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Quantum Gravity
and
the emergence of spacetime



Beyond spacetime? hints from various corners

challenges to “localization” in semi-classical GR minimal length scenarios

spacetime singularities in GR breakdown of continuum itself?

black hole thermodynamics space itself is a thermodynamic system

black hole information paradox some fundamental principle has to go: locality?

Einstein’s equations as equation of state
GR dynamics is effective equation of state for any microscopic dofs

collectively described by a spacetime, a metric and some matter fields
entanglement ~ geometry

geometric quantities defined by quantum (information) notions
(examples from AdS/CFT, and various quantum many-body systems)

fundamental discreteness of spacetime”? breakdown of locality?
IS spacetime itself “emergent” from non-spatiotemporal,
non-geometric, quantum building blocks (“atoms of space”)?






Spacetime and its atomic constituents

Spacetime is emergent

and made out of non-spatiotemporal
quantum building blocks

(“atoms of space”)

supporting (indirect) evidence/arguments:

« QG approaches (e.g. LQG spin networks)

- BH entropy (finite) and thermodynamics

« GR singularities (breakdown of continuum?)

quantum space as a (background-independent) quantum many-body system



Spacetime and its atomic constituents

Spacetime is emergent

and made out of non-spatiotemporal
quantum building blocks

(“atoms of space”)

supporting (indirect) evidence/arguments:

« QG approaches (e.g. LQG spin networks)

1 BH entropy (finite) and thermodynamics

» black holes are crucial testing ground

1 GR singularities (breakdown of continuum?)

quantum space as a (background-independent) quantum many-body system



Geometry from Quantum

geometri properties of emergent spacetime to be extracted from quantum properties of building blocks

- fundamental quantum operators directly corresponding to (proto-)geometric quantities
« collective quantum properties corresponding to continuum geometric quantities

« geometry as effective understanding of non-geometric quantum properties

entanglement/geometry correspondence

(entanglement —-> geometry)

supporting evidence:
« many results within AdS/CFT

+ QI aspects of boundary CFT —->
geometric quantities in bulk AdS

« several results in QG

- entanglement “builds” QG states




Quantum Gravity: new perspective

many current approaches suggest a change of perspective on the quantum gravity problem

traditional perspective:
guantise gravity (i.e. spacetime geometry)

l

new perspective:
identify quantum structures/building blocks of non-spatiotemporal
nature from which spacetime and geometry “emerge” dynamically

problem becomes similar to the typical one in condensed matter theory (from atoms to macroscopic physics)



Black Holes
andad
Quantum Gravity



Black holes call Quantum Gravity

Black holes theoretical challenges: a testbed for quantum gravity

black hole entropy and thermodynamics
Jacobson, '99; Sorkin, ‘05

black hole microstructure and statistical treatment
Wallace, ‘17

black hole singularity

black holes and information Marolf, ‘17

~.

need Quantum Gravity
description

>c:hallenges to very

QG modifications to standard spacetime, gravity and QFT definition of black holes

no global causal structure, approx. locality, approx. decomposition int/ext,
modifications at horizon scales (consistent with “emergent spacetime” idea)



Quantum Gravity calls Black Holes

Black holes: door to quantum gravity phenomenology

modified Hawking radiation

modified horizon structure (eg quantum atmosphere) and
gravitational waves
Giddings, '16; Dey, Liberati, Pranzetti, ’17; Cardoso, Pani, ‘17
relics of (primordial) BH evaporation as dark matter candidates
Carr, ‘16
modified QFT (eg dispersion relations)
Liberati, ‘11

BH-WH transition. - possibly detectable in (fast) radio bursts

consequences for gravitational waves - modified quasi-normal

modes spectrum
Barrau, Martineau, Moulin, ‘18




Quantum Gravity modelling of Black Holes

iIntense modelling activity in various quantum gravity formalisms

- in string theory via D-branes (entropy counting, extremal case) Strominger, Vafa, '96; ...

