
Melonic CFTs

Dario Benedetti

September 18, 2019 - Corfu



Tensor models – Origins

Tensor models provide a definition of discretized Euclidean quantum gravity
[’91: Ambjorn,Durhuus,Jonsson; Sasakura]

Zero-dimensional field theory with fields in a tensor representation of O(N):

e.g.: Tabc →
∑1...N
a′,b′,c′ Raa′Rbb′Rcc′Ta′b′c′ , R ∈ O(N)

Vertex: λTabcTab′c′Ta′bc′Ta′b′c

⇒ duality between Feynman diagrams and simplicial manifolds

Several limitations:

No large-N limit

No known methods of solution

Very degenerate geometries

Numerical simulations (fixed topology):
no semiclassical limit, no 2nd order phase transition
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Large-N limit of tensor models

Tensor models were revived by the discovery of “colored tensor models”, admitting a
large-N expansion [Gurau (2010); Gurau,Rivasseau (2011)]

Models of a single tensor, but with no symmetry on the indices
Complex (U(N)D): [Bonzom, Gurau, Rivasseau (2012)]; Real (O(N)D): [Carrozza, Tanasa (2015)]

Models of a single tensor in an irreducible representation of O(N)
(e.g. symmetric traceless or antisymmetric tensors)
[DB, Carrozza, Gurau, Kolanowski (2017); Carrozza (2018)]

⇒ A new type of large-N limit: the melonic limit

More complicated than the vector case, but simpler than the matrix case
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A simple model of holography

A new boost came from the SYK model, a model of N Majorana fermions in
d = 1, whose coupling constant is a random tensor [Sachdev, Ye (1992); Kitaev (2015)]

SYK: melonic large-N limit ⇒ CFT1 in the IR ⇒ AdS2 dual
⇒ microscopics of near extremal black holes

The same melonic limit, and hence conformal symmetry in the IR, can be obtained
without disorder, but with fermions in a tensor representation
[Witten (2016); Klebanov, Tarnopolsky (2016)]

Advantages:

No quenched disorder

in tensor models O(N) symmetry is there from the beginning, so it can be gauged

Subleading corrections better understood (no tricky issues with replica limit)
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Large-N limit: the general idea

For theories with N degrees of freedom, the large-N limit can provide a tractable limit

General idea: choose a rescaling of the couplings with N such that

1 the large-N limit of the free energy (or of the effective action) exists
and it is non-trivial;

2 only a subset of the Feynman diagrams survives in the limit.
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Large-N limit of vectors

e.g. fields in the fundamental representation of O(N) (“O(N) model”)
[Stanley (1968); Wilson (1972); Coleman, Jackiw, Politzer (1974); Gross, Neveu (1974);Parisi (1975); . . . ]

φa →
1...N∑
a′

Raa′φa′ , R ∈ O(N)

⇒ Large-N limit: Cactus diagrams (aka daisy or bubble diagrams)

→ Closed Schwinger-Dyson equation for 2-point function
= mass gap equation (no anomalous dimension)
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Large-N limit of matrices

e.g. fields in the adjoint representation of U(N) (Hermitian matrix model)
[Wigner (1951); . . . ’t Hooft (1974); Brezin, Itzykson, Parisi, Zuber (1978); . . . ]

Mab →
1...N∑
a′,b′

Raa′Ma′b′R
†
b′b , R ∈ U(N)

⇒ Large-N limit: planar diagrams

→ No closed Schwinger-Dyson equation; still very difficult

In zero dimension there are many techniques for solving matrix models,
but they typically become very hard in higher dimensions
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O(N)3 tensor model [Carrozza, Tanasa (2015)]

Statistical model for tensors transforming in the fundamental representation of
O(N)×O(N)×O(N):

Tabc →
1...N∑
a′,b′,c′

R
(1)

aa′R
(2)

bb′R
(3)

cc′Ta′b′c′ , R(i) ∈ O(N)

Invariant action

S[T ] =
1

2
TabcTabc +

λp
N2

TabcTab′c′Ta′b′c′Ta′bc +
λt
N3/2

TabcTab′c′Ta′bc′Ta′b′c + . . .

=
1

2
+
λp
N2

i i +
λt
N3/2

+ . . .

