Role of Weyl Connections in Holography

Luca Ciambelli

Ecole Polytechnique, Paris

Conference on Recent Developments in Strings and Gravity, Corfu

based on works with Rob Leigh

September 13, 2019

Luca Ciambelli

September 13, 2019 1 / 16

- 32

イロト イヨト イヨト イヨト

Overview

1 Introduction

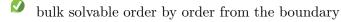
- 2 Weyl-Fefferman-Graham gauge
- **3** Intermezzo: What is a Weyl Connection?
- 4 Back to Holography: Weyl Anomaly

5 Outlook

Introduction I

AdS holography is geometrically built using the Fefferman-Graham gauge [Fefferman, Graham '85-...]

mathematically rigorous



ont Weyl covariant

The boundary couples to a conformal class of metrics: Weyl needed Weyl pillar in other formulation of holography, like fluid/gravity

[Loganayagam et al '08-..., LC, Petkou, Petropoulos, Siampos '17-'18]

Introduction II

Our enhancement: Weyl-Fefferman-Graham gauge

- Weyl diffeomorphisms are linearly implemented
- New bulk Weyl gauge field
- Appearance of a Weyl connection in the boundary
- Holographic anomaly couples to Weyl covariant curvatures tensors
- Rich boundary structure to explore

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Weyl-Fefferman-Graham gauge I

Fefferman-Graham in Poincaré coordinates with boundary $z \rightarrow 0$:[FG '85]

$$\mathrm{d}s^2 = L^2 \frac{\mathrm{d}z^2}{z^2} + h_{\mu\nu}(x,z)\mathrm{d}x^{\mu}\mathrm{d}x^{\nu}$$

near the boundary it can be expanded (d = boundary dimension)

[Skenderis '02]

$$h_{\mu\nu} = \frac{L^2}{z^2} \left[\gamma^{(0)}_{\mu\nu}(x) + \frac{z^2}{L^2} \gamma^{(2)}_{\mu\nu}(x) + \dots \right] + \frac{z^{d-2}}{L^{d-2}} \left[\pi^{(0)}_{\mu\nu}(x) + \frac{z^2}{L^2} \pi^{(2)}_{\mu\nu}(x) + \dots \right]$$

 $\gamma_{\mu\nu}^{(0)}$ boundary metric, $\pi_{\mu\nu}^{(0)}$ boundary energy-momentum tensor. The boundary is located at

$$\frac{z^2}{L^2} \mathrm{d}s^2 \xrightarrow[z \to 0]{} \gamma^{(0)}_{\mu\nu}(x) \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = \mathrm{d}s^2_{bdy}$$

defined up to a Weyl transformation \Rightarrow conformal boundary.

Luca Ciambelli

September 13, 2019 5 / 16

Weyl-Fefferman-Graham gauge II

Def: bulk Weyl diffeomorphism

$$z \mapsto z' = z/\mathcal{B}(x) \qquad x^{\mu} \mapsto x'^{\mu} = x^{\mu}$$

It induces a Weyl rescaling of the boundary

$$\gamma^{(0)}_{\mu\nu} \mapsto \frac{\gamma^{(0)}_{\mu\nu}}{\mathcal{B}(x)^2}$$

Weyl-Fefferman-Graham gauge II

Def: bulk Weyl diffeomorphism

$$z \mapsto z' = z/\mathcal{B}(x) \qquad x^{\mu} \mapsto x'^{\mu} = x^{\mu}$$

It induces a Weyl rescaling of the boundary

$$\gamma_{\mu\nu}^{(0)} \mapsto \frac{\gamma_{\mu\nu}^{(0)}}{\mathcal{B}(x)^2}$$

Fefferman-Graham is sensitive to this diffeomorphism

$$\mathrm{d}s^2 = L^2 \left(\frac{\mathrm{d}z'}{z'} + \partial_\mu \ln \mathcal{B}(x) \,\mathrm{d}x^\mu\right)^2 + h_{\mu\nu}(x, z'\mathcal{B}(x))\mathrm{d}x^\mu\mathrm{d}x^\nu$$

イロト イヨト イヨト イヨト

Weyl-Fefferman-Graham gauge III

Two ways out

• Usual one: redefine x in subleading orders $x' = x + f(x)z^2 + \dots$ Problem: blurs Weyl covariance of subleading tensors (well-known)

```
[Mazur, Mottola '01,...]
```

Our story: enhance the Fefferman-Graham gauge to the Weyl-Fefferman-Graham one, where Weyl diffs are allowed.