BH as quantum condensates at critical point Dvali, Gomez, *12

BHs in causal sets (global causal structure, entanglement entropy) He, Rideout, ‘08

semi-classical black holes from dual CFT in AdS/CFT correspondence (P

other semi-classical guess-work of BH interior dofs Nomura, Sanchez, Weinberg, ‘15

Giddings’ statistical approach (challenges to standard entropy picture) Giddings, 12
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- BHs in causal sets (global causal structure, entanglement entropy) He, Rideout, ‘08
- semi-classical black holes from dual CFT in AdS/CFT correspondence (RN
- other semi-classical guess-work of BH interior dofs Nomura, Sanchez, Weinberg, ‘15

- Giddings’ statistical approach (challenges to standard entropy picture) Giddings, 12




Loop Quantum Gravity modelling of Black Holes

Barbero, Perez, ’15; Diaz-Polo, Pranzetti, ’12; Perez, ‘17

 quantization of isolated horizons (sector of GR, induced CS theory)
Ashtekar, Beetle, Fairhurst, ‘99

+ : quasi-local, microstates counting, entropy calculations (area
law, correct coefficient, log corrections)

- : quasi-local, semi-classical modelling, no quantum control over
bulk dofs, no control over quantum dynamics

« LQG-inspired symmetry reduced models  Ashtekar, Bojowald, ‘05 )
quantum singularity resolution 7 7

« BH modelling (incl. interior) with simple spin network states

counting of (intertwiner) bulk states, entropy law,
entanglement entropy Livine, Terno, ‘08

nice, compelling picture of BH microstates
(spin networks puncturing horizon)

main open issues:

| modelling within full theory; superpositions of graphs, |
tinm Iir_nit; quantum dynamics
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The Group Field Theory formalism



1 )
Aﬂ atom Of Space Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

Bianchi, Dona, Speziale, '10; ......
Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron 4 N
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

[Ain:f:b:feﬂ%?”l bi-N =0 » b =0 ]

equivalent formulation in terms of irreps of G
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Aﬂ “atOm Of Space” Barbieri ’97; Baez, Barrett, ’99; Rovelli, Speziale, ’06;

Bianchi, Dona, Speziale, '10; ......
Elementary building block of 3d space: single polyhedron - simplest example: a tetrahedron
Classical geometry in group-theoretic variables

4 vectors normal to triangles that close (lying in hypersurface with normal N)

[Ainf:bfeR?”l @--N:(D [Zbizg J

A
N

phase space: + constraints

(T*SO(3,1))* ~ (s50(3,1) x SO(3,1))* D (s50(3) x SO3))* ~ (T*SO(3))*

Quantum geometry in group-theoretic variables
N

(" Hilbert space

HU = L2 (Gd§d,UJHaar)

+ constraints on states
\_ Y,

equivalent formulation in terms of irreps of G

spin network vertex




Quantum space as a many-body system

DO, ‘13

Many-body Hilbert space for “quantum space”: Fock space

F(Hy) = Py sym { (HSJU SHY ®--® H’S}V>) } Fock vacuum: “no-space” state |0 >

Second-quantised representation for (simplicial) geometric operators

0@, '@ = 1@ d)  [p@. ¢@)] = [¢'@. ¢'@)] =0

— Oum (¢:¢") = [1d51105}] 3'(91)-3"(5n) Onan (Gt Gons 31 . 1) B30 (57)
e.g. total space volume (extensive quantity):
Vot = [ daldgf)! (90 V(91 $(6)) = 3 &1 () V() 6()

-

volume of single tetrahedron (from simplicial geometry)



Group field theories

a QFT for the building blocks of (quantum) space

Fock vacuum: “no-space” (“emptiest”) state |0 > (d=4)

single field “quantum” spin network vertex or tetrahedron (g1, 92,93, 94) < @(B1, Ba, B3, By) — C
(“building block of space”)

RN

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

/ N




Quantum space as a many-body system

DO, ‘13

Many-body Hilbert space for “quantum space”: Fock space

F(Hy) = Py sym { (7-[1()1) SHY @ ® H’I(JV)) } Fock vacuum: “no-space” state |0 >

Quantum space as an system of many quantum polyhedra/spin network vertices

generic states not very “spacey” at all - “connected” many-body states a little more “spacey”




Dynamics of quantum space as a group field theory

DO, ’'09; DO, ‘14

Dynamics governs gluing processes and formation of extended discrete structures

Interactions processes correspond to (simplicial) complexes in one dimension higher
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DO, ’'09; DO, ‘14

