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Tensor models — Origins

Tensor models provide a definition of discretized Euclidean quantum gravity
['91: Ambjorn,Durhuus,Jonsson; Sasakura]

Zero-dimensional field theory with fields in a tensor representation of O(N):

e.g.: Tabe — Zi;.,bl’\],c/ Raa’ Rbb’Rcc'Ta’b’c’ 5 R e O(N)

X =4
Vertex: )\ﬂ'bcTﬂb/C/Ta’bc’Ta/b’c /\ ~1

= duality between Feynman diagrams and simplicial manifolds
Several limitations:

@ No large-N limit
@ No known methods of solution
@ Very degenerate geometries

@ Numerical simulations (fixed topology):
no semiclassical limit, no 2nd order phase transition

2/20



Large- N limit of tensor models

Tensor models were revived by the discovery of “colored tensor models”, admitting a
large-N expansion [Gurau (2010); Gurau,Rivasseau (2011)]

@ Models of a single tensor, but with no symmetry on the indices
Complex (U(N)P): [Bonzom, Gurau, Rivasseau (2012)]; Real (O(N)P): [Carrozza, Tanasa (2015)]

@ Models of a single tensor in an irreducible representation of O(N)
(e.g. symmetric traceless or antisymmetric tensors)
[DB, Carrozza, Gurau, Kolanowski (2017); Carrozza (2018)]

= A new type of large-N limit: the melonic limit

More complicated than the vector case, but simpler than the matrix case
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A simple model of holography

@ A new boost came from the SYK model, a model of N Majorana fermions in
d = 1, whose coupling constant is a random tensor [Sachdev, Ye (1992); Kitaev (2015)]

@ SYK: melonic large-N limit = CFTi in the IR = AdSs dual
= microscopics of near extremal black holes

The same melonic limit, and hence conformal symmetry in the IR, can be obtained
without disorder, but with fermions in a tensor representation
[Witten (2016); Klebanov, Tarnopolsky (2016)]

4/20



A simple model of holography

@ A new boost came from the SYK model, a model of N Majorana fermions in
d = 1, whose coupling constant is a random tensor [Sachdev, Ye (1992); Kitaev (2015)]

@ SYK: melonic large-N limit = CFTi in the IR = AdSs dual
= microscopics of near extremal black holes

The same melonic limit, and hence conformal symmetry in the IR, can be obtained
without disorder, but with fermions in a tensor representation
[Witten (2016); Klebanov, Tarnopolsky (2016)]

Advantages:
@ No quenched disorder
@ in tensor models O(IN) symmetry is there from the beginning, so it can be gauged

@ Subleading corrections better understood (no tricky issues with replica limit)
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Large-N limit: the general idea

For theories with [N degrees of freedom, the large-IN' limit can provide a tractable limit )

General idea: choose a rescaling of the couplings with N such that
@ the large-N limit of the free energy (or of the effective action) exists

and it is non-trivial;

@ only a subset of the Feynman diagrams survives in the limit.
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Large- N limit of vectors

e.g. fields in the fundamental representation of O(N) (“O(N) model”)
[Stanley (1968); Wilson (1972); Coleman, Jackiw, Politzer (1974); Gross, Neveu (1974);Parisi (1975)

1...N

(z)a—) ZRua’¢a’ 5 RGO(N)

= Large-N limit: Cactus diagrams (aka daisy or bubble diagrams)

o

— Closed Schwinger-Dyson equation for 2-point function
= mass gap equation (no anomalous dimension)

6/20



Large- N limit of matrices

e.g. fields in the adjoint representation of U(N) (Hermitian matrix model)
[Wigner (1951); t Hooft (1974); Brezin, ltzykson, Parisi, Zuber (1978) ]

1...N
Moy = Y ReaMay R}, , REU(N)

a’ b’

= Large-N limit: planar diagrams

— No closed Schwinger-Dyson equation; still very difficult

In zero dimension there are many techniques for solving matrix models,
but they typically become very hard in higher dimensions
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O(N)3 tensor mOdeI [Carrozza, Tanasa (2015)]

@ Statistical model for tensors transforming in the fundamental representation of
O(N) x O(N) x O(N):

1...N
Tave Y RURDRO Ty, RY e ON)

cc’!

a’,b’,c’
@ Invariant action
S = 1.t Ao T Ty o T, A T Tarar T,
[ ]75 abce abc+ﬁ abelab’c’ La’b’c! a’bc+W abedLapr et Larper Larpre + - o

1 A A
PR + N e
<>

(p =pillow; t =tetrahedron)

@ There exists a scaling of the couplings with NN, s.t. the large-IN expansion is
governed by a non-negative half-integer, the degree w (not a topological):

[Carrozza, Tanasa (2015)]
m/[dT}e‘S[T] = Y N¥F,
weN/2

8/20



Feynman graphs

Perturbative expansion:

@ Represent Wick contraction of two tensors by dashed line, e.g.:

@ Ordinary Feynman diagrams, tracking only spacetime propagators, are obtained by

shrinking interaction bubbles to a point:

@ The two graphs above are examples of melonic graphs (with w = 0):
the tetrahedron graph is melonic in the the spacetime diagram representation,
while the pillow graph is melonic in the solid+dashed graph representation.

