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Toward emergent spacetime  
in quantum gravity:  

Quantum Black Holes from scratch 



Quantum Gravity  
and  

the emergence of spacetime



• Einstein’s equations as equation of state
GR dynamics is effective equation of state for any microscopic dofs 

collectively described by a spacetime, a metric and some matter fields

fundamental discreteness of spacetime? breakdown of locality? 
is spacetime itself “emergent” from non-spatiotemporal,                             

non-geometric, quantum building blocks (“atoms of space”)?

Beyond spacetime? hints from various corners

• entanglement ~ geometry
geometric quantities defined by quantum (information) notions 
(examples from AdS/CFT, and various quantum many-body systems)

•     black hole information paradox some fundamental principle has to go: locality?

•    challenges to “localization” in semi-classical GR    

•      spacetime singularities in GR

•      black hole thermodynamics

minimal length scenarios

breakdown of continuum itself?

space itself is a thermodynamic system
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Spacetime is emergent 

and made out of non-spatiotemporal 
quantum building blocks 

(“atoms of space”)

supporting (indirect) evidence/arguments:


• QG approaches (e.g. LQG spin networks)


• BH entropy (finite) and thermodynamics


• GR singularities (breakdown of continuum?)

Spacetime and its atomic constituents
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Spacetime is emergent 

and made out of non-spatiotemporal 
quantum building blocks 

(“atoms of space”)

supporting (indirect) evidence/arguments:


• QG approaches (e.g. LQG spin networks)


• BH entropy (finite) and thermodynamics


• GR singularities (breakdown of continuum?)

Spacetime and its atomic constituents

black holes are crucial testing ground



Geometry from Quantum
geometri properties of emergent spacetime to be extracted from quantum properties of building blocks

entanglement/geometry correspondence

supporting evidence:


• many results within AdS/CFT


• QI aspects of boundary CFT —-> 
geometric quantities in bulk AdS


• several results in QG


• entanglement “builds” QG states

• fundamental quantum operators directly corresponding to (proto-)geometric quantities


• collective quantum properties corresponding to continuum geometric quantities


• geometry as effective understanding of non-geometric quantum properties

(entanglement —-> geometry)



Quantum Gravity: new perspective
many current approaches suggest a change of perspective on the quantum gravity problem

traditional perspective: 
quantise gravity (i.e. spacetime geometry)

new perspective: 
identify quantum structures/building blocks of non-spatiotemporal 
nature from which spacetime and geometry “emerge” dynamically

problem becomes similar to the typical one in condensed matter theory (from atoms to macroscopic physics)



Black Holes  
and 

Quantum Gravity



Black holes call Quantum Gravity
Black holes theoretical challenges: a testbed for quantum gravity

• black hole entropy and thermodynamics


• black hole microstructure and statistical treatment


• black hole singularity


• black holes and information

QG modifications to standard spacetime, gravity and QFT
no global causal structure, approx. locality, approx. decomposition int/ext, 
modifications at horizon scales (consistent with “emergent spacetime” idea)

need Quantum Gravity 
description

challenges to very 
definition of black holes

Marolf, ‘17

Jacobson, ’99; Sorkin, ’05

Wallace, ‘17



Quantum Gravity calls Black Holes
Black holes: door to quantum gravity phenomenology

• modified Hawking radiation


• modified horizon structure (eg quantum atmosphere) and 
gravitational waves


• relics of (primordial) BH evaporation as dark matter candidates


• modified QFT (eg dispersion relations) 


• BH-WH transition.  - possibly detectable in (fast) radio bursts


• consequences for gravitational waves - modified quasi-normal 
modes spectrum


• ………

Giddings, ’16; Dey, Liberati, Pranzetti, ’17; Cardoso, Pani, ‘17

Barrau, Martineau, Moulin, ‘18

Carr, ‘16

Liberati, ‘11



Quantum Gravity modelling of Black Holes
intense modelling activity in various quantum gravity formalisms
• in string theory via D-branes (entropy counting, extremal case)


• BH as quantum condensates at critical point


• BHs in causal sets (global causal structure, entanglement entropy)


• semi-classical black holes from dual CFT in AdS/CFT correspondence


• other semi-classical guess-work of BH interior dofs 


• Giddings’ statistical approach (challenges to standard entropy picture)


• ……….

