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  Data overview

4 groups of interesting datasets, w/ different challenges

 b → s μμ  BR data < SM

Challenge:  B → light meson f.f.’s
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(2.5 effect)

RK (1GeV2 ,6GeV2) = 0.846−0.054
+0.060

−0.014
+0.016

RK (qmin
2 , qmax

2 ) ≡
Γ(B+→K+μμ)
Γ(B+→K+ e e) [qmin

2 ,qmax
2 ]

RK *0(0.045GeV2 , 1.1GeV2) = 0.660- 0.070
+ 0.110±0.024

(~2.2 effect)

RK *0(1.1GeV2 ,6.0 GeV2) = 0.685-0.069
+0.113±0.047

(~2.4 effect)

A probe of Lepton-Universality
Violation, by construction

b → s μμ  /  b → s ee  ratios









  

  Data overview

4 groups of interesting datasets, w/ different challenges

 b → s μμ  BR data < SM

Challenge:  B → light meson f.f.’s

➋ B → K* μμ  angular data

Challenge:  charm loops

➌ b → s μμ  /  b → s ee  ratios

Challenge:  (mostly) stats

➍ b → c τν  /  b → c ℓν  ratios

Challenge:  stats + syst
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b → c τν  /  b → c ℓν  ratios

RD
(*) ≡

Γ(B→D(*) τ ν)
Γ(B→D(*)ℓ ν)



  

  Basic TH considerations
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 (b → s μμ  BR data < SM) may be alleviated by
more conservative TH

assumptions➋ (B → K* μμ  angular data)
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 (b → s μμ  BR data < SM) may be alleviated by
more conservative TH

assumptions➋ (B → K* μμ  angular data)

But

➌
(R

K(*)
)

Explicable (quantitatively) 
w/  two semi-leptonic operators

➍

+

 ➋+ +

And

➌
(R

D(*)
)

 ➋+ + + Explicable (quantitatively) 
w/  single-mediator
simplified models

☞ substantial improvement
w.r.t. SM alone



  

  Data updates
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  0.85 (1 ± 7%)                     2.5

(a)

Including all data as of Moriond 19 crucial to get full picture
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  Data updates
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R
K
 update from LHCb Run1 + 1/3 of Run2

R
K
  0.85 (1 ± 7%)                     2.5

(a)

R
K*

 update from Belle(b)

R
K*

  0.90 (1 ± 30%) (compatible w/ LHCb’s R
K* 

)

B
s
 → μμ from ATLAS(c)

R
D(*)

  from Belle (semil. tagging)(d)

and more (Λ
b
 → Λ μμ, b → s γ  &  b → s g, ...)

(SM-like, 1.2)

Including all data as of Moriond 19 crucial to get full picture



  

EW-scale 

Effective-Theory picture



  



H ( b̄→ s̄μμ) = −
4GF
√2

V tb
* V ts

αem

4 π [ b̄L γλ sL⋅(C9
(μ) μ̄ γλμ + C10

(μ) μ̄ γλ γ5μ) ]

 One starts from the following Hamiltonian

   b → s EFT picture
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√2

V tb
* V ts

αem

4 π [ b̄L γλ sL⋅(C9
(μ) μ̄ γλμ + C10

(μ) μ̄ γλ γ5μ) ]

About equal size & opposite sign
 in the SM (at the m

b
  scale)

 (V –  A) x (V – A) interaction
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H ( b̄→ s̄μμ) = −
4GF
√2

V tb
* V ts

αem

4 π [ b̄L γλ sL⋅(C9
(μ) μ̄ γλμ + C10

(μ) μ̄ γλ γ5μ) ]

About equal size & opposite sign
 in the SM (at the m

b
  scale)

 (V –  A) x (V – A) interaction

 One starts from the following Hamiltonian

 The best-performing BSM scenarios to explain the data involve

O9 ∝ b̄Lγ
λ sL⋅μ̄ γλμ O10 ∝ b̄L γ

λ sL⋅μ̄ γλγ5μ

   b → s EFT picture
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H ( b̄→ s̄μμ) = −
4GF
√2