9/20



The world of melons

w = 0 = Melonic diagrams: a special subclass of planar graphs

[Bonzom, Gurau, Riello, Rivasseau (2011)]

10/20



The world of melons

w = 0 = Melonic diagrams: a special subclass of planar graphs

[Bonzom, Gurau, Riello, Rivasseau (2011)]

10/20



The world of melons

w = 0 = Melonic diagrams: a special subclass of planar graphs
[Bonzom, Gurau, Riello, Rivasseau (2011)]

10/20



The world of melons

w = 0 = Melonic diagrams: a special subclass of planar graphs
[Bonzom, Gurau, Riello, Rivasseau (2011)]

10/20



The world of melons

w = 0 = Melonic diagrams: a special subclass of planar graphs

[Bonzom, Gurau, Riello, Rivasseau (2011)]

= Combinatorially: tree structure (melons are generated by repeated insertions)
= Melons can be counted: the large-V limit is solvable!

= Bad for Euclidean QG (melons ~ “branched polymers”, no semiclassical regime)
but with possibly many other applications
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Melonic Schwinger-Dyson equations in d = 0

The standard Schwinger-Dyson equation for the 2-point function:

Gl'l=1-%

@ - —— - :
In large-N limit, the self-energy is:
Y =4NG - \G

— for A, = 0, G(\;) is the generating function of the A,(4,1) Fuss-Catalan numbers:

4 1
( Pt ) AZP s (Mg erit — M)/

oo

G(\) =

2 _ 33
where  A{ it = 47
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Conformal limit in SYK-like tensor models (d = 1)

The structure of the Schwinger-Dyson equations at large-N is the same as before,
but with d = 1 integrals:

G(w) = (—iw = Z(w)) ™

—@_+++

D) = 7 [ TS G Glan) Gl = n = 2)

-
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Conformal limit in SYK-like tensor models (d = 1)

The structure of the Schwinger-Dyson equations at large-N is the same as before,
but with d = 1 integrals:

1 = —jw — J? dewrdws w1 wo W — w1 — Wy
oo~ T [ GGl )

@ Same structure as Fuss-Catalan generating function, but with two loop integrals
because we are in d =1
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Conformal limit in SYK-like tensor models (d = 1)

The structure of the Schwinger-Dyson equations at large-N is the same as before,
but with d = 1 integrals:

1

cmREs ey |

@ Same structure as Fuss-Catalan generating function, but with two loop integrals
because we are in d =1

d(JJ1dOJ2
L G(w1)G(w2)G(w — w1 — w2)

@ In the UV limit w — oo the self energy X (w) can be neglected: the theory is
asymptotically free

@ In the IR limit w — O the free inverse propagator (“—iw"”) can be neglected and
one obtains a conformal invariant solution:

Glw)~w*™, A=1/q

(g = order of the interaction)
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2Pl formalism

Polynomial SD equations = 2PI formalism is well suited for tensor models DB, Gurau (2018)] J

Starting from

. . 1
WLj, k] = ln/[dso] exp{ = S[e] + Jaa + iwakabwb}
the 2Pl effective action is obtained by a double Legendre transform
1 _ 1
(6, Gl = S[¢] +5TeInG ™+ S Th[Sus[¢]Gl+  Ta[e, G
NGE D) 2 Lo

tree level two or more loops
one loop

with the following Feynman rules:

vertices: Sint [¢7 QD] = S[¢ + @]starting at cubic order in ¢
propagator: G(z,y)
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2Pl formalism

Polynomial SD equations = 2PI formalism is well suited for tensor models DB, Gurau (2019)] |

Starting from

. . 1
W(j, k] = ln/[dgo] exp{ — Slp] + japa + iﬂoakab@b}
the 2Pl effective action is obtained by a double Legendre transform

r(s.G) = 8l¢] + 3Tl G ' 4+ STSu0ldIG] +  Tal6. G

tree level two or more loops
one loop

with the following Feynman rules:

vertices: Sint [¢7 QD] = S[¢ + @]starting at cubic order in ¢
propagator: G(z,y)

I'2[¢p, G] is given by the sum of all the (n > 2)-loops two-particle irreducible vacuum
graphs. On shell: ¢ = (¢) and G = {pp). J

[Cornwall, Jackiw, Tomboulis - '74]
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2P| effective action for tensor models (o5 cuu 010

Counting traces = counting faces in stranded graph
= leading order is given by melons

There is only one melon graph which is also 2PI: the fundamental melon

For SYK-like tensor model in symmetric phase (¢ = 0):

1 _ 1 -1y 1 N Y na
N3I‘[0, G| = 2Tr[lnG ] 2Tr[6tG(t,t )] 8)\ /t’t/ G(t,t)
= o SD equations recovered as equations of motion g—g =0

e 4-point function from inverse of 5(5@275% =G7'G7'(1-K),

i.e. geometric series in K (ladder diagrams)
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The melonic limit in d > 2

Motivations:

@ Melonic SD equations admit a conformal solution also in higher dimensions.
@ AdS4y1/CFTy correspondence for tensor models?