Dynamics governs gluing processes and formation of extended discrete structures

Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

A

S(p,®) = %/[dgi]sa(gi)/C(gi)@(gi) + ﬁ/[dgz-a]sa(gu)----@(gw)V(gm,gw) + cc

“combinatorial non-locality” /
in pairing of field arguments




Dynamics of quantum space as a group field theory

DO, ’09; DO, ‘14
Dynamics governs gluing processes and formation of extended discrete structures

Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

A

S(p,P) = %/[dgi]SO(gi)K(gi)@(gi) + DI /[d!]ia]@(gil)-~--¢(9z‘D)V(gia,giD) + C.C.

“combinatorial non-locality” /
in pairing of field arguments

a
12 3 4

Example: simplicial interactions

L 2 ¢V

12 3 4
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details depend on (class of) models

A

S(p,®) = %/[dgi]sa(gi)/C(gi)@(gi) + ﬁ/[dgz-a]sa(gu)----@(gw)V(gm,gw) + cc

“combinatorial non-locality” /
in pairing of field arguments




Dynamics of quantum space as a group field theory

DO, ’09; DO, ‘14

Dynamics governs gluing processes and formation of extended discrete structures

Interactions processes correspond to (simplicial) complexes in one dimension higher

details depend on (class of) models

A

S(0.9) = 5 [ [gleloK(a)e(9) + 77 [ giale(gn)oGip)V(gia Gip) + e

“combinatorial non-locality”
in pairing of field arguments

ANT

/ EI; sym(L')

Feynman diagrams = stranded diagrams dual
to cellular complexes of arbitrary topology

amplitude for each ]

sum over triangulations/complexes) : .
triangulation/complex




Dynamics of quantum space as a group field theory

Multiple relations with other QG formalisms

Simplicial grawty]
. ‘ -y I
[ Loop Quantum ] path integrals _,[ TPynampaI ]
' riangulations
Gravity

;
Spin foam
[ ol ](\-(—)(Tensor models)




Dynamics of quantum space as a group field theory

Multiple relations with other QG formalisms

Loop Quantum
Gravity

GFT and Loop Quantum Gravity/ A

Spin foam models .

Sy

Spin foam

Quantum GFT dofs (quantum states) are same as in LQG (spin
networks), organised in different (but similar) Hilbert space

GFT is 2nd quantized reformulation of LQG states and dynamics

Spin foam model = quantum amplitude o
for spin network evolution 2(T) = Z H A1) H Ae(J, 1) H Av(J, 1)
{Jy AL g9 07 f e v
. _ AT Any spin foam amplitude is the
— S , L .
Z = /D@Dgp et ONpP) = Z sym(T) Ar  Z(') = Ar Feynman amplitude of a GFT model
T

Reisenberger, Rovelli, ‘00



GFT states as generalised tensor networks

G. Chirco, DO, M. Zhang, arXiv:1701.01383v2, arXiv:1711.09941 [hep-th]

Quantum states in many-body systems conveniently encoded in tensor networks
= tensors contracted by link maps, associated to graph

Group field theory states are a field-theoretic generalization of random (symmetric) tensor networks

Table B GFT network Spin Tensor Network Tensor Network
~ J
node _, (gipgg )93 » “{m} o Ty correspondence even
B D O 2k} Plm (i | stricter for random tensor
| models (GFTs stripped down
link M (g} geg2) Min My x, of group data, reduced to
combinatorial structures)
Sym go(hg’) — @(ﬁ) Hﬁ Dfnsmg (Q)iqufl...mg) Hg UusMéTu’l---u{, -
— 4t T, .. i 3
b S 90(91792793) :G*° = C
state %) = |\I!JF1> = . U Ar) EN
Q¢ (Mg, | Qs [90m) (M@, 167"") | Q¢ (M| @, 1T)
indices gi € G, m; € H;, SU(2) spin-j W; € Zy,, nth
. ~ T2 J' 15 Tszxg_)C
‘gz> c H ~ L [G] lrrep. C:rn 1+ orrOalIm J N
Tijk : XXS — C
dim 00 dimH; =25 +1

X=1,2..N



Emergence of spacetime
from quantum gravity:
an example



how does the universe (space, time) “emerge”
from such fundamental constituents?

universe as a “condensate” of the “atoms of space”?