<ロト (四) (三) (三) (三) (三)

Weyl-Fefferman-Graham gauge III

Two ways out

• Usual one: redefine x in subleading orders $x' = x + f(x)z^2 + \dots$ Problem: blurs Weyl covariance of subleading tensors (well-known)

```
[Mazur, Mottola '01,...]
```

Our story: enhance the Fefferman-Graham gauge to the Weyl-Fefferman-Graham one, where Weyl diffs are allowed.

$$\mathrm{d}s^2 = L^2 \left(\frac{\mathrm{d}z}{z} - a_\mu(x, z)\mathrm{d}x^\mu\right)^2 + h_{\mu\nu}(x, z)\mathrm{d}x^\mu\mathrm{d}x^\nu$$

Novelty of this gauge: Weyl gauge field one form a_{μ} , with expansion near the conformal boundary

$$a_{\mu}(z,x) = \left[a_{\mu}^{(0)}(x) + \frac{z^2}{L^2}a_{\mu}^{(2)}(x) + \dots\right] + \frac{z^{d-2}}{L^{d-2}}\left[p_{\mu}^{(0)}(x) + \frac{z^2}{L^2}p_{\mu}^{(2)}(x) + \dots\right]$$

 $a_{\mu}^{(0)}$ boundary Weyl source, $p_{\mu}^{(0)}$ boundary Weyl current.

Weyl-Fefferman-Graham gauge IV

Weyl diffeomorphism on the Weyl-Fefferman-Graham gauge

$$\gamma_{\mu\nu}^{(k)}(x) \mapsto \gamma_{\mu\nu}^{(k)}(x)\mathcal{B}(x)^{k-2}, \ \pi_{\mu\nu}^{(k)}(x) \mapsto \pi_{\mu\nu}^{(k)}(x)\mathcal{B}(x)^{d-2+k}$$

 $a_{\mu}^{(k)}(x) \mapsto a_{\mu}^{(k)}(x)\mathcal{B}(x)^{k} - \delta_{k,0}\partial_{\mu}\ln\mathcal{B}(x), \ p_{\mu}^{(k)}(x) \mapsto p_{\mu}^{(k)}(x)\mathcal{B}(x)^{d-2+k}$

Weyl covariant subleading tensors! Define the non-coordinatized basis

$$\{e = L\left(\frac{\mathrm{d}z}{z} - a_{\mu}(x, z)\mathrm{d}x^{\mu}\right), \mathrm{d}x^{\mu}\} \Rightarrow g = e \otimes e + h_{\mu\nu}\mathrm{d}x^{\mu} \otimes \mathrm{d}x^{\nu}$$

Dual vectors $\{\underline{e} = \frac{z}{L}\partial_z, \underline{D}_{\mu} = \partial_{\mu} + a_{\mu}(x, z)z\partial_z\}$ The bulk LC connection in this frame is given by

$$\nabla_{\underline{D}_{\mu}}\underline{D}_{\nu} = \Gamma^{\lambda}_{\mu\nu}\underline{D}_{\lambda} + \Gamma_{\mu\nu}\underline{e}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ - つへの

Weyl-Fefferman-Graham gauge V

]

 $\Gamma^{\lambda}_{\mu\nu}$ induces on the boundary a Weyl connection, instead of the usual LC one:

$$\Gamma^{\lambda}_{\mu\nu} = \gamma^{(0)}{}^{\lambda}_{\mu\nu} + O(z^2/L^2)$$

with

$$\gamma^{(0)\lambda}_{\ \mu\nu} = \frac{1}{2}\gamma^{\lambda\rho}_{(0)} \Big((\partial_{\mu} - 2a^{(0)}_{\mu})\gamma^{(0)}_{\nu\rho} + (\partial_{\nu} - 2a^{(0)}_{\nu})\gamma^{(0)}_{\mu\rho} - (\partial_{\rho} - 2a^{(0)}_{\rho})\gamma^{(0)}_{\mu\nu} \Big)$$

Weyl enhancement: induced boundary connection not the $\gamma^{(0)}_{\mu\nu}$'s LC.