Giddings, ‘12

Nomura, Sanchez, Weinberg, ‘15

(…….)

He, Rideout, ‘08

Dvali, Gomez, ‘12

Strominger, Vafa, ’96; ….
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Loop Quantum Gravity modelling of Black Holes
• quantization of isolated horizons (sector of GR, induced CS theory)

• LQG-inspired symmetry reduced models

• BH modelling (incl. interior) with simple spin network states

+ : quasi-local, microstates counting, entropy calculations (area 
law, correct coefficient, log corrections) 


- : quasi-local, semi-classical modelling, no quantum control over 
bulk dofs, no control over quantum dynamics

nice, compelling picture of BH microstates 
(spin networks puncturing horizon)

main open issues: 


modelling within full theory; superpositions of graphs, 
continuum limit; quantum dynamics

counting of (intertwiner) bulk states, entropy law, 
entanglement entropy

Barbero, Perez, ’15; Diaz-Polo, Pranzetti, ’12; Perez, ‘17

Ashtekar, Bojowald, ‘05

Ashtekar, Beetle, Fairhurst, ‘99

Livine, Terno, ‘08

quantum singularity resolution



issue of quantum black holes 
from new QG perspective: 

special (and especially challenging) case of 
emergent spacetime and geometry



The Group Field Theory formalism
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X
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Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06; 
Bianchi, Dona, Speziale, ’10; ……

equivalent formulation in terms of irreps of G 
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Quantum space as a many-body system
Many-body Hilbert space for “quantum space”: Fock space

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
'̂
†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:

O
 =(�,J

(ab)
(ij) ,◆i)

('̂†) =

0

@
Y

(i)

Z
[dgia]

1

A 
(�,J

(ab)
(ij) ,◆i)

(giag
�1
jb )

Y

i

'̂
†(gia), (4)
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Fock vacuum: “no-space” state   | 0 >
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gravity atom’ corresponding to a Hilbert space Hv = L
2
�
G

⇥d
/G

�
. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):

~� =
⇣
~J, ~m, I

⌘
!  ~�(~g) = h~g|~�i =

"
dY

a=1

D
Ja
mana

(ga)

#
C

J1...Jd,I
n1..nd

. (6)

The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂
†(g1, .., gd) ⌘ '̂

†(~g) =
X

~�

'̂
†

~�  
⇤

~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�

0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L
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the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Many-body Hilbert space for “quantum space”: Fock space
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).

5

Example: simplicial interactions

DO, ’09; DO, ‘14
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DO, ’09; DO, ‘14
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Dynamics of quantum space as a group field theory

GFT

Loop Quantum 
Gravity

Spin foam 
models
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Any spin foam amplitude is the 
Feynman amplitude of a GFT model

Multiple relations with other QG formalisms

Reisenberger, Rovelli, ‘00

Quantum GFT dofs (quantum states) are same as in LQG (spin 
networks), organised in different (but similar) Hilbert space


GFT is 2nd quantized reformulation of LQG states and dynamics

GFT and Loop Quantum Gravity/
Spin foam models



GFT states as generalised tensor networks
Quantum states in many-body systems conveniently encoded in tensor networks 
= tensors contracted by link maps, associated to graph 

Dictionary: Spin-networks as gauge invariant tensors networks

equivalence is resumed in table B:

Table B GFT network Spin Tensor Network Tensor Network
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In the following sections, with the longer-term goal of a full understanding and com-

putation of the RT formula in the field-theoretic GFT context, we are going to use the

inputs provided by the established dictionary between GFT states and (random) tensor

networks to reproduce the RT formula in three di↵erent cases corresponding to three dif-

ferent truncations/approximations, suggested by the established correspondence. In the

next section, we derive a RT formula by calculating the 2nd Rényi entropy, reproducing

the original argument given in [23] for the case of a random tensor network with additional

gauge symmetry described above. Then, we further generalize the approach by means of

the GFT formalism and spin network techniques, as further steps towards the calculation

of the RT formula within a complete quantum gravity setting. We expect the random

character at the core of the original derivation to be naturally captured by our field the-

oretic generalization. In particular, the correspondence will allow us to use the standard

path integral formalism to evaluate the expectation values of entropies and other tensor

observables.