@ The melonic limit as an analytic tool for QFT?

Key differences and difficulties:
@ In d > 2 one has to deal with renormalization

@ The four-fermion interaction is marginal in d = 2
= only trivial fixed point

@ Typical bosonic models have unstable potentials

Could a non-trivial CFT be found in a tensor-valued field theory?
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Tensorial GrOSS—NeveU mOdeI [DB,Carrozza,Gurau,Sfondrini (2017); DB, Delporte (2018)]

Standard free theory, which has U(N®) invariance:

1...N B
Sfree[wl :/ddz Z wabcﬁwabc

a,b,c

Introduce interactions with tensor structure, breaking U(N?) to U(N)?:

it for( 322 5 [
>

i=1,2,3

Notice:

@ Only bipartite interactions for U(N)® symmetry
= Only tadpole diagrams
= SD equation = mass gap equation

e.g. leading to m = Aexp (—m) in d = 2 (critical dimension)

@ In d > 2, new tricritical UV fixed points (with symmetric, chiral-breaking, and new
U(N)-breaking phases), but still very similar to ordinary GN model
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Fermions With tetrahedron interaction [DB,Carrozza,Gurau,Sfondrini (2017)]

For Majorana fermions with O(N)? symmetry we can add the tetrahedron interaction

<>
i <—> A At
Sint[w] :/ddm 4N3 + L Z + ENEYD)
<—> " 4N? 4N3/2
<>

i=1,2,3

The Schwinger-Dyson equation get modified by melonic contribution
= situation in d = 2 — € is reversed:
3
Br=—ehi+ S\
T

= real IR fixed point of order /€ for ¢ > 0 (d < 2),
and no real fixed point for € < 0 (d > 2)

For ¢ = 1 we expect to recover an SYK-like model
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Bosonic O(N)? tensor model

@ In the bosonic case, the O(N)® model'’s action is unbounded from below,
due to the tetrahedron interaction.

@ In principle it still makes sense to study the model in the large-N limit,
but in fact complex operator dimensions are found in d =4 — ¢
[Klebanov et al. (2017-2019)]

A real CFT can be found with two modifications [DE, Gurau, Harribey (2019)]

@ A non-local free propagator reproducing the expected conformal scaling

Sfree[¢] = %/ddx (¢abc(782)d/4¢abc + md/2¢abc¢abc>

(similarly to Brydges-Mitter-Scoppola model (¢4 theory),
or conformal SYK model of Gross-Rosenhaus)

@ A purely imaginary tetrahedron coupling: A¢ = i|A¢]
(similarly to Lee-Yang model with i A\¢® interaction)
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Bosonic O(N)? tensor model: main results

[DB, Gurau, Harribey (2019); + Suzuki (2019)]

@ 2-point function: only mass renormalization for d < 4
Setting renormalized mass to zero, SD equation is solved by G~ (p) = Zp??
with Z a finite rescaling
@ No vertex correction to the tetrahedron = 5, =0
Other beta functions: 3; = Bo(—A7) — 2B81(—A3)gi + B2(—AP)g3.
= ® )\; is an exactly marginal coupling
e Other couplings have a \:-dependent fixed point,
which is real and with real critical exponents for A2 < 0
@ spectrum of bilinear operators:
hm,g =d/24 J+2m+ fm,s(=)3) real for \ <0
and consistent with unitarity bounds

@ The OPE coefficients Cyp0 are all real

m,J

=> Despite the imaginary coupling, the model is so far compatible with unitarity J
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Conclusions and outlook

The melonic limit is a new entry in the QFT world

Tensors are easier than matrices, but richer than vectors

In d = 1 they provide a possible holographic model of black holes
New fixed points and new phases for fermions in d > 2

Tensorial Gross-Neveu model in d = 2 — € = approach to d = 1 SYK-like model?

For bosons we find interacting IR fixed points in d < 4
[Giombi, Klebanov, Tarnopolsky (2017); DB, Gurau, Harribey (2019)]

Many open questions, e.g.:

@ Unitarity of bosonic melonic CFTs?
@ Classification of melonic CFTs?
@ Holographic dual of melonic CFTs?

@ Other limits hidden in tensor models?
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