Where we are on B-decay Discrepancies

Diego Guadagnoli CNRS, LAPTh Annecy

Overall message

The TH picture has evolved while, remarkably staying coherent – in spite of all the constraints

Based on 1903.10434, with J. Aebischer, W. Altmannshofer, M. Reboud, P. Stangl and D. M. Straub

B-discrepancies

2019

Challenge: $B \rightarrow light meson f.f.$'s

2 $B \rightarrow K^* \mu \mu$ angular data Challenge: charm loops

- $b \rightarrow s \mu \mu BR data < SM$ Challenge: $B \rightarrow light meson f.f.'s$
- 2 $B \rightarrow K^* \mu \mu$ angular data Challenge: charm loops

Data overview

4......

b → s µµ / b → s ee ratios
 Challenge: (mostly) stats

$$B \rightarrow s \mu \mu / b \rightarrow s \text{ ee ratios}$$

$$R_{K}(q_{\min}^{2}, q_{\max}^{2}) \equiv \frac{\Gamma(B^{+} \rightarrow K^{+} \mu \mu)}{\Gamma(B^{+} \rightarrow K^{+} e e)} \Big|_{[q_{\min}^{2}, q_{\max}^{2}]}$$

$$A \text{ probe of Lepton-Universality Violation, by construction}$$

•
$$R_{K}(1 \,\text{GeV}^{2}, 6 \,\text{GeV}^{2}) = 0.846^{+0.060}_{-0.054} + 0.016}_{-0.054}$$

(2.5 σ effect)

$$R_{K^{*0}}(1.1 \,\text{GeV}^2, 6.0 \,\text{GeV}^2) = 0.685^{+0.113}_{-0.069} \pm 0.047$$
(~2.4 σ effect)

•
$$R_{K^{*0}}(0.045 \,\text{GeV}^2, 1.1 \,\text{GeV}^2) = 0.660^{+0.110}_{-0.070} \pm 0.024$$

(~2.2 σ effect)

- B → s µµ / b → s ee ratios
 Challenge: (mostly) stats
- 4 $b \rightarrow c \tau v / b \rightarrow c \ell v$ ratios Challenge: stats + syst

with the second se **Basic TH considerations (** $b \rightarrow s \mu \mu BR data < SM$) may be alleviated by + more conservative TH + ($B \rightarrow K^* \mu \mu$ angular data) assumptions

Basic TH considerations

(
$$b \rightarrow s \ \mu\mu$$
 BR data < SM)
($B \rightarrow K^* \ \mu\mu$ angular data)

may be alleviated by more conservative TH assumptions

But

Explicable (quantitatively) w/ two semi-leptonic operators

substantial improvement w.r.t. SM alone

Basic TH considerations

MINING CONTRACTOR CONTRA

(
$$b \rightarrow s \ \mu\mu$$
 BR data < SM)
($B \rightarrow K^* \ \mu\mu$ angular data)

may be alleviated by more conservative TH assumptions

But

0 -	+ 🛛 + 🕄	
	(R _{K(*)})	

+ 2 + 3 + 4

Explicable (quantitatively) w/ two semi-leptonic operators

substantial improvement w.r.t. SM alone

And

Explicable (quantitatively) w/ single-mediator simplified models

EW-scale Effective-Theory picture

• One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

b
$$\rightarrow$$
 s EFT picture
• One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right]$$
About equal size & opposite sign
in the SM (at the m_b scale)
(V - A) x (V - A) interaction

b
$$\rightarrow$$
 s EFT picture
• One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s}\mu\mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^{\lambda} s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_{\lambda} \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_{\lambda} \gamma_5 \mu \right]$$
About equal size & opposite sign
in the SM (at the m_b scale)
 $(V - A) \times (V - A)$ interaction

• The best-performing BSM scenarios to explain the data involve

$$O_9 \propto \bar{b}_L \gamma^\lambda s_L \cdot \bar{\mu} \gamma_\lambda \mu \qquad O_{10} \propto \bar{b}_L \gamma^\lambda s_L \cdot \bar{\mu} \gamma_\lambda \gamma_5 \mu$$

• One starts from the following Hamiltonian

$$H(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right]$$
About equal size & opposite sign
in the SM (at the m_b scale)
 $(V - A) \times (V - A)$ interaction

The best-performing BSM scenarios to explain the data involve •

$$O_9 \propto \bar{b}_L \gamma^\lambda s_L \cdot \bar{\mu} \gamma_\lambda \mu \qquad O_{10} \propto \bar{b}_L \gamma^\lambda s_L \cdot \bar{\mu} \gamma_\lambda \gamma_5 \mu$$

