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GR is a unique metric theory in 4 dimensions

Theoretical consistency: In D = 4 dimensions, consider
L = L(M, g ,∇g ,∇∇g) where ∇ is a Levi-Civita connection. Then
Lovelock’s theorem in D = 4 states that GR with cosmological constant is
the unique metric theory emerging from,

S(4) =
∫
M

d4x
√
−g (4)

[
−2Λ + R + αĜ

]
giving,

Equations of motion of 2nd-order (Ostrogradski no-go theorem
1850!)
given by a symmetric two-tensor, Gµν + Λgµν
and admitting Bianchi identities.

GR is the unique massless-tensorial 4 dimensional theory of gravity.
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Observational data

Experimental consistency:
-Excellent agreement with solar system tests and strong gravity tests on binary
pulsars
-Recent data from the EHT compatible with GR for a supermassive black hole
-Observational breakthrough GW170817: Non local, 40Mpc and strong gravity
test from a coalescing binary of neutron stars. cT = 1± 10−15

Time delay of light Planetary tajectories

Neutron star binary
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...
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Q: What is the matter content of the Universe today?

Assuming homogeinity-isotropy and GR

Gµν = 8πGTµν
cosmological and astrophysical observations dictate the matter content of the

Universe today:
A: -Only a 4% of matter has been discovered in the laboratory. We hope to see
more at LHC. But even then...

If we assume only ordinary sources of matter (DM included) there is
disagreement between local, astrophysical and cosmological data.

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces a scale and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Universe is accelerating → Enter the cosmological constant

Simplest way out: Assume a tiny cosmological constant
ρΛ = Λobs

8πG = (10−3eV )4, ie modify Einstein’s equation by,

Gµν + Λobsgµν = 8πGTµν

Cosmological constant introduces
√

Λ and generates a cosmological
horizon
√

Λ is as tiny as the inverse size of the Universe today, r0 = H−10

Note that Solar system scales
Cosmological Scales ∼

10 A.U.
H−1
0

= 10−14

Theoretically the cosmological constant should be huge!
Cosmological dark sector at the IR and UV considerations lead to
modification of gravity

C. Charmousis Rotating black holes in higher order gravity theories



Modification of Gravity : Scalar-tensor theories

are the simplest modification of gravity with one additional degree of
freedom
Admit a uniqueness theorem due to Horndeski 1973 and extended to
DHOST/EST theories [Langlois et.al] [Crisostomi et.al.]

Contain or are limits of other modified gravity theories.
Include terms that can screen classically a big cosmological constant or
give self accelerating solutions.
GW constraints on dark energy solutions [Creminelli, Vernizzi, Ezquiaga,

Zumalacaregui,...] albeit strong coupling issues [DeRham, Melville]

We concentrate on cT = 1 theories DHOST/EST [Crisostomi, Koyama, Langlois,

Noui, Vernizzi,..]

The theory under scrutiny, cT = 1 has unique characteristics. It is far
closer to GR than any version of Hordenski
Our aim is to find rotating black holes
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cT = 1 scalar tensor theories and their relation to
Horndeski

Shift-symmetric scalar tensor theory cT = 1 minimally coupled to matter is
parametrized by K ,A3,G

L = K(X) + G(X)R + A3(X)φµφµνφν�φ+ A4φ
µφµρφ

ρνφν + A5(φµφµνφν)2 ,

coupling functions depend only on X = gµν∂µφ∂νφ.
K(X) = −Λbare + X + .. and the operators A4,A5 are fixed with respect to A3,G
cT = 1 theories are mapped to Horndeski via a transformation

gµν −→ g̃µν = C(X)gµν + D(X)∇µφ∇νφ

for given functions C and D.
One can start with a cT 6= 1 Horndeski theory (solution) and map it to a cT = 1
theory (solution) for a specific function D.
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Example of spherical symmetry [Babichev, CC, GEFarèse, Lehébel]

Example Horndeski,

S =
∫

d4x
√
−g [ζR − 2Λb − ηX + βGµν∂µφ∂νφ] ,

General spherically symmetric solution is known[Babichev, cc],
ds2 = −h(r)dt2 + dr2

f (r) + r2dΩ2, φ = φ(t, r)

One such solution reads
f = h = 1−

µ

r
+

η

3β
r2

,
φ = qt ±

q
h

√
1− h

with Λeff = −ζη/β.
Go to (cT = 1) via a disformal transformation:

g̃µν = gµν −
β

ζ + β
2 X

ϕµϕν .

The disformed metric is a black hole essentially because X = −q2 is constant!
Solution stable in a Λb-dependent window-generically we expect self tuning to be
spoilt or constrained.
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Going beyond spherical symmetry? [cc, Crisostomi, Gregory, Stergioulas]

Consider an Einstein metric, Rµν = Λgµν and X = X0 constant. When are such
(metric and scalar) solutions to the field equations of cT = 1?