Weyl-Fefferman-Graham gauge V

 $\Gamma^{\lambda}_{\mu\nu}$ induces on the boundary a Weyl connection, instead of the usual LC one:

$$\Gamma^{\lambda}_{\mu\nu} = \gamma^{(0)}{}^{\lambda}_{\mu\nu} + O(z^2/L^2)$$

with

$$\gamma^{(0)\lambda}_{\ \mu\nu} = \frac{1}{2}\gamma^{\lambda\rho}_{(0)} \left((\partial_{\mu} - 2a^{(0)}_{\mu})\gamma^{(0)}_{\nu\rho} + (\partial_{\nu} - 2a^{(0)}_{\nu})\gamma^{(0)}_{\mu\rho} - (\partial_{\rho} - 2a^{(0)}_{\rho})\gamma^{(0)}_{\mu\nu} \right)$$

Weyl enhancement: induced boundary connection not the $\gamma_{\mu\nu}^{(0)}$'s LC. BULK: $g_{AB} = \{a_{\mu}, h_{\mu\nu}, \Gamma_{\mu\nu}^{\lambda \ LC}\} \Rightarrow$ BOUNDARY: $\{a_{\mu}^{(0)}, \gamma_{\mu\nu}^{(0)}, \gamma_{\mu\nu}^{(0)\lambda \ Weyl}\}$

<ロト <回ト < 回ト < 回ト = 三日

Weyl-Fefferman-Graham gauge V

 $\Gamma^{\lambda}_{\mu\nu}$ induces on the boundary a Weyl connection, instead of the usual LC one:

$$\Gamma^{\lambda}_{\mu\nu} = \gamma^{(0)}{}^{\lambda}_{\mu\nu} + O(z^2/L^2)$$

with

$$\gamma^{(0)\lambda}_{\ \mu\nu} = \frac{1}{2}\gamma^{\lambda\rho}_{(0)} \Big((\partial_{\mu} - 2a^{(0)}_{\mu})\gamma^{(0)}_{\nu\rho} + (\partial_{\nu} - 2a^{(0)}_{\nu})\gamma^{(0)}_{\mu\rho} - (\partial_{\rho} - 2a^{(0)}_{\rho})\gamma^{(0)}_{\mu\nu} \Big)$$

Weyl enhancement: induced boundary connection not the $\gamma_{\mu\nu}^{(0)}$'s LC. BULK: $g_{AB} = \{a_{\mu}, h_{\mu\nu}, \Gamma_{\mu\nu}^{\lambda \ LC}\} \Rightarrow$ BOUNDARY: $\{a_{\mu}^{(0)}, \gamma_{\mu\nu}^{(0)}, \gamma_{\mu\nu}^{(0)\lambda \ Weyl}\}$ Remark: *e* defines a distribution $D(e) \subset TM$ (M = bulk manifold)

$$D(e) = \ker(e) = \{\underline{X} | i_{\underline{X}} e = 0\} = \operatorname{span}\{\underline{D}_{\mu}\}$$

D(e) integrable \Leftrightarrow Frobenius condition $f_{\mu\nu} = D_{\mu}a_{\nu} - D_{\nu}a_{\mu} = 0$ This is not required in our holographic setup.

Luca Ciambelli

September 13, 2019 9 / 16

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intermezzo: What is a Weyl Connection?

Levi-Civita connection ∇ is the unique connection satisfying

i) metricity: $\nabla g = 0$, ii) torsionless: $T(\underline{X}, \underline{Y}) = 0$

Tensorial expressions \Rightarrow its curvatures are tensors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Levi-Civita connection ∇ is the unique connection satisfying

i) metricity: $\nabla g = 0$, ii) torsionless: $T(\underline{X}, \underline{Y}) = 0$

Tensorial expressions \Rightarrow its curvatures are tensors

Weyl transformation $g \to \Omega^{-2}g$. Not a diffeomorphism i) is not Weyl invariant. Usually: require the Γ s to shift under Weyl. Problem: curvatures not Weyl tensors \Rightarrow Promote to Weyl metricity

i*) Weyl metricity:
$$\nabla g - 2a \otimes g = 0$$

With a a one form, shifting non-linearly under Weyl $a \rightarrow a - d \ln \Omega$ Theorem: ∇ satisfying i*) and ii) is the unique Weyl connection [Folland '70, Hall '92]

Curvature tensors Weyl covariant, impo for holography

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Back to Holography: Weyl Anomaly I

Weyl anomaly obtained comparing bulk partition functions in different coordinates (Weyl diffeomorphism) to its boundary dual

$$\frac{Z_{bulk}\left[g', z', x'; \gamma'_{(0)}\right]}{Z_{bulk}\left[g, z, x; \gamma_{(0)}\right]} = 1 \qquad \frac{Z_{bdy}[x; \gamma'_{(0)}, a'_{(0)}, \ldots]}{Z_{bdy}[x; \gamma_{(0)}, a_{(0)}, \ldots]} \stackrel{?}{=} 1$$

