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Introduction I

AdS holography is geometrically built using the Fefferman-Graham
gauge [Fefferman, Graham ’85-. . . ]

mathematically rigorous

bulk solvable order by order from the boundary

not Weyl covariant

The boundary couples to a conformal class of metrics: Weyl needed
Weyl pillar in other formulation of holography, like fluid/gravity

[Loganayagam et al ’08-. . . , LC, Petkou, Petropoulos, Siampos ’17-’18]
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Introduction II

Our enhancement: Weyl-Fefferman-Graham gauge

Weyl diffeomorphisms are linearly implemented

New bulk Weyl gauge field

Appearance of a Weyl connection in the boundary

Holographic anomaly couples to Weyl covariant curvatures tensors

Rich boundary structure to explore
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Weyl-Fefferman-Graham gauge I

Fefferman-Graham in Poincaré coordinates with boundary z → 0:[FG ’85]

ds2 = L2 dz2

z2
+ hµν(x, z)dxµdxν

near the boundary it can be expanded (d = boundary dimension)
[Skenderis ’02]

hµν =
L2

z2

[
γ(0)
µν (x) +

z2

L2
γ(2)
µν (x) + ...

]
+
zd−2

Ld−2

[
π(0)
µν (x) +

z2

L2
π(2)
µν (x) + ...

]
γ

(0)
µν boundary metric, π

(0)
µν boundary energy-momentum tensor.

The boundary is located at

z2

L2
ds2 −→

z→0
γ(0)
µν (x)dxµdxν = ds2

bdy

defined up to a Weyl transformation ⇒ conformal boundary.
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Weyl-Fefferman-Graham gauge II

Def: bulk Weyl diffeomorphism

z 7→ z′ = z/B(x) xµ 7→ x′µ = xµ

It induces a Weyl rescaling of the boundary

γ(0)
µν 7→

γ
(0)
µν

B(x)2

Fefferman-Graham is sensitive to this diffeomorphism

ds2 = L2

(
dz′

z′
+ ∂µ lnB(x) dxµ

)2

+ hµν(x, z′B(x))dxµdxν
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Weyl-Fefferman-Graham gauge II
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Weyl-Fefferman-Graham gauge III

Two ways out

1 Usual one: redefine x in subleading orders x′ = x+ f(x)z2 + . . . .
Problem: blurs Weyl covariance of subleading tensors (well-known)

[Mazur, Mottola ’01,. . . ]

2 Our story: enhance the Fefferman-Graham gauge to the
Weyl-Fefferman-Graham one, where Weyl diffs are allowed.

ds2 = L2

(
dz

z
− aµ(x, z)dxµ

)2

+ hµν(x, z)dxµdxν

Novelty of this gauge: Weyl gauge field one form aµ, with expansion
near the conformal boundary

aµ(z, x) =

[
a(0)
µ (x) +

z2

L2
a(2)
µ (x) + ...

]
+
zd−2

Ld−2

[
p(0)
µ (x) +

z2

L2
p(2)
µ (x) + ...

]
a

(0)
µ boundary Weyl source, p

(0)
µ boundary Weyl current.

Luca Ciambelli September 13, 2019 7 / 16



Weyl-Fefferman-Graham gauge III

Two ways out

1 Usual one: redefine x in subleading orders x′ = x+ f(x)z2 + . . . .
Problem: blurs Weyl covariance of subleading tensors (well-known)

[Mazur, Mottola ’01,. . . ]

2 Our story: enhance the Fefferman-Graham gauge to the
Weyl-Fefferman-Graham one, where Weyl diffs are allowed.

ds2 = L2

(
dz

z
− aµ(x, z)dxµ

)2

+ hµν(x, z)dxµdxν

Novelty of this gauge: Weyl gauge field one form aµ, with expansion
near the conformal boundary

aµ(z, x) =

[
a(0)
µ (x) +

z2

L2
a(2)
µ (x) + ...

]
+
zd−2

Ld−2

[
p(0)
µ (x) +

z2

L2
p(2)
µ (x) + ...

]
a

(0)
µ boundary Weyl source, p

(0)
µ boundary Weyl current.

Luca Ciambelli September 13, 2019 7 / 16



Weyl-Fefferman-Graham gauge IV

Weyl diffeomorphism on the Weyl-Fefferman-Graham gauge

γ(k)
µν (x) 7→ γ(k)

µν (x)B(x)k−2, π(k)
µν (x) 7→ π(k)

µν (x)B(x)d−2+k

a(k)
µ (x) 7→ a(k)

µ (x)B(x)k − δk,0∂µ lnB(x), p(k)
µ (x) 7→ p(k)

µ (x)B(x)d−2+k

Weyl covariant subleading tensors!
Define the non-coordinatized basis

{e = L
(dz

z
− aµ(x, z)dxµ

)
, dxµ} ⇒ g = e⊗ e+ hµνdxµ ⊗ dxν

Dual vectors {e = z
L∂z, Dµ = ∂µ + aµ(x, z)z∂z}

The bulk LC connection in this frame is given by

∇Dµ
Dν = ΓλµνDλ + Γµνe
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Weyl-Fefferman-Graham gauge V

Γλµν induces on the boundary a Weyl connection, instead of the usual
LC one:

Γλµν = γ(0)λ
µν +O(z2/L2)

with

γ(0)λ
µν = 1

2γ
λρ
(0)

(
(∂µ − 2a(0)

µ )γ(0)
νρ + (∂ν − 2a(0)

ν )γ(0)
µρ − (∂ρ − 2a(0)

ρ )γ(0)
µν

)
Weyl enhancement: induced boundary connection not the γ

(0)
µν ’s LC.