Emergent Spacetime in Quantum Gravity: an example

S. Gielen, DO, L. Sindoni, G. Calcagni, M. Sakellariadou,

L GFT condensate Cosmology: |
¥ ’ E. Wilson-Ewing, A. Pithis, M. De Cesare, ..........
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Emergent Spacetime in Quantum Gravity: an example

S. Gielen, DO, L. Sindoni, G. Calcagni, M. Sakellariadou,

L GFT condensate Cosmology:
¥ E. Wilson-Ewing, A. Pithis, M. De Cesare, ..........

[ Quantum GFT condensates are continuum homogeneous (quantum) spaces J

described by single collective wave function (“wave-function homogeneity”)
(depending on homogeneous anisotropic geometric data) \

same criterion used in tensor networks context
to define “homogeneous tensor networks”

4 )
QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
L non-linear extension of (loop) quantum cosmology equation for collective wave function y

with correct classical limit, producing a quantum bounce, ...

many recent results! _
cosmology as QG hydrodynamics!!!




Quantum black holes
IN
the Group Field Theory formalism



Building up continuum space and geometry

n
.n“

Goal: extract continuum geometric (gravitational) physics
(dynamics) from QG (GFT) models

This means:

control QG states encoding large numbers of microscopic QG dofs

identify those with (approximate) continuum geometric interpretation

characterise their (geometric) properties in terms of observables

extract their effective dynamics and recast it in GR+QFT form

e, 4 [t S
Lok i el M LS 3 A
L ML "‘.‘_-g Lt Bt e Lt B
/ ..ogogr.cy‘-‘..|..l.-'..
AR A 25 Bt el Tt A T
. . o VA o it B PR |

e ‘\-“' L X 0.-1-"\5 |
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Goal: extract continuum geometric (gravitational) physics
(dynamics) from QG (GFT) models

This means:

control QG states encoding large numbers of microscopic QG dofs

identify those with (approximate) continuum geometric interpretation

characterise their (geometric) properties in terms of observables

extract their effective dynamics and recast it in GR+QFT form

This requires:

it A e e e i L T

"l"\’\.‘r'*'\v.-" -
ﬁ"l-;‘ .~ ‘\.-}' ‘.q D.‘\-\". |
;\'}";': A0 o bt Me on

Yl i « controlling large graphs/complexes superpositions

e = i ot LR T
LW

« coarse graining of description

- approximations of both states, observables and dynamics

Here: take advantage of QFT formalism/methods
(universe as a quantum many-body system!)




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, ’15-‘18

“piece by piece”

strategy:
construct continuum homogeneous shells, then glue them together to form spherically
symmetric continuum space



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, ’15-‘18

MConstruction work with “building blocks of quantum space”!!!  build up a spherically symmetric quantum BH
\ BS, “rr‘“"“h‘ p/

%i P

“piece by piece”

strategy:
construct continuum homogeneous shells, then glue them together to form spherically
symmetric continuum space

Main result: candidate microscopic quantum states for spherically symmetric horizons +
explicit computation of their entropy: area law and holographic properties

Main limitation: no dynamics, only some (assumed) proxies




Spherically symmetric geometries and horizons

Construction of spherically symmetric GFT states

 basic operators:

2 !

1

2N

@jﬂ/(glvg27g3ag4) ‘O> -

4

DO, Pranzetti, Sindoni, '15-‘18

(interplay of random tensor methods and LQG data)

@L(glag%gi%gél) |O> —

4

1

7 | ~
A
/ \
—@
+
N 7
~ L~

3

2

3
colored GFT tensors, to control topology, with simplicial geometric variables, to control geometric properties

|

same criterion used in tensor networks context
to define “homogeneous tensor networks”



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Construction of spherically symmetric GFT states (interplay of random tensor methods and LQG data)
1 1
- basic operators: A R |
p 9011/(91792793794) ‘O> — 2 "\9// 4 QOTB(91792793794> |O> = - .‘\!," 2
3

3
colored GFT tensors, to control topology, with simplicial geometric variables, to control geometric properties

