Observation of H to bb decays and VH production with the ATLAS detector

Cheng Chen on behalf of the ATLAS collaboration

Workshop on Connecting Insights in Fundamental Physics 02 September 2019

Motivation of VH, H→bb analysis

Why H→bb decay channel

- Higgs boson first discovered in 2012 through bosonic decay channels
- Search for Higgs directly coupling to fermions has been expected
- H→bb has the largest branching ratio and had not been observed before the results reported here
- Why VH production mode
 - Very large multi-b-jets production cross-section at LHC
 - For VH, the leptonic decay of the vector boson could be well exploited

History of VH, H→bb analysis

- Tevatron (1.96 TeV)
 - CDF & D0, 2.8 σ for m_H=125GeV [Phys. Rev. Lett. 109 (2012) 071804]
- LHC Run-1 (7,8 TeV)
 - ATLAS, 1.4 (2.6) σ of obs.(exp.) significance [J. High Energy Phys. 01 (2015) 069]
 - CMS, 2.1 σ of local significance [Phys. Rev. D 89 (2014) 012003]
- LHC Run-2 2015-2016 (13TeV)
 - ATLAS, 3.5 (3.0) σ of obs.(exp.) significance [J. High Energy Phys. 12 (2017) 024]
 - CMS, 3.3(2.8) σ of obs.(exp.) significance [Phys. Lett. B 780 (2018) 501]
- LHC Run-2 2015-2017 (13 TeV)

- **Focus today**
- ATLAS (combined with Run-1), 4.9 (5.1) σ of obs.(exp.) significance [Physics Letters B 786 (2018) 59–86]
- CMS (combined with Run-1), 4.8(4.9) σ of obs.(exp.) significance [Phys. Rev. Lett. 121 (2018) 121801]

Analysis strategy

- Search for the Higgs bosons produced in association with vector bosons and decays to bb
- Used 79.8 fb⁻¹ of pp collision data collected by ATLAS in 2015 to 2017
- Three decay channels w.r.t. the vector boson decay modes
 - 0 lepton: Z→vv, H→bb
 - 1 lepton: W→lv, H→bb
 - 2 lepton: Z→ll, H→bb

- Multi-variable algorithm (MVA) is used to enhance the sensitivity
- Combined likelihood fit is performed to estimate the significance and signal strength (µ) $\mu = \frac{(\sigma * BR)_{Obs}}{(\sigma * BR)_{out}}$

4

- Additional validation of the robustness <u>Details in backup</u>
 - Di-jet mass analysis
 - VZ analysis

O-lepton Channel Selection ZH(Z→vv,H→bb)

Z boson selection

- MET trigger: 70,90,110 GeV
- MET > 150 GeV
- Lepton veto: p_T>7 GeV

Higgs boson candidate

- 2 <u>b-tagged</u> jets, p_T>45 (20) GeV
- 1 additional jet max

 Multijets background reduction
 min | Δφ(MET, jet) | > 20°(2jets) > 30°(3jets)

- |Δφ(MET,h)|>120°
- |Δφ(j1,j2)|<140°

Categorization

• Splitted into 2- and 3-jets sub-channels

1-lepton Channel Selection WH(W→Iv,H→bb)

6

W boson selection

- (e-ch) Single electron trigger and (µ-ch) MET trigger
- •1 qualified electron or muon (p_T>27 or 25 GeV)
- Veto additional leptons (p_T>7 GeV)

• P_T(W) >150 GeV

Higgs boson candidate

- •2 b-tagged jets, pT>45 (20) GeV
- •1 additional jet max

Multijets background reduction

- MET > 30GeV (e-ch)
- Data-driven estimate using fit to M_T(W)

Signal region

M(bb)≥75 GeV or M(top)≤225 GeV
W+HF control region (>75% purity)
M(bb)<75 GeV and M(top)>225 GeV

Categorization

Splitted into 2- and 3-jets sub-channles

1 lepton, 2 jets Signal region

1 lepton, 2 jets W+HF control region

2-lepton Channel Selection ZH(Z→II,H→bb)

Z boson selection

- Single lepton triggers
- 2 electrons or muons. Leading p_T>27 GeV, subleading p_T>7 GeV
- Z mass: 81<M(II)<101 GeV
- p_T(Z)>75 GeV

Higgs boson candidate

- 2 b-tagged jets, pT>45 (20) GeV
- 0 or ≥1 additional jets

Signal region

- Same-flavor events (ee/μμ)
 Top eµ control region (99% purity)
- Opposite-flavor events (eµ)

Categorization

- 2-jets and ≥3-jets
- 75<pt(Z)<150 GeV and pt(Z) ≥150 GeV

2 lepton, 2 jets, p_T(Z)≥150 GeV Signal region

2 lepton, 2 jets, p_T(Z)≥150 GeV Top eµ control region

MVA Analysis

- MVA setup
 - Boosted Decision Tree (BDT) algorithm
 - Trained separately in each category
- Input variables
 - Optimized for each channel
 - Most important ones: m_{bb} , $\Delta R(b,b)$ and $p_T(V)$

