇± = ∇g ± 1

2
H,

The splitting is then according to projections P1
± = 1

2
(1 + J±) and P2

± = 1
2
(1− J±)

Bi-Chiral

Geometry
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Sigma Models From Commuting Pairs

Generalized chiral Geometry

Generalized chiral structure: (G,J+) is a commuting pair (G,J+), where

J+ and J− = J+G are a gen. para-complex structures
G is a generalized metric

This is equivalent to the data of two chiral structures (g , J±) and a b-field:

J± =
1

2

(
1 0
b 1

)(
J+ ± J− η−1

+ ∓ η−1
−

η+ ∓ η− (J∗+ ± J∗−)

)(
1 0
−b 1

)
,

where η± = gJ±.

Canonical example is given by a chiral structure (η, g , J):

J+ =

(
J 0
0 J∗

)
, J− =

(
0 η−1

η 0

)
, G =

(
0 H−1

H 0

)
.

For the superconformal algebra to factorize, the chiral structures J± need not be
integrable −→ the generalized chiral structure is weakly integrable

∇±J± = 0⇐⇒ DGJ± = 0.

In contrast to the symmetries δg± , the induced symmetries δ
1/2
± then do not have a

space-time interpretation

The author relates this to non-geometric backgrounds
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Sigma Models From Commuting Pairs

Born Geometry as Generalized Chiral Geometry

Recall: The commuting pair construction on T ⊕ T ∗ always yields a pair of tangent
bundle structures and a compatible metric on T

I gen. complex
K gen. para-complex
J gen. chiral

}
+ commuting G ⇒

{
(g , I±) bi-Hermitian

(η,K±) bi-para-Hermitian
(g , J±) bi-chiral

An important case occurs when the corresponding pair of tangent bundle structures
anti-commute

For GK geometry, this gives Hyper-Kähler geometry
For GpK geometry, this is para-Hyper-Kähler geometry:

{K+,K−} = 0 =⇒ I = K+K− is a complex structure −→ (K±, I ) is a
para-hypercomplex triple

−I 2 = K2
± = 1

By contracting η with (I ,K±) one gets three different symplectic structures

For generalized chiral geometry, one gets again a para-hypercomplex triple
(J±, I = J+J−), but orthogonality is different
−→ This is Born geometry (η,K , J), upon identifying

η = η+, J = J+, K = J−
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Conclusions

Future Directions

Twisted SUSY: Topological twists, Mirror symmetry, relationship to DFT, ...

Generalized Chiral ←→ Born, how does DFT fit here, what is the gen. Chiral sigma
model?

Integrability of Born in this picture

Non-geometric backgrounds?
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Thank you for your attention!
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