V tb
* V ts

αem

4 π [ b̄L γλ sL⋅(C9
(μ) μ̄ γλμ + C10

(μ) μ̄ γλ γ5μ) ]

About equal size & opposite sign
 in the SM (at the m

b
  scale)

 (V –  A) x (V – A) interaction

 One starts from the following Hamiltonian

 The best-performing BSM scenarios to explain the data involve

O9 ∝ b̄Lγ
λ sL⋅μ̄ γλμ O10 ∝ b̄L γ

λ sL⋅μ̄ γλγ5μ

Specifically, either O
9
 alone,

or O
9
 –  O

10

well-suited to UV-complete models

again,  (V –  A) × (V – A)

   b → s EFT picture
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Consider the following Hamiltonian

  1-Wilson-coeff. picture

D. Guadagnoli,  B-decay discrepancies



  

Consider the following Hamiltonian

  1-Wilson-coeff. picture

D. Guadagnoli,  B-decay discrepancies

Two scenarios stand out: C
9
 alone  or  C

9
 = – C

10
    (μμ-channel only)



  

Consider the following Hamiltonian

  1-Wilson-coeff. picture

D. Guadagnoli,  B-decay discrepancies

Two scenarios stand out: C
9
 alone  or  C

9
 = – C

10
    (μμ-channel only)

C
9
 = – C

10
  now better than C

9
 alone



  

Consider the following Hamiltonian

  1-Wilson-coeff. picture
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Two scenarios stand out: C
9
 alone  or  C

9
 = – C

10
    (μμ-channel only)

C
10

 alone also ok, but B → K* μμ unresolved

C
9
 = – C

10
  now better than C

9
 alone



  

  C
9
   vs.  C

9
 = – C

10
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R
K(*)

  & b → s μμ   in nearly
perfect agreement

Main point

dashed = before Moriond

 Before Moriond



  

  C
9
   vs.  C

9
 = – C

10
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R
K(*)

  & b → s μμ   in nearly
perfect agreement

some tension in C
9
 dir.

Main point

dashed = before Moriond





but see next for a 
UV interpretation

Before Moriond

After Moriond



  

  Univ. vs. non-univ. Wilson coeffs.

 Note:  a C
9
univ.  component would shift  b → s μμ data  but  not  R

K(*)
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  Univ. vs. non-univ. Wilson coeffs.

 Note:  a C
9
univ.  component would shift  b → s μμ data  but  not  R

K(*)

dashed = before Moriond
Notes

y-axis:  μ-specific shift in
            C

9
 = – C

10

x-axis:  additional, lepton-univ.
            shift in C

9
 only
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  Univ. vs. non-univ. Wilson coeffs.

 Note:  a C
9
univ.  component would shift  b → s μμ data  but  not  R

K(*)

dashed = before Moriond
Notes

y-axis:  μ-specific shift in
            C

9
 = – C

10

x-axis:  additional, lepton-univ.
            shift in C

9
 only

Data tend to prefer C
9
univ.  ≠ 0

After Moriond
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above the EW scale?

The SMEFT picture

How to justify C
9
 = – C

10
 or C

9
univ.