BDT output, 0 lepton 2 jets

Variable	0-lepton	-lepton 1-lepton 2-le				
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×			
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×				
$p_{\mathrm{T}}^{b_1}$	×	×	×			
$p_{\mathrm{T}}^{b_2}$	×	×	×			
m_{bb}	×	×	×			
$\Delta R(ec{b_1},ec{b_2})$	×	×	×			
$ \Delta\eta(ec{b_1},ec{b_2}) $	×					
$\Delta \phi (ec V, b ec b)$	×	×	×			
$ \Delta\eta(ec V, ec bec b) $			×			
$m_{ m eff}$	×					
$\min[\Delta \phi(ec{\ell},ec{b})]$		×				
$m^W_{ m T}$		×				
$m_{\ell\ell_{.}}$			×			
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×			
$m_{\rm top}$, ,		×				
$ \Delta Y(V, bb) $		×				
	Only in 3-jet events					
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×			
m_{bbj}	×	×	×			

BDT input variables

Background modeling

- Use state-of-the-art MC generators
- Constrain from data by using high purity CR regions (Top/W+jets)
- Main backgrounds have floating normalizations and are estimated in the fit (Top/W or Z+jets)
- Parametrize extrapolation uncertainties across regions
- Shape uncertainties on BDT
- Validated in VZ analysis details in backup

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

Normalization factors obtained from fit

Systematic Uncertainties

There are many source of systematics:

Experimental uncertainties

B-tagging, Jet energy scale, Jet energy resolution, muons, electrons...

Simulated sample uncertainties

Normalization, acceptance, mbb shape and pT(V) shape uncertainties...

Multi-jet background uncertainties (1 lepton channel)

Normalization and shape uncertainties

Details in backup

Statistical Analysis

11

- Binned likelihood fitting has been performed to extract signal strength and significance.
- The impact of systematics are considered as nuisance parameters
- The likelihood function build on the BDT distributions
- Fit to mBB distributions as cross-check backup

Likelihood function

Channel	0-lep	1-lep		2-lep	
Regions	SR	SR $W + hf(\text{Sec.4.3.1})$ CR		SR $(e-\mu)(\text{Sec.4.3.2})$ CR	
$p_{\rm T}^{\rm V}$ [GeV]	≥ 150	≥ 150		75-150, >150	
# of jets	2,3	2,3			2, 3+
# of b-tag	2	2			2
Discriminant	BDT output	BDT output	one bin	BDT output	m_{bb} ¹

BDT combined

Categories and distributions used in the fit

Results: Only Run-2 VH, H→bb

- Significance at 4.9σ (4.3σ exp.)
- Signal strength µ_{VHbb}=1.16±0.26 compatible with SM
- Analysis dominated by systematic uncertainties
- Many important sources of uncertainties

 B-tagging, signal modeling, background modeling and MC stats

Source of un		
	ncertainty	σ_{μ}
Total		0.259
Statistical		0.161
Systematic		0.203
Experiment	al uncertainties	
Jets		0.035
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014
Leptons		0.009
	<i>b</i> -jets	0.061
b-tagging	c-jets	0.042
	light-flavour jets	0.009
	extrapolation	0.008
Pile-up		0.007
Iuminositu		0 0 9 2
Lummosity		0.025
Theoretical	and modelling uncer	tainties
Theoretical Signal	and modelling uncer	0.023 tainties 0.094
Theoretical Signal	and modelling uncer	0.025 tainties 0.094
Theoretical Signal Floating nor	and modelling uncer rmalisations	0.023 etainties 0.094 0.035
$\begin{array}{c} \text{Lummosity} \\ \text{Theoretical} \\ \text{Signal} \\ \text{Floating non} \\ Z + \text{jets} \\ W + \text{integral} \end{array}$	and modelling uncer	0.023 etainties 0.094 0.035 0.055
Theoretical Signal Floating nor Z + jets W + jets	and modelling uncer	0.023 etainties 0.094 0.035 0.055 0.060
Theoretical Signal Floating nor Z + jets W + jets $t\bar{t}$	and modelling uncer rmalisations	0.023 etainties 0.094 0.035 0.055 0.060 0.050
Theoretical Signal Floating nor Z + jets W + jets $t\bar{t}$ Single top q	and modelling uncer rmalisations uark	0.023 etainties 0.094 0.035 0.055 0.060 0.050 0.028
Theoretical Signal Floating nor Z + jets W + jets $t\bar{t}$ Single top q Diboson	and modelling uncer rmalisations	0.023 etainties 0.094 0.035 0.055 0.060 0.050 0.028 0.054
LuminosityTheoreticalSignalFloating nor $Z + jets$ $W + jets$ $t\bar{t}$ Single top qDibosonMulti-jet	and modelling uncer rmalisations	$\begin{array}{c} 0.023\\ \hline \text{tainties}\\ \hline 0.094\\ 0.035\\ 0.055\\ 0.060\\ 0.050\\ 0.028\\ \hline 0.054\\ 0.005\\ \end{array}$