- Specifically, either O₉ alone,

- or $O_9 - O_{10}$ \Box again, $(V - A) \times (V - A)$

well-suited to UV-complete models

The second secon

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)

- $C_9 = -C_{10}$ now better than C_9 alone

Coeff.	best fit	1σ	2σ	pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ

- Two scenarios stand out: C_9 alone or $C_9 = -C_{10}$ (µµ-channel only)

- $C_9 = -C_{10}$ now better than C_9 alone

- C_{10} alone also ok, but $B \rightarrow K^* \mu \mu$ unresolved

D. Guadagnoli, B-decay discrepancies

Univ. vs. non-univ. Wilson coeffs.

<u>4</u>

روانا المان ال

• Note: a $C_9^{univ.}$ component would shift $b \to s \mu \mu$ data but <u>not</u> $R_{K(*)}$

How to justify $C_9 = -C_{10}$ or $C_9^{univ.}$ above the EW scale? The SMEFT picture

• If NP is at a scale $\Lambda \gg M_{_{EW'}}$ with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3)_c × SU(2)₁ × U(1)_Y

This defines the SMEFT

• If NP is at a scale $\Lambda \gg M_{_{EW}}$, with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3)_c × SU(2)₁ × U(1)_y

This defines the SMEFT

 Non-redundant op. basis for SMEFT discussed in [B. Grzadkowski et al., JHEP 2010]

• If NP is at a scale $\Lambda \gg M_{_{EW'}}$ with nothing new in between

Effects below Λ are described by ops. constructed with SM fields, and invariant under the full SM group: SU(3)_c × SU(2)₁ × U(1)_y

This defines the SMEFT

 Non-redundant op. basis for SMEFT discussed in [B. Grzadkowski et al., JHEP 2010]

• Such approach allows to address model-independently the question What operators, above the EW scale, can generate contributions to $C_9^{(\mu)} = -C_{10}^{(\mu)}$ or C_9^{univ} ? 0

SMEFT picture

Contributions to muonic $C_9 = -C_{10}$ may come from SMEFT ops. directly matching onto $O_{9,10}$

$$[O_{LQ}^{(1)}]_{2223} = \overline{L}_2 \gamma^{\lambda} L_2 \cdot \overline{Q}_2 \gamma_{\lambda} Q_3$$

$$[O_{LQ}^{(3)}]_{2223} = \overline{L}_2 \gamma^{\lambda} \sigma^a L_2 \cdot \overline{Q}_2 \gamma_{\lambda} \sigma^a Q_3$$

2 Contributions to $C_9^{\text{univ.}}$ can come from RGE effects:

Semi-tauonic ops. in short

 $[O_{LQ}^{(3)}]_{3323} \supset \overline{\tau} \, \gamma_L^{\lambda} \nu \cdot \overline{c} \, \gamma_{\lambda L} b$ •

can explain R_{D(*)}

also induces $C_9^{univ.}$ w/ the right sign to potentially accommodate $b \rightarrow s \mu \mu$ [Crivellin-Greub-Müller-Saturnino]

Beyond EFTs:

The picture within "simplified" models

4.....

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

$$[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0$$
 && $[C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$

[Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0 \quad \&\& \quad [C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

Define the couplings:

 $\mathcal{L}_{U_1} \supset g_{lq}^{ji} \bar{Q}^i \gamma^{\mu} L^j U_{\mu} + \text{h.c.}$

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

 $[C_{LQ}^{(1)}]_{3323} = [C_{LQ}^{(3)}]_{3323} \neq 0 \quad \&\& \quad [C_{LQ}^{(1)}]_{2223} = [C_{LQ}^{(3)}]_{2223} \neq 0$ [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

• Define the couplings:

$$\begin{split} \mathcal{L}_{U_1} &\supset g_{lq}^{ji} \ \bar{Q}^i \, \gamma^{\mu} L^j \, U_{\mu} + \text{h.c.} \\ & & \\ & & \\ & & \delta R_{K(*) \, | in \, \mu \, channel} & \propto g_{lq}^{22} & \& g_{lq}^{23} \\ & & \delta R_{D(*) \, | in \, \tau \, channel} & \propto g_{lq}^{32} & \& g_{lq}^{33} \end{split}$$

• $U_1 \sim (\mathbf{3}, \mathbf{1})_{2/3}$ is the only single mediator known to yield