3 Ryu-Takayanagi formula for Random Tensor Networks with Gauge
Symmetry

The Ryu-Takayanagi formula[20], originally derived in the context of the gauge gravity du-

ality, for continuum fields on a smooth background, shows that the entanglement entropy

in d+1 dimensional conformal field theories can be obtained from the area of d-dimensional

minimal surfaces in AdSd+2. This entropy-area relation is recognised to be of fundamen-

tal importance for at least three key reasons. First, it suggests a convenient approach to
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Group field theory states are a field-theoretic generalization of random (symmetric) tensor networks

G. Chirco, DO, M. Zhang, arXiv:1701.01383v2, arXiv:1711.09941 [hep-th]

Tijk : Z⇥3
N ! C

Tijk : X⇥3 ! C X = 1, 2, ..., N

correspondence even 
stricter for random tensor 
models (GFTs stripped down 
of group data, reduced to 
combinatorial structures)

Tijk : Z⇥3
N ! C

Tijk : X⇥3 ! C X = 1, 2, ..., N

'(g1, g2, g3) : G
⇥3 ! C
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an example



how does the universe (space, time) “emerge” 
from such fundamental constituents? 

universe as a “condensate” of the “atoms of space”?
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GFT condensate Cosmology: S. Gielen, DO, L. Sindoni, G. Calcagni, M. Sakellariadou, 
E. Wilson-Ewing, A. Pithis, M. De Cesare, ……….
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cosmology as QG hydrodynamics!!!

with correct classical limit, producing a quantum bounce, …
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Quantum GFT condensates are continuum homogeneous (quantum) spaces

described by single collective wave function (“wave-function homogeneity”) 
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Quantum black holes 
in  

the Group Field Theory formalism



Building up continuum space and geometry
Goal: extract continuum geometric (gravitational) physics 

(dynamics) from QG (GFT) models

This means: 


• control QG states encoding large numbers of microscopic QG dofs


• identify those with (approximate) continuum geometric interpretation


• characterise their (geometric) properties in terms of observables


• extract their effective dynamics and recast it in GR+QFT form 



Building up continuum space and geometry
Goal: extract continuum geometric (gravitational) physics 

(dynamics) from QG (GFT) models

This means: 


• control QG states encoding large numbers of microscopic QG dofs


• identify those with (approximate) continuum geometric interpretation


• characterise their (geometric) properties in terms of observables


• extract their effective dynamics and recast it in GR+QFT form 

This requires:


• controlling large graphs/complexes superpositions


• coarse graining of description


• approximations of both states, observables and dynamics

Here: take advantage of QFT formalism/methods

(universe as a quantum many-body system!)



Spherically symmetric geometries and horizons
!!!Construction work with “building blocks of quantum space”!!!

DO, Pranzetti, Sindoni, ’15-‘18

build up a spherically symmetric quantum BH

“piece by piece”

strategy: 

construct continuum homogeneous shells, then glue them together to form spherically 
symmetric continuum space



Spherically symmetric geometries and horizons
!!!Construction work with “building blocks of quantum space”!!!

Main result: candidate microscopic quantum states for spherically symmetric horizons + 
explicit computation of their entropy: area law and holographic properties

Main limitation: no dynamics, only some (assumed) proxies

DO, Pranzetti, Sindoni, ’15-‘18

build up a spherically symmetric quantum BH

“piece by piece”

strategy: 

construct continuum homogeneous shells, then glue them together to form spherically 
symmetric continuum space



Spherically symmetric geometries and horizons
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• basic operators: 


colored GFT tensors, to control topology, with simplicial geometric variables, to control geometric properties
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same criterion used in tensor networks context 
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• basic operators: 
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• We introduce operators which create vertices with the desired wave-function: 

These additional data allow a complete reconstruction of the dual simplicial complex determined by a GFT state 
(i.e. a triangulation with a specific topology and with a certain number of disconnected boundaries)
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• The storage of the topological properties of the dual triangulation requires the inclusion of colouring in the 
GFT field operators. The building blocks of 4-colored graphs are 4-valent vertices carrying an additional 
discrete label, which has only two values: tv = W,B

• quantum homogeneity: homogeneity in each shell obtained using vertices/GFT quanta associated with the same 
wave function (operators creating/annihilating vertices with same wavefunction)

h variables are boundary data 
used for “gluing” quanta
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same criterion used in tensor networks context 
to define “homogeneous tensor networks”



Spherically symmetric geometries and horizons
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Inner bound.