A3(X0) = 0, (KX + 4ΛGX )|X0 = 0
where Λ = −K/(2G)|X0 (self-tuning condition)

Any theory parametrized by A3 having a zero at some value is enough to
guarantee a solution.
The real question though is what X = ∇µφ∇µφ is constant really mean?
Note that if we take Ya = ∂aφ then the derivative of X = YaYbgab = X0 is
simply ab = Y a∇aY b = 0
Acceleration zero hence φ is related to a geodesic congruence in the given
spacetime.
the scalar field φ is the Hamilton-Jacobi potential S where ∂S

∂λ
= gµν ∂S

∂xµ
∂S
∂xν
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The example of Carter’s solution (de Sitter-Kerr)

Rotating black hole Einstein metric

ds2 = −
∆r

Ξ2ρ2

[
dt − a sin2θdϕ

]2 + ρ2
(

dr2

∆r
+

dθ2

∆θ

)
+

∆θsin2θ
Ξ2ρ2

[
a dt −

(
r2 + a2

)
dϕ
]2
,

∆r =
(
1−

r2

`2

)(
r2 + a2

)
− 2Mr , Ξ = 1 +

a2

`2
,

∆θ = 1 +
a2

`2
cos2θ , ρ2 = r2 + a2cos2θ ,

Black hole parameters are a,M,Λ = 3/l2 which describe a black hole with an
inner, outer event and cosmological horizon for Λ > 0.
To evaluate the HJ potential for geodesics we need to know the inverse metric
and solve a first order differential equation.
Does there exist a HJ potential which is well defined in the black hole spacetime?
This would be the scalar field in the black hole solution
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The example of Carter’s solution (de Sitter-Kerr)

The Hamilton Jacobi potential reads [Carter],
S = −E t + Lzϕ+ S(r , θ) ,

since ∂t and ∂φ are Killing vectors and is separable S(r , θ) = Sr (r) + Sθ(θ)!

Sr = ±
∫ √

R
∆r

dr , Sθ = ±
∫ √

Θ
∆θ

dθ ,

R = Ξ2
[
E
(

r2 + a2
)
− a Lz

]2
− ∆r

[
Q+ Ξ2 (a E − Lz )2 + m2r2

]
, (1)

Θ = −Ξ2sin2θ
(

a E −
Lz

sin2θ

)2

+ ∆θ

[
Q+ Ξ2 (a E − Lz )2 −m2a2cos2θ

]
. (2)

Note we have E ,m, Lz ,Q parametrising the Energy at infinity, rest mass, angular
momentum and Carter’s separation constant.
We want to identify φ = S
φ (unlike S) needs to be well defined in all the permitted domain of the
coordinates. We clearly need that Θ and R are positive functions.
Regularity : Lz = 0 and Q+ Ξ2a2E2 = m2a2,
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Rotating black hole

We have,
φ(t, r , θ) = −E t + φr + φθ ,

where,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where we define η = ΞE

m ∈ [ηc , 1] : η < 1 for Θ > 0 and η > ηc for R > 0
Take Λ = 0, ie Kerr, we have η = 1
The scalar φ then has no θ dependance. Coincides with known solution if a = 0
(E = m = q).
Solution is regular at the event horizon for one of the branches by going to
advanced EF coordinates.
v = t +

∫
dr r2+a2

∆r
, ϕ̄ = ϕ+ a

∫
dr
∆r

Solution then is stealth Kerr with a non trivial scalar field which has identical
regularity to spacetime
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Solution then is stealth Kerr with a non trivial scalar field which has identical
regularity to spacetime
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Rotating black hole

Scalar reads,
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
ηc is the limiting value of R > 0. ie., it is such that R has a double zero at
rEH < r0 < rCH

we have ηc < 1 and as Λ increases ηc decreases
We have two branches of solutions. Going to EF coords we see that one chart is
regular at the EH while the latter at the CH but none at both.

v = t ±
∫

dr r2+a2
∆r

, ϕ̄ = ϕ± a
∫

dr
∆r

2 4 6 8 10

-0.3

-0.2

-0.1

0.1

0.2

0.3

2 4 6 8 10

-2

-1

1

2

C. Charmousis Rotating black holes in higher order gravity theories



Rotating black hole

Scalar reads,
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
ηc is the limiting value of R > 0. ie., it is such that R has a double zero at
rEH < r0 < rCH

we have ηc < 1 and as Λ increases ηc decreases
We have two branches of solutions. Going to EF coords we see that one chart is
regular at the EH while the latter at the CH but none at both.

v = t ±
∫

dr r2+a2
∆r

, ϕ̄ = ϕ± a
∫

dr
∆r

2 4 6 8 10

-0.3

-0.2

-0.1

0.1

0.2

0.3

2 4 6 8 10

-2

-1

1

2

C. Charmousis Rotating black holes in higher order gravity theories



Regular Rotating black hole with Λ 6= 0

,
φ(t, r , θ) = −E t + φr + φθ ,

φr = ±
∫ √

R
∆r

dr , φθ = ±
∫ √

Θ
∆θ

dθ ,

Θ = a2m2sin2θ
(

∆θ − η2
)
,R = m2(r2 + a2)

(
η2(r2 + a2)−∆r

)
where η = ΞE

m ∈ [ηc , 1].
Fixing η = ηc the two branches join with C2 regularity at r = r0.

Then using both branches ie., φr = H[r − r0]
∫ r

r0

√
R

∆r
−H[r0 − r ]

∫ r
r0

√
R

∆r
, we have

a regular scalar field everywhere
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Conclusions

We have obtained a rotating black hole with hair which is everywhere regular
Although solution is stealth, perturbations defining quasi normal modes and
resulting phenomenology will be different [CC, Crisostomi, Langlois, Noui].
Can obtain any GR vacuum solution with well defined hair in such theories
One can use this stealth solution to construct numerically other non Kerr
solutions by relaxation techniques
For cT = 1 the only X = constant solutions are Einstein spaces. If we expect
solutions to have asymptotically X constant then in this theory all solutions are
asymptotically Einstein spaces.
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