In even boundary dimension d = 2k, an anomaly \mathcal{A}_k arises

$$0 = S_{bulk}[g'; \gamma'_{(0)}, ... | z', x] - S_{bulk}[g; \gamma_{(0)}, ... | z, x]$$

= $S_{bdy}[x; \gamma'_{(0)}, a'_{(0)}, ...] - S_{bdy}[x; \gamma_{(0)}, a_{(0)}, ...] + \mathcal{A}_k$

Difference of bulk actions in Weyl-diffs-related coordinate systems = difference of boundary actions in Weyl-related backgrounds,

up to an anomalous term

[Henningson, Skenderis '98]

September 13, 2019 11 / 16

Back to Holography: Weyl Anomaly II

$$S_{bulk}[g;\gamma_{(0)},...|z,x] = \frac{1}{16\pi G} \int_M e \wedge \mathrm{d}^d x \sqrt{-\det h} (R-2\Lambda)$$

On shell, it evaluates to

$$S_{bulk} = -\frac{d}{8\pi GL} \int_M \frac{\mathrm{d}z}{z} \wedge \mathrm{d}^d x \sqrt{-\det h}$$

Expand $\sqrt{-\det h}$, defining $X^{(1)} = \gamma^{\mu\nu}_{(0)} \gamma^{(2)}_{\mu\nu}$

$$\sqrt{-\det h(z,x)} = \left(\frac{L}{z}\right)^d \sqrt{-\det \gamma^{(0)}} \left[1 + \frac{1}{2}\frac{z^2}{L^2}X^{(1)} + \dots\right]$$

Go to d = 2 and evaluate the difference of bulk Weyl-related actions:

$$\mathcal{A}_1 = \frac{1}{8\pi GL} \int_{\Sigma} \ln \mathcal{B} X^{(1)} \sqrt{-\det \gamma^{(0)}} \, \mathrm{d}^d x$$

Luca Ciambelli

September 13, 2019 12 / 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへ⊙

The resolution of Einstein equations gives

$$X^{(1)} = -\frac{L^2}{2(d-1)}R^{(0)}$$

where $R^{(0)}$ is the Weyl Ricci scalar of $\gamma^{(0)}$, weight-2 Weyl covariant

Therefore

$$\mathcal{A}_1 = -\frac{L}{16\pi G} \int_{\Sigma} \ln \mathcal{B} \ R^{(0)} \sqrt{-\det \gamma^{(0)}} \ \mathrm{d}^d x$$

Luca Ciambelli

September 13, 2019 13 / 16

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Back to Holography: Weyl Anomaly IV

Comments

- It leads to the correct central charge $c = \frac{3L}{2G}$ [Brown, Henneaux '85]
- However, not the usual LC Ricci but its Weyl covariant version
- Weyl covariance has to be a feature of \mathcal{A}_k , $\forall k$, by construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Back to Holography: Weyl Anomaly IV

Comments

- It leads to the correct central charge $c = \frac{3L}{2G}$ [Brown, Henneaux '85]
- However, not the usual LC Ricci but its Weyl covariant version
- Weyl covariance has to be a feature of \mathcal{A}_k , $\forall k$, by construction

The Weyl anomaly can be expressed cohomologically [Mazur, Mottola '01]

- The bulk on-shell action is proportional to the total (divergent) volume $e \wedge vol_S$, with $vols_S = \sqrt{-\det h} d^d x$
- Is a top form so it is closed
- Weyl anomaly: two Weyl-related volumes differ by a top form

$$(e \wedge Tr(\gamma^{(2)})Vol_S)' - (e \wedge Tr(\gamma^{(2)})Vol_S) = -\frac{L}{16\pi G} d(\ln \mathcal{B} R^{(0)} Vol_S)$$

September 13, 2019

14 / 16

Luca Ciambelli

The Weyl-Fefferman-Graham gauge has led to a rich holographic structure. It would be worth to:

- Pursue the computation to higher dimensions
- Weyl boundary field theory, Ward identities and properties
- Non-Einsteinian modifications of gravity
- Holography with a non involutive boundary

Questions

▲□▶ ▲圖▶ ▲≣▶ ★≣▶ = 三 - のへで