- quantum homogeneity: homogeneity in each shell obtained using vertices/GFT quanta associated with the s.
wave function (operators creating/annihilating vertices with same wavefunction)

l 500 () = /S AT, k) = /S o AT

same criterion used in tensor networks context

to define “homogeneous tensor networks” h vanables are boundary data

used for “gluing” quanta



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Construction of spherically symmetric GFT states (interplay of random tensor methods and LQG data)
1 1
- basic operators: A R |
p ‘,014/(91792793,94) ‘O> — 2 "\9// 4 @JrB(gl7927g37g4> |O> = - .‘\!," 2
3

3
colored GFT tensors, to control topology, with simplicial geometric variables, to control geometric properties

- quantum homogeneity: homogeneity in each shell obtained using vertices/GFT quanta associated with the s.
wave function (operators creating/annihilating vertices with same wavefunction)

l 500 () = /S AT, k) = /S o AT

same criterion used in tensor networks context

to define “homogeneous tensor networks” h vanables are boundary data

used for “gluing” quanta

*‘ Strategy:

1. Start with a (combinatorially simple) seed state for the desired topology

‘ 2. Act iteratively with a refinement operator which is fopology-preserving and maintains
i homogeneity of the vertex wave-functions




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells

Add labels to vertex wavefunction to identify shell and boundaries

(3'r7tv3v (h}}) = /dg}) Oprgv (h})gqf)) @t” (g})) fnnerbound.




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells

Add labels to vertex wavefunction to identify shell and boundaries

oo (hY) = / Agy 0ren (39) Grv(g})

Inner bound.

Simple seed state with two boundaries:




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells

Add labels to vertex wavefunction to identify shell and boundaries

oo (hY) = / Agy 0ren (39) Grv(g})

Inner bound.

Simple seed state with two boundaries:

Refinement operator (dipole insertion):

M, . = f dkodksdksdh,dh)ydh, *

61 . (e, R,y ka)GT . (e, hb, by, Ri)GT (e, ko, ks, h))6, b, (e, k2, k3, ka)

T’,W+ 7"7B+



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells

Outer

bound.
Add labels to vertex wavefunction to identify shell and boundaries
(/)\-rr-’tvsv (h}}) = /dg}) O ygv (h})g})) @tu (g})) Inner bound.
Simple seed state with two boundaries:
2 2
oo e
Refinement operator (dipole insertion):
1 1” 1 1
2 2 2
® — ® O—— ®
M., = f dkodksdksdh,dh)ydh, * 4 L A

61 . (e, R,y ka)GT . (e, hb, by, Ri)GT (e, ko, ks, h))6, b, (e, k2, k3, ka)

T’,W+ 7"7B+

Quantum state for (approximately) continuum homogeneous spherical shell:
(for some high-order polynomial operator function F) B — —
‘\Ijr> _ F’I“(Mr,Bsa MT‘,WS)‘T>



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Homogeneous shells

Add labels to vertex wavefunction to identify shell and boundaries

oo (hY) = / Agy 0ren (39) Grv(g})

Inner bound.

Simple seed state with two boundaries:

Refinement operator (dipole insertion):

M, 5, = f dkodksdksdh,dhydhl 4 4 R

&I,B+(e7hl27hévk4)&T (e,h;,hé,hé)ﬁT (6,kg,kg,h&)&r,3+(€,k2,k3,k4)

T’,W+ ’I",B-l-

Quantum state for (approximately) continuum homogeneous spherical shell:
(for some high-order polynomial operator function F) B — —
‘\Ijr> _ F’I“(Mr,Bs7 MT‘,WS)|T>

large (infinite) superpositions of arbitrarily complex spin network/simplicial states



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, ’15-‘18

Spherically symmetric continuum quantum geometry Bulk

Outer
bound.