(p =pillow; t =tetrahedron)

There exists a scaling of the couplings with N , s.t. the large-N expansion is
governed by a non-negative half-integer, the degree ω (not a topological):
[Carrozza, Tanasa (2015)]

ln

∫
[dT ]e−S[T ] =

∑
ω∈N/2

N3−ωFω

8 / 20



Feynman graphs

Perturbative expansion:

Represent Wick contraction of two tensors by dashed line, e.g.:

2 1

1 2

3

1 2

2 1

3
` `

Ordinary Feynman diagrams, tracking only spacetime propagators, are obtained by
shrinking interaction bubbles to a point:

The two graphs above are examples of melonic graphs (with ω = 0):
the tetrahedron graph is melonic in the the spacetime diagram representation,
while the pillow graph is melonic in the solid+dashed graph representation.
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The world of melons

ω = 0 ⇒ Melonic diagrams: a special subclass of planar graphs
[Bonzom, Gurau, Riello, Rivasseau (2011)]
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The world of melons

ω = 0 ⇒ Melonic diagrams: a special subclass of planar graphs
[Bonzom, Gurau, Riello, Rivasseau (2011)]

⇒ Combinatorially: tree structure (melons are generated by repeated insertions)

⇒ Melons can be counted: the large-N limit is solvable!

⇒ Bad for Euclidean QG (melons ' “branched polymers”, no semiclassical regime)
but with possibly many other applications
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Melonic Schwinger-Dyson equations in d = 0

The standard Schwinger-Dyson equation for the 2-point function:

G−1 = 1− Σ

G = + + + ...

In large-N limit, the self-energy is:

Σ = +λ2
tG

3 − λpG

G

G

G

G

2

t p

→ for λp = 0, G(λt) is the generating function of the Ap(4, 1) Fuss-Catalan numbers:

G(λt) =

∞∑
p=0

1

4p+ 1

(
4p+ 1
p

)
λ2p
t ∼ (λt,crit − λt)1/2

where λ2
t ,crit = 33

44
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Conformal limit in SYK-like tensor models (d = 1)

The structure of the Schwinger-Dyson equations at large-N is the same as before,
but with d = 1 integrals:

G(ω) = (−iω − Σ(ω))−1

G = + + + ...

Σ(ω) = J2

∫
dω1dω2

(2π)2
G(ω1)G(ω2)G(ω − ω1 − ω2)

G

G

G

=

1

G(ω)
=

Same structure as Fuss-Catalan generating function, but with two loop integrals
because we are in d = 1

In the UV limit ω →∞ the self energy Σ(ω) can be neglected: the theory is
asymptotically free

In the IR limit ω → 0 the free inverse propagator (“−iω”) can be neglected and
one obtains a conformal invariant solution:

G(ω) ∼ ω2∆−1 , ∆ = 1/q

(q = order of the interaction)
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2PI formalism

Polynomial SD equations ⇒ 2PI formalism is well suited for tensor models [DB, Gurau (2018)]

Starting from

W[j, k] = ln

∫
[dϕ] exp

{
− S[ϕ] + jaϕa +

1

2
ϕakabϕb

}
the 2PI effective action is obtained by a double Legendre transform

Γ[φ,G] = S[φ]︸︷︷︸
tree level

+
1

2
Tr[lnG−1] +

1

2
Tr[Sφφ[φ]G]︸ ︷︷ ︸

one loop

+ Γ2[φ,G]︸ ︷︷ ︸
two or more loops

with the following Feynman rules:

vertices: Sint[φ, ϕ] = S[φ+ ϕ]starting at cubic order in ϕ

propagator: G(x, y)

Γ2[φ,G] is given by the sum of all the (n ≥ 2)-loops two-particle irreducible vacuum
graphs. On shell: φ = 〈ϕ〉 and G = 〈ϕϕ〉c

[Cornwall, Jackiw, Tomboulis - ’74]
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2PI effective action for tensor models [DB, Gurau (2018)]

Counting traces = counting faces in stranded graph
⇒ leading order is given by melons

There is only one melon graph which is also 2PI: the fundamental melon

For SYK-like tensor model in symmetric phase (φ = 0):

1

N3
Γ[0, G] = −1

2
Tr[lnG−1]− 1

2
Tr[∂tG(t, t′)]− 1

8
λ2

∫
t,t′

G(t, t′)4

⇒ • SD equations recovered as equations of motion δΓ
δG

= 0

• 4-point function from inverse of δ2Γ
δGδG

= G−1G−1(1−K),
i.e. geometric series in K (ladder diagrams)
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The melonic limit in d ≥ 2

Motivations:

Melonic SD equations admit a conformal solution also in higher dimensions.