Outer 
bound.

Bulk

Spherically symmetric geometries and horizons
Homogeneous shells

Add labels to vertex wavefunction to identify shell and boundaries

From a melonic 4–colored graph one constructs a 3d abstract simplicial complex (see e.g. [Gurau, Ryan 11]). 
These graphs are well-adapted to the operatorial GFT approach:

• The seed state

Spherical shell

In order to compute the action of certain geometric operators, we 
need to associate an additional label to each vertex, which will tell 
us whether the vertex is adjacent to a boundary or not: s = +, 0, −  

In order to glue shells together, and still be able to distinguish 
different shells, we add a label to the shell wave-function: r ∈ N

➥ Field operators for the construction of our states:  

The notion of wave-function homogeneity for each shell captures the 
coarse grained homogeneity of continuum geometric data 
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The previous construction can be applied to cases in which the symmetry group defines a 
foliation of the manifold into homogeneous orbits. The leaves of such foliations will correspond to 
triangulations of spherical shells (topology              )S2 ⇥ [0, 1]

The idea of GFT condensation posits that the same wave-function    should 
be associated to each new GFT excitation introduced in the state 
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Refinement operator (dipole insertion):

iiiBasic (topology preserving) move: Dipole creation and annihilation 

• The refinement operator

We want to act on the seed with an operator that realize a very simple move that changes 
the triangulation leaving fixed the topology

Let us concentrate on the refinement of one boundary ‘+’ (with dual links of color 1):

Repeated action of these operators leads to the growth of the seed state into states associated to finer and finer 
triangulations. In particular, the state 

Analogous operators can 
be built for the boundary 
‘-’ and the bulk

does represent a superposition of condensed vertices glued to form a single spherically symmetric shell in all the 
possible ways compatible with the moves described (kinematical continuum limit for quantum geometries)
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Quantum state for (approximately) continuum homogeneous spherical shell:
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large (infinite) superpositions of arbitrarily complex spin network/simplicial states
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BulkSpherically symmetric continuum quantum geometry

Quantum (pure) state obtained by product of shell states, sharing boundary 
data, refined in a coordinated way - large (potentially infinite) superposition of 
spherically symmetric cellular complexes, from gluing homogeneous shells

Spherically symmetric geometries and horizons
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can define and compute geometric quantities

e.g. area operator (for shell r and boundary s)

• Area operator

The second quantised version of the total area operator for the surface made of faces dual to the J−links 
can be defined as the one body operator

for which, given our carefully designed refinement moves, it can be shown that  
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hÂJr,si = hbnr,siaJr,s

nr,Bs = nr,Ws = nr,s

2

Given the structure of the seed state and the refinement operators, each shell state is such that
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could now impose “horizon (boundary) conditions” ….  postpone
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“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)  

nice features of our GFT states: all information about traced-out shells is lost; complete set of 
eigenstates of horizon density matrix can be found, labelled 
by total number of graphs at given number of vertices



Horizon entropy calculation

Inner bound.

Outer bound.

Bulk

• Complete orthogonal basis:
Working at fixed (large) number   of vertices and using again the commutation relations, it 
can be shown that the states

are orthogonal eigenstates of the horizon density matrix: 

• Total reduced density matrix of the horizon: ⇢(n)red�tot =
1

N

NX

s=1

⇢(n)red(�s)

⇢(n)red(�s) 
(n)
r0 (�s0) =

8
><

>:

 (n)
r0 (�s0) if s = s0

0 if s 6= s0 .

where      is the total number of horizon graphs for given number of verticesN n

n

 (n)
r0 (�s) =

Z nY

i=1

dgiIdf
i
I �

i
r0(f

i
Ig

i
I)

Y

v,e

�(fv,ef
�1
te(v),e

)

r0

It is possible to find a complete set of the horizon density matrix eigenstates 
labelled by the total number of horizon graphs, at fixed number of vertices, 
that can be constructed by acting with any string of refinement operators. 