BULK: gAB = {aµ, hµν ,Γλ LC
µν } ⇒ BOUNDARY: {a(0)

µ , γ
(0)
µν , γ(0)λ Weyl

µν }
Remark: e defines a distribution D(e) ⊂ TM (M = bulk manifold)

D(e) = ker(e) = {X|iXe = 0} = span{Dµ}

D(e) integrable ⇔ Frobenius condition fµν = Dµaν −Dνaµ = 0
This is not required in our holographic setup.
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Intermezzo: What is a Weyl Connection?

Levi-Civita connection ∇ is the unique connection satisfying

i) metricity: ∇g = 0, ii) torsionless: T (X,Y ) = 0

Tensorial expressions ⇒ its curvatures are tensors

Weyl transformation g → Ω−2g. Not a diffeomorphism
i) is not Weyl invariant. Usually: require the Γs to shift under Weyl.
Problem: curvatures not Weyl tensors ⇒ Promote to Weyl metricity

i*) Weyl metricity: ∇g − 2a⊗ g = 0

With a a one form, shifting non-linearly under Weyl a→ a− d ln Ω
Theorem: ∇ satisfying i*) and ii) is the unique Weyl connection

[Folland ’70, Hall ’92]

Curvature tensors Weyl covariant, impo for holography

Luca Ciambelli September 13, 2019 10 / 16



Intermezzo: What is a Weyl Connection?

Levi-Civita connection ∇ is the unique connection satisfying

i) metricity: ∇g = 0, ii) torsionless: T (X,Y ) = 0

Tensorial expressions ⇒ its curvatures are tensors

Weyl transformation g → Ω−2g. Not a diffeomorphism
i) is not Weyl invariant. Usually: require the Γs to shift under Weyl.
Problem: curvatures not Weyl tensors ⇒ Promote to Weyl metricity

i*) Weyl metricity: ∇g − 2a⊗ g = 0

With a a one form, shifting non-linearly under Weyl a→ a− d ln Ω
Theorem: ∇ satisfying i*) and ii) is the unique Weyl connection

[Folland ’70, Hall ’92]

Curvature tensors Weyl covariant, impo for holography

Luca Ciambelli September 13, 2019 10 / 16



Back to Holography: Weyl Anomaly I

Weyl anomaly obtained comparing bulk partition functions in different
coordinates (Weyl diffeomorphism) to its boundary dual

Zbulk

[
g′, z′, x′; γ′(0)

]
Zbulk

[
g, z, x; γ(0)

] = 1
Zbdy[x; γ′(0), a

′
(0), ...]

Zbdy[x; γ(0), a(0), ...]

?
= 1

In even boundary dimension d = 2k, an anomaly Ak arises

0 = Sbulk[g
′; γ′(0), ...|z

′, x]− Sbulk[g; γ(0), ...|z, x]

= Sbdy[x; γ′(0), a
′
(0), ...]− Sbdy[x; γ(0), a(0), ...] +Ak

Difference of bulk actions in Weyl-diffs-related coordinate systems =
difference of boundary actions in Weyl-related backgrounds,

up to an anomalous term

[Henningson, Skenderis ’98]

.
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Back to Holography: Weyl Anomaly II

Sbulk[g; γ(0), ...|z, x] =
1

16πG

∫
M
e ∧ ddx

√
−deth(R− 2Λ)

On shell, it evaluates to

Sbulk = − d

8πGL

∫
M

dz

z
∧ ddx

√
−deth

Expand
√
−deth, defining X(1) = γµν(0)γ

(2)
µν

√
−deth(z, x) =

(
L

z

)d√
−det γ(0)

[
1 +

1

2

z2

L2
X(1) + ...

]
Go to d = 2 and evaluate the difference of bulk Weyl-related actions:

A1 =
1

8πGL

∫
Σ

lnBX(1)
√
−det γ(0) ddx
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Back to Holography: Weyl Anomaly III

The resolution of Einstein equations gives

X(1) = − L2

2(d− 1)
R(0)

where R(0) is the Weyl Ricci scalar of γ(0), weight-2 Weyl covariant

Therefore

A1 = − L

16πG

∫
Σ

lnB R(0)
√
−det γ(0) ddx
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Back to Holography: Weyl Anomaly IV

Comments

It leads to the correct central charge c = 3L
2G [Brown, Henneaux ’85]

However, not the usual LC Ricci but its Weyl covariant version

Weyl covariance has to be a feature of Ak, ∀k, by construction

The Weyl anomaly can be expressed cohomologically [Mazur, Mottola ’01]

The bulk on-shell action is proportional to the total (divergent)
volume e ∧ volS , with volsS =

√
−dethddx

Is a top form so it is closed

Weyl anomaly: two Weyl-related volumes differ by a top form

(e∧Tr(γ(2))V olS)′−(e∧Tr(γ(2))V olS) = − L

16πG
d(lnB R(0) V olS)
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Outlook

The Weyl-Fefferman-Graham gauge has led to a rich holographic
structure. It would be worth to:

Pursue the computation to higher dimensions

Weyl boundary field theory, Ward identities and properties

Non-Einsteinian modifications of gravity

Holography with a non involutive boundary
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