  



  SMEFT 101

 If NP is at a scale Λ ≫ M
EW

, with nothing new in between

Effects below  Λ  are described by ops. constructed with SM fields,
and invariant under the full SM group: SU(3)

c
 × SU(2)

L
 × U(1)

Y

This defines the SMEFT
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 Non-redundant op. basis for SMEFT discussed in
[B. Grzadkowski et al., JHEP 2010]
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 Non-redundant op. basis for SMEFT discussed in
[B. Grzadkowski et al., JHEP 2010]

What operators, above the EW scale, can generate contributions



  SMEFT 101

 If NP is at a scale Λ ≫ M
EW

, with nothing new in between

Effects below  Λ  are described by ops. constructed with SM fields,
and invariant under the full SM group: SU(3)

c
 × SU(2)

L
 × U(1)

Y

This defines the SMEFT

Such approach allows to address model-independently the question

 to C
9
(μ) = – C

10
(μ) or C

9
univ. ?
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Contributions to muonic C
9
 = – C

10
 may come from 

SMEFT ops. directly matching onto O
9,10

[OLQ
(1) ]2223 = L̄2 γ

λ L2⋅Q̄2 γλQ3

[OLQ
(3) ]2223 = L̄2 γ

λσa L2⋅Q̄2 γλσ
aQ3

➊

  SMEFT  picture
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Contributions to C
9
univ.  can come from RGE effects:➋

Q
3

Q
2

L
i

L
i

any suitable SMEFT 
4-fermion op. here

  SMEFT  picture
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Contributions to C
9
univ.  can come from RGE effects:➋

Case f = τ  especially interesting

Connection with “semi-tauonic” ops.

Q
3

Q
2

L
i

L
i

any suitable SMEFT 
4-fermion op. here

  SMEFT  picture

responsible for b → c τν

[OLQ
(1) ]3323 [OLQ

(3) ]3323
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Semi-tauonic ops. in short

can explain R
D(*)

[OLQ
(3) ]3323 ⊃ τ̄ γL

λν⋅ c̄ γλ Lb
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also induces C
9
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univ.  w/ the right sign

to potentially accommodate b → s μμ
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can explain R
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Semi-tauonic ops. in short

can explain R
D(*)

[OLQ
(3) ]3323 ⊃ τ̄ γL

λν⋅ c̄ γλ Lb

also induces C
9
univ.  w/ the right sign

to potentially accommodate b → s μμ
[Crivellin-Greub-Müller-Saturnino]

 [OLQ
(1)or(3 )]2223 ⊃ μ̄ γL

λμ⋅ s̄ γλ Lb

can explain R
K(*)

 [C LQ
(1) ]3323 ≃ [CLQ

(3 ) ]3323Caveat: one must have

to avoid the B → K(*) νν  constraint

[Buras-Girrbach-Niehoff-Straub]
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Before Moriond (dashed)

R
K(*)

  (blue) and b → s μμ (orange)

were in perfect agreement

in a region close to 0 
in the x-axis

[C LQ
(1) ]3323 = [CLQ

(3) ]3323 vs. [CLQ
(1) ]2223 = [CLQ

(3) ]2223

☞

R
D(*)

 not explained
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R
K(*) 

 and b → s μμ intersect

Quantitative agreement
with the R

D(*)
 constraint 

in a region with x-axis 
values well below 0

☞

(green)
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were in perfect agreement

in a region close to 0 
in the x-axis

[C LQ
(1) ]3323 = [CLQ
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(1) ]2223 = [CLQ

(3) ]2223

☞

R
D(*)

 not explained

After Moriond

R
K(*) 

 and b → s μμ intersect

Quantitative agreement
with the R

D(*)
 constraint 

in a region with x-axis 
values well below 0

☞

(green)
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including 
Belle RD(*) update



  

Beyond EFTs:

The picture within “simplified” models



  



  The U
1
 leptoquark

 U
1
  ~  (3, 1)

2/3
  is the only single mediator known to yield

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]

D. Guadagnoli,  B-decay discrepancies



  



  The U
1
 leptoquark

 U
1
  ~  (3, 1)

2/3
  is the only single mediator known to yield

 Define the couplings:

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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  The U
1
 leptoquark

 U
1
  ~  (3, 1)

2/3
  is the only single mediator known to yield

 Define the couplings:

∝ glq
32

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

glq
33

&δRD(*) in τ channel

∝ glq
22 glq

23
&δRK (*) in μ channel

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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  The U
1
 leptoquark