AdSd+1/CFTd correspondence for tensor models?

The melonic limit as an analytic tool for QFT?

Key differences and difficulties:

In d ≥ 2 one has to deal with renormalization

The four-fermion interaction is marginal in d = 2

⇒ only trivial fixed point

Typical bosonic models have unstable potentials

Could a non-trivial CFT be found in a tensor-valued field theory?
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Tensorial Gross-Neveu model [DB,Carrozza,Gurau,Sfondrini (2017); DB, Delporte (2018)]

Standard free theory, which has U(N3) invariance:

Sfree[ψ] =

∫
ddx

1...N∑
a,b,c

ψ̄abc/∂ψabc

Introduce interactions with tensor structure, breaking U(N3) to U(N)3:

Sint[ψ] =

∫
ddx

 λd
4N3

+
λp

4N2

∑
i=1,2,3

i i


Notice:

Only bipartite interactions for U(N)3 symmetry

⇒ Only tadpole diagrams
⇒ SD equation = mass gap equation

e.g. leading to m = Λ exp
(
− π

2(λ0+3λ1)

)
in d = 2 (critical dimension)

In d > 2, new tricritical UV fixed points (with symmetric, chiral-breaking, and new
U(N)-breaking phases), but still very similar to ordinary GN model
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Fermions with tetrahedron interaction [DB,Carrozza,Gurau,Sfondrini (2017)]

For Majorana fermions with O(N)3 symmetry we can add the tetrahedron interaction

Sint[ψ] =

∫
ddx

 λd
4N3

+
λp

4N2

∑
i=1,2,3

i i +
λt

4N3/2


The Schwinger-Dyson equation get modified by melonic contribution

⇒ situation in d = 2− ε is reversed:

βt = −ελt +
3

π2
λ3
t

⇒ real IR fixed point of order
√
ε for ε > 0 (d < 2),

and no real fixed point for ε < 0 (d > 2)

For ε = 1 we expect to recover an SYK-like model
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Bosonic O(N)3 tensor model

In the bosonic case, the O(N)3 model’s action is unbounded from below,
due to the tetrahedron interaction.

In principle it still makes sense to study the model in the large-N limit,
but in fact complex operator dimensions are found in d = 4− ε
[Klebanov et al. (2017-2019)]

A real CFT can be found with two modifications [DB, Gurau, Harribey (2019)]

A non-local free propagator reproducing the expected conformal scaling

Sfree[φ] =
1

2

∫
ddx

(
φabc(−∂2)d/4φabc +md/2φabcφabc

)
(similarly to Brydges-Mitter-Scoppola model (φ4

3 theory),
or conformal SYK model of Gross-Rosenhaus)

A purely imaginary tetrahedron coupling: λt = i |λt|
(similarly to Lee-Yang model with iλφ3 interaction)
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Bosonic O(N)3 tensor model: main results

[DB, Gurau, Harribey (2019); + Suzuki (2019)]

2-point function: only mass renormalization for d < 4

Setting renormalized mass to zero, SD equation is solved by G−1(p) = Zpd/2

with Z a finite rescaling

No vertex correction to the tetrahedron ⇒ βt = 0

Other beta functions: βi = β0(−λ2
t )− 2β1(−λ2

t )gi + β2(−λ2
t )g

2
i .

⇒ • λt is an exactly marginal coupling

• Other couplings have a λt-dependent fixed point,
which is real and with real critical exponents for λ2

t < 0

spectrum of bilinear operators:

hm,J = d/2 + J + 2m+ fm,J(−λ2
t ) real for λ2

t < 0
and consistent with unitarity bounds

The OPE coefficients CφφOm,J are all real

⇒ Despite the imaginary coupling, the model is so far compatible with unitarity
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Conclusions and outlook

The melonic limit is a new entry in the QFT world

Tensors are easier than matrices, but richer than vectors

In d = 1 they provide a possible holographic model of black holes

New fixed points and new phases for fermions in d > 2

Tensorial Gross-Neveu model in d = 2− ε ⇒ approach to d = 1 SYK-like model?

For bosons we find interacting IR fixed points in d < 4
[Giombi, Klebanov, Tarnopolsky (2017); DB, Gurau, Harribey (2019)]

Many open questions, e.g.:

Unitarity of bosonic melonic CFTs?

Classification of melonic CFTs?

Holographic dual of melonic CFTs?

Other limits hidden in tensor models?
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