horizon density matrix:
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nice features of our GFT states: all information about traced-out shells is lost; complete set of 
eigenstates of horizon density matrix can be found, labelled 
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“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)  

nice features of our GFT states: all information about traced-out shells is lost; complete set of 
eigenstates of horizon density matrix can be found, labelled 
by total number of graphs at given number of vertices

NB: here, “horizon” is simply one reference shell
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horizon density matrix:
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It is possible to find a complete set of the horizon density matrix eigenstates 
labelled by the total number of horizon graphs, at fixed number of vertices, 
that can be constructed by acting with any string of refinement operators. 
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horizon density matrix:

Ingredients:


• no use of microscopic quantum dynamics (just trial states)


• large area, small shell volume, small fluctuations (many vertices)


• require maximal entropy ——> “proxy” for “horizon conditions”


• consistency with semiclassical thermodynamics
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horizon density matrix:

Ingredients:


• no use of microscopic quantum dynamics (just trial states)


• large area, small shell volume, small fluctuations (many vertices)


• require maximal entropy ——> “proxy” for “horizon conditions”


• consistency with semiclassical thermodynamics

Entanglement (von Neumann) entropy = Boltzmann entropy (counting horizon graphs)

Graphs can be counted explicitly
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• no use of microscopic quantum dynamics (just trial states)


• large area, small shell volume, small fluctuations (many vertices)


• require maximal entropy ——> “proxy” for “horizon conditions”
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• We also need to take into account the degeneracy of the single vertex Hilbert space        , 
measuring the size of the space of wave-functions compatible with our semiclassicality 
restrictions (and solution of the dynamics equations). The total horizon entropy is then 
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It is possible to find a complete set of the horizon density matrix eigenstates 
labelled by the total number of horizon graphs, at fixed number of vertices, 
that can be constructed by acting with any string of refinement operators. 
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maximize entropy for given total (average) area:
We want to maximize this entropy at fixed value of the classical area        of the horizon. AIH

Consider the entropy functional: ⌃(n, a,�) = S(n, a) + �(AIH�`2P − 2an)
expectation value of the area for a single radial link

Restriction on the GFT condensates which 
admits a good semi-classical interpretation 
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✪ We can fix the Lagrange multiplier   by introducing the notion of IH temperature [DP 13] corresponding 
(in the semi-classical limit) to the Unruh temperature                  for a local stationary observer at proper 
distance from the horizon    (see also [Bianchi 12]) :     
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✪ We can fix the Lagrange multiplier   by introducing the notion of IH temperature [DP 13] corresponding 
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✪ We can fix the Lagrange multiplier   by introducing the notion of IH temperature [DP 13] corresponding 
(in the semi-classical limit) to the Unruh temperature                  for a local stationary observer at proper 
distance from the horizon    (see also [Bianchi 12]) :     
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�U = 2⇡`/`2P

✪ We can fix the Lagrange multiplier   by introducing the notion of IH temperature [DP 13] corresponding 
(in the semi-classical limit) to the Unruh temperature                  for a local stationary observer at proper 
distance from the horizon    (see also [Bianchi 12]) :     

�

�U = 2⇡`

`2
P

= @S

@EIH =
8⇡`

`2
P

2� ⇒ 2� = 1�4consistency with IH thermodynamics requires

Using the local notion of energy of  [Frodden, Ghosh, Perez 11] EIH = AIH

8⇡`
,

`

consistency requires:

Frodden, Ghosh, Perez, ’11; Pranzetti, ‘13 Bekenstein-Hawking entropy 
formula from full QG!

no dependence on 
Immirzi parameter



Outlook and lessons
What’s next

Preliminary lessons

• transition channels and Hawking radiation


• quantum dynamics


• generalization (matter fields, rotation, other states,…)


• ……….

• (approx.) continuum quantum states for BHs can be studied (via GFT techniques)


• Boltzmann and von Neumann entropy may be related


• holography in subset of state space


• continuum description is approximate/emergent (~ hydro approx)


• horizon structure most likely modified

expect more 
surprises 
…..





Thank you for your attention!