 U
1
  ~  (3, 1)

2/3
  is the only single mediator known to yield

 Define the couplings:

∝ glq
32

[C LQ
(1) ]3323 = [CLQ

(3 ) ]3323 ≠ 0 [C LQ
(1) ]2223 = [CLQ

(3 ) ]2223 ≠ 0&&

ℒU1
⊃ glq

ji Q̄i γμ L j U μ + h.c.

glq
33

&δRD(*) in τ channel

∝ glq
22 glq

23
&δRK (*) in μ channel

☞ these couplings also famously constrained by

τ → ℓ  νν   [Feruglio-Paradisi-Pattori]

(hence far from obvious that an R
D(*)

 description achievable)

  [Alonso-Grinstein-Martin-Camalich, Calibbi-Crivellin-Ota, 2015]
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  glq
32 vs . glq

33
  U

1
 LQ:
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  glq
32 vs . glq

33
  U

1
 LQ:

Model-dependent constraint
See discussion in 

[Cornella-Fuentes-Isidori, 2019;
 Calibbi-Crivellin-Li, 2018;

Bordone et al., 2018]
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  glq
32 vs . glq

33
  U

1
 LQ:

R
D(*)

 and τ → ℓ  νν  select 
a non-trivial region



Model-dependent constraint
See discussion in 

[Cornella-Fuentes-Isidori, 2019;
 Calibbi-Crivellin-Li, 2018;

Bordone et al., 2018]

D. Guadagnoli,  B-decay discrepancies



  

  glq
32 vs . glq

33
  U

1
 LQ:

R
D(*)

 and τ → ℓ  νν  select 
a non-trivial region

We pick a benchmark point,
then constrain the other two
couplings





Model-dependent constraint
See discussion in 

[Cornella-Fuentes-Isidori, 2019;
 Calibbi-Crivellin-Li, 2018;

Bordone et al., 2018]
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glq
22 vs . g lq

23
  U

1
 LQ:

(dashed = before Moriond)

The plane of muonic couplings
shows that the picture is fully
consistent

 The R
K(*)

 and b → s μμ regions
now nicely overlap

 Tauonic couplings fixed to the
benchmark value explaining
R

D(*)
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glq
22 vs . g lq

23
  U

1
 LQ:

(dashed = before Moriond)

 The R
K(*)

 and b → s μμ regions
now nicely overlap

 Tauonic couplings fixed to the
benchmark value explaining
R

D(*)

 If they were set to zero, the
picture would work much less

The plane of muonic couplings
shows that the picture is fully
consistent



  

  Conclusions

 Semi-lept.  B-decay data still display  preference for 
new effects in 4-f  ops. w/ LH quarks
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  Conclusions

 Semi-lept.  B-decay data still display  preference for 
new effects in 4-f  ops. w/ LH quarks

 Solution with muonic C
9
 = – C

10
 now favoured over pure C

9

 Even better description obtained with additional C
9
univ.

 Time for more tests

Allows to connect b → s  with  b → c discrepancies

More LUV observables will clarify the situation soon
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One gets a coherent picture all the way from the WET, 
to the SMEFT, to simplified models





  

Spares
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  U
1
 LQ:  direct constraints

Aren’t  such  tauonic couplings also constrained by direct searches?
E.g. pp → τ τ   or   τν  

With               (as required by R
D(*)

)
LUV constraints are stronger 
than direct ones

glq
3 i≠0

For the sake of comparison, 
we normalized coupling values to
those used in 
[Baker-Fuentes-Isidori-König]

Note also the large g
U
 value used

here (as said, for comparison). 

All constraints scale down with
lower g

U
 values.



  

  B
s
 →  μμ update
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[1812.03017]



  

 New update from CMS
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CMS PAS BPH-16-004  (2019/08/04)

BR (Bs → μμ) = (2.9−0.6
+0.7±0.2)×10−9
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