Breakdown of uncertainties

12

Results: Combined with Run-1

VH, H→bb

Combined with Run-1 VH(bb) results
 4.7 fb⁻¹ @ 7 TeV
 20.3 fb⁻¹ @ 8 TeV

- Significance at 4.9σ (5.1σ exp.)
- µ_{VHbb} = 0.98±0.21 compatible with SM
- µWH and µZH compatible with each other

Signal strength

Likelihood contours for signal strength of WH and ZH

Results: Combined with other production modes H->bb decay

 Combined with Run-1 and Run-2 analyses in VBF, ggF and ttH productions

- Significance at 5.4σ (5.5σ exp.)
- $\mu_{H \rightarrow bb} = 1.01 \pm 0.20$ compatible with SM
- Compatibility of 6 measurements

Signal strength

*Hbb Observed

Results: Combined with other decay channels VH production

• Combined with Run-2 analyses in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ decays

- Significance at 5.3σ (4.8σ exp.)
- $\mu_{VH} = 1.13 \pm 0.24$ compatible with SM
- Compatibility of 3 measurements

Signal strength

*VHObserved

Conclusion

- VH, H→bb analysis with 79.8 fb⁻¹ of Run-2 data
 - µ_{VHbb}=1.16±0.26 compatible with SM
 - Significance at 4.9σ (4.3σ exp.)
- VH, H→bb analysis combined with Run-1
 - $\mu_{VH} = 0.98 \pm 0.21$ compatible with SM
 - Significance at 4.9σ (5.1σ exp.)
- Observation of VH production mode
 - μ_{VH}=1.13±0.24 compatible with SM
 - Significance at 5.3σ (4.8σ exp.)
- Observation of H→bb decay
 - µ_{Hbb}=1.01±0.20 compatible with SM
 - Significance at 5.4 (5.5 or exp.)

Combined mbb

• VHbb process has been used for differential X-section measurement [Phys. Rev. Lett. 121 (2018) 121801]

Backup

Di-jet mass analysis (I) Cross-check

- Split into different regions by p_T(V)
- $M_T(W)$ cut in 1-lepton •
- **MET significance cut in 2-lepton** •
- Adaptive $\Delta R(b,b)$ cuts •
- Then fit to di-jet mass distribution •

Channel						
Selection	0-lepton	1-lepton	2-lepton			
m_{T}^W	-	$< 120 { m ~GeV}$	-			
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$	-	-	$< 3.5 \sqrt{\text{GeV}}$			
	p_{T}^{V} re	egions				
p_{T}^{V}	$75-150~{\rm GeV}$	$150-200~{\rm GeV}$	$> 200 { m GeV}$			
	(2-lepton only)					
$\Delta R(\vec{b}_1,\vec{b}_2)$	<3.0	<1.8	<1.2			

ATLAS

Data

0 lepton, 2jets, 150≤pTV≤200

Selections for di-jet mass analysis

Di-jet mass analysis (II) Cross-check

- Significance at 3.6σ (3.5σ exp.)
- Signal strength compatible with MVA analysis in each lepton channel

VZ analysis (I) Cross-check

- Robust validation of background model and associated uncertainties
- Same analysis strategy as VH
- Re-train the BDT to search for VZ sign
 - 0 lepton: Z→vv, Z→bb
 - 1 lepton: W→lv, Z→bb
 - 2 lepton: Z→ll, Z→bb

VZ analysis (II) Cross-check

21

- Signal strength µ=1.20±0.19 compatible with SM
- Robust validation for VH MVA analysis

B-tagging To identify jets from b-quark

B-tagging

- Depends on the good operation of the tracker
- Performance in Run 2 relying on
 - New IBL detector installed in LS1 (2013-2014)
 - Tracking optimized for high-PU and high- p_T
 - Better ML algorithm

MV2C10 tagger used in this analysis

- Boosted Decision Tree (BDT) algorithm
- Exploits the features of b-jets
 - Secondary vertex (SV)
 - Impact parameter (IP)
 - B-hadron decay chain inside jet code (JetFitter)

Event selection for MVA analysis

	0-lepton	1-le	epton	2-lepton			
Selection	-	e sub-channel	μ sub-channel	-			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton			
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	1 tight electron $p_{\rm T} > 27 { m GeV}$	$1 tight muon p_{\rm T} > 25 { m GeV}$	2 <i>loose</i> leptons with $p_{\rm T} > 7 \text{ GeV}$ > 1 lepton with $p_{\rm T} > 27 \text{ GeV}$			
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	_	_ 1 _ 11			
$m_{\ell\ell}$	_		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$			
Jets	Exactly 2	/ Exactly 3 jets		Exactly 2 / \geq 3 jets			
Jet $p_{\rm T}$		> 20 GeV > 30 GeV for	for $ \eta < 2.5$ $2.5 < \eta < 4.5$				
b-jets	Exactly 2 b -tagged jets						
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 4	5 GeV				
H_{T}	$>120~{\rm GeV}$ (2 jets), $>\!150~{\rm GeV}$ (3 j	ets)	_	_			
$\min[\Delta \phi(\vec{E}_{\rm T}^{\rm miss}, jets)