 $\begin{bmatrix} C_{LQ}^{(1)} \end{bmatrix}_{3323} = \begin{bmatrix} C_{LQ}^{(3)} \end{bmatrix}_{3323} \neq 0 \quad \&\& \quad \begin{bmatrix} C_{LQ}^{(1)} \end{bmatrix}_{2223} = \begin{bmatrix} C_{LQ}^{(3)} \end{bmatrix}_{2223} \neq 0$ [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

• Define the couplings:

$$\begin{split} \mathcal{L}_{U_{1}} \supset g_{lq}^{ji} \ \bar{Q}^{i} \ y^{\mu} L^{j} \ U_{\mu} + \text{h.c.} \\ & & & \\$$

 $U_1 LQ: g_{lq}^{32} vs. g_{lq}^{33}$

D. Guadagnoli, B-decay discrepancies

 $U_1 LQ: g_{lq}^{32} vs. g_{lq}^{33}$ 2.00Model-dependent constraint $R_{D(*)} \Delta \chi^2 = 1$ $R_{D^{(*)}}$ & lept. τ decays 1σ , 2σ See discussion in 1.75 \square excl. by lept. τ decays Cornella-Fuentes-Isidori, 2019; \swarrow excl. by $BR(B \to X_s \gamma)$ Calibbi-Crivellin-Li, 2018; 1.50• $g_{lq}^{32} = 0.6, \, g_{lq}^{33} = 0.7$ Bordone *et al.*, 2018 1.251.00 g_{lq}^{33} $R_{D^{(\star)}}$ and $\tau \rightarrow \ell \ \nu \nu \ select$ 0.75 a non-trivial region 0.500.250.00 flavio -0.25 -0.75 1.00 -0.25 0.00 0.25 0.50 1.25 1.50 1.75 2.00 g_{lq}^{32}

D. Guadagnoli, B-decay discrepancies

U₁ **LQ**: g_{lq}^{32} vs. g_{la}^{33} 2.00Model-dependent constraint $R_{D(*)} \Delta \chi^2 = 1$ $R_{D(*)}$ & lept. τ decays 1σ , 2σ See discussion in 1.75 excl. by lept. τ decays 110 Cornella-Fuentes-Isidori, 2019; excl. by $BR(B \to X_s \gamma)$ 11 Calibbi-Crivellin-Li, 2018; 1.50 $g_{lq}^{32}=0.6,\,g_{lq}^{33}=0.7$ Bordone *et al.*, 2018 1.251.00 g_{lq}^{33} $R_{D^{(\star)}}$ and $\tau \rightarrow \ell \ \nu \nu \ select$ 0.75a non-trivial region 0.50We pick a benchmark point, 0.25then constrain the other two couplings 0.00 flavio -0.25 -0.00 0.250.50 0.75 1.00 1.25 1.50 1.75 2.00-0.25 g_{lq}^{32}

D. Guadagnoli, B-decay discrepancies

..... **U**₁ **LQ**: g_{lq}^{22} vs. g_{lq}^{23}

 Semi-lept. B-decay data still display preference for new effects in 4-f ops. w/ LH quarks

- Semi-lept. B-decay data still display preference for new effects in 4-f ops. w/ LH quarks
- Solution with muonic $C_{9} = -C_{10}$ now favoured over pure C_{9}
- Even better description obtained with additional $C_9^{univ.}$ Allows to connect $b \rightarrow s$ with $b \rightarrow c$ discrepancies
- One gets a coherent picture all the way from the WET, to the SMEFT, to simplified models

- Semi-lept. B-decay data still display preference for new effects in 4-f ops. w/ LH quarks
- Solution with muonic $C_{9} = -C_{10}$ now favoured over pure C_{9}
- Even better description obtained with additional $C_9^{univ.}$ Allows to connect $b \rightarrow s$ with $b \rightarrow c$ discrepancies
- One gets a coherent picture all the way from the WET, to the SMEFT, to simplified models
- Time for more tests
 More LUV observables will clarify the situation soon

U₁ LQ: direct constraints

......

Aren't such tauonic couplings also constrained by direct searches? E.q. $pp \rightarrow \tau \tau$ or τv

For the sake of comparison, we normalized coupling values to those used in Baker-Fuentes-Isidori-König

With $g_{la}^{3i} \neq 0$ (as required by $R_{D(*)}$) LUV constraints are stronger than direct ones

Note also the large $g_{\rm U}$ value used here (as said, for comparison).

All constraints scale down with lower g_{ij} values.

$B_s \rightarrow \mu \mu \text{ update}$

[1812.03017]

New update from CMS