Quantum (pure) state obtained by product of shell states, sharing boundary .
data, refined in a coordinated way - large (potentially infinite) superposition of ;
spherically symmetric cellular complexes, from gluing homogeneous shells




Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Spherically symmetric continuum quantum geometry Bulk

Quantum (pure) state obtained by product of shell states, sharing boundary .
data, refined in a coordinated way - large (potentially infinite) superposition of ;
spherically symmetric cellular complexes, from gluing homogeneous shells

can define and compute geometric quantities

e.g. area operator (for shell r and boundary s)

Aprs= ) / (dg)46i,ts(gf>\/EEE%ﬁr,ts(gz) where  EY > f(g1) i= limie f(gu,...,e 7 gy,

. e—0 de
<AJ’I",S> — <h\r,s>a}J7~,s

/ AN expectation value of the area

for a single dual J-link
number operator : N5 = Z /th 5i,ts(h1)5r,ts(h1)

t=B,W

.5 94)



Spherically symmetric geometries and horizons

DO, Pranzetti, Sindoni, '15-‘18

Spherically symmetric continuum quantum geometry Bulk

Quantum (pure) state obtained by product of shell states, sharing boundary .
data, refined in a coordinated way - large (potentially infinite) superposition of ;
spherically symmetric cellular complexes, from gluing homogeneous shells

can define and compute geometric quantities

e.g. area operator (for shell r and boundary s)

Aprs= ) / (dg)46i,ts(gf>\/EﬁE?]éij&r,ts(gz) where  EY > f(g1) i= limie f(gu,...,e 7 gy,

. e—0 de
<AJ’I",S> — <ﬁr,s>aa]r,s

/ AN expectation value of the area

for a single dual J-link
number operator : N5 = Z /th 5l,ts(h1)5r,ts(h1)

t=B,W

.5 94)

could now impose “horizon (boundary) conditions” .... postpone



Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)

Bulk \ r+l

. / Outer bound.

Inner bound.

.
.
L o®
.. .
ooooooo



Horizon entropy calculation

DO, Pranzetti, Sindoni, ’15-‘18

“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)

nice features of our GFT states: all information about traced-out shells is lost; complete set of
eigenstates of horizon density matrix can be found, labelled
by total number of graphs at given number of vertices

sk r+]

/ Outer bound.

Inner bound.



Horizon entropy calculation

DO, Pranzetti, Sindoni, ’15-‘18

“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)

nice features of our GFT states: all information about traced-out shells is lost; complete set of
eigenstates of horizon density matrix can be found, labelled
by total number of graphs at given number of vertices

Bulk \ r+l1

/ Outer bound.

N
horizon density matrix: pq(zzll—tot — % Z Pf«ZZz(F s)
s=1 Inner bound.




Horizon entropy calculation

DO, Pranzetti, Sindoni, ’15-‘18

“weak holographic principle” - horizon density matrix by tracing over all other shells (inside and outside)

nice features of our GFT states: all information about traced-out shells is lost; complete set of
eigenstates of horizon density matrix can be found, labelled
by total number of graphs at given number of vertices

sk r+]

. / Outer bound.

N
horizon density matrix: :Oq(zzll—tot — % Z pf«ZZZ(F s)
s=1 Inner bound.

NB: here, “horizon” is simply one reference shell




Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

Bulk \ r+l

Outer
bound.

horizon density matrix: pr,(nezl tot — N Z Pr,(f;zi




Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

| N Buk  \ r+l
horizon density matrix: piZZl—t = N Z p,,(azzi(r s) ) Suter
s=1

Ingredients:

no use of microscopic quantum dynamics (just trial states)

large area, small shell volume, small fluctuations (many vertices)

require maximal entropy — —> “proxy” for “horizon conditions”

consistency with semiclassical thermodynamics




Horizon entropy calculation

DO, Pranzetti, Sindoni, ’15-‘18

| N Buk  \ r+l
horizon density matrix: pq(;LZl—t = N Z p,,(QZZZ(F s) Suter
s=1

Ingredients:

no use of microscopic quantum dynamics (just trial states)

large area, small shell volume, small fluctuations (many vertices)

require maximal entropy — —> “proxy” for “horizon conditions”

consistency with semiclassical thermodynamics

Entanglement (von Neumann) entropy = Boltzmann entropy (counting horizon graphs)

Graphs can be counted explicitly




Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

| N Buk  \ r+l
horizon density matrix: piZZl—t = N Z p,,(OZZZ(F s) Suter
s=1

Ingredients:

no use of microscopic quantum dynamics (just trial states)

large area, small shell volume, small fluctuations (many vertices)

require maximal entropy — —> “proxy” for “horizon conditions”

consistency with semiclassical thermodynamics

Entanglement (von Neumann) entropy = Boltzmann entropy (counting horizon graphs)

Graphs can be counted explicitly

. . number of components independently refined
degeneracy of the single vertex Hilbert space /
/

4
» S(n,a) =log (N(n)A(a)) »2nllog(2) +log(A(a)) - %log (n)

/

fixed (large) number 7 of vertices expectation value of the area for a single radial link




Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

l Bulk r+1
S(n,a) =log (N(n)A(a))‘m 2nllog(2) +log(A(a)) - 5 log (n) '

E / Outer bound.




Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

Bulk \ I+ ]

S(n,a) =log (/\/'(n)A(a))‘m 2nllog (2) +log(A(a)) - %log (n)

- / Outer bound.

maximize entropy for given total (average) area:

Y(n,a,\) =S(n,a) + \(A;x/l3 - 2an)

Inner bound.

82 AIH ..........
oN 7] —2an =0 "
g_z v 20 log(2) -2Xa=0 — a=llog(2)/A e
n
0> A'(a) AL
= - 2 )\ = 0 —> A = )\
da  A(a) " 0 ©2P ( 2 )



Horizon entropy calculation

S(n,a) =log (N(n)A(a))‘m 2nllog (2) +log(A(a)) - % log (n)

maximize entropy for given total (average) area:
Y(n,a,\) =S(n,a) + \(A;x/l3 - 2an)
X Ay

DO, Pranzetti, Sindoni, '15-‘18

Inner bound.

= —2 =
DNE an =0
g—zm2llog(2)—2)\a20 - a=1log(2)/A
n
0> A,(CL) -AIH ~
ﬁa:A(a) - 2nA=0 - A:coexp()\ 6123) = S(AIH)N2)\

Area law

+ logarithmic corrections



Horizon entropy calculation

DO, Pranzetti, Sindoni, '15-‘18

S(n,a) =log (/\/'(n)A(a))‘m 2nllog (2) +log(A(a)) - %log (n)

maximize entropy for given total (average) area: Imer bound.
Y(n,a,\) =S(n,a) + \(A;x/l3 - 2an)
82 AIH
- —2an =0
o iz
0
3. " 20 log(2)-2Xa=0 - a=1Ilog(2)/A
n
0> A’(a) »AIH ~
ﬁa: Ala) - 2nA=0 - Azcoexp()\ 2 = S(AIH)N2)\
Area law
Assuming local (proper distance ¢ ) + logarithmic corrections
horizon thermodynamics consistency requires:
. _ 2
with (Unruh) temperature By = 2ml/0%,
A 2r¢  0S  8n/
and energy: ¢ _ Zln By = 20 = 2X=1/4

1l i @ OErn i 6123

Frodden, Ghosh, Perez, ’11; Pranzetti, ‘13



Horizon entropy calculation

S(n,a) =log (/\/'(n)A(a))‘m 2nllog (2) +log(A(a)) - élog (n)

maximize entropy for given total (average) area:

Y(n,a,\) =S(n,a) + \(A;x/l3 - 2an)

DO, Pranzetti, Sindoni, '15-‘18

Inner bound.

82 AIH
- —2an =0

o iz

0>

3. " 20 log(2)-2Xa=0 - a=1Ilog(2)/A

n
82 A,(CL) -AIH ~
e Ala) -2nA=0 - A:coexp()\ 2 = S(AIH)N2)\
Area law

Assuming local (proper distance ¢ ) + logarithmic corrections
horizon thermodynamics consistency requires:

: _ 2
with (Unruh) temperature By = 2ml/0%,

A 2 0S 87/
and energy: ¢ _ “lH By =— = =—-2\ = 2A=1/4
O 8ns s O s

Frodden, Ghosh, Perez, '11; Pranzetti, ‘13 Bekenstein-Hawking entropy no dependence on

formula from full QG!

Immirzi parameter



Outlook and lessons

What’s next

transition channels and Hawking radiation

quantum dynamics

generalization (matter fields, rotation, other states,...)

Preliminary lessons

(approx.) continuum quantum states for BHs can be studied (via GFT techniques)

Boltzmann and von Neumann entropy may be related

expect more
surprises

holography in subset of state space

continuum description is approximate/emergent (~ hydro approx)

horizon structure most likely modified







Thank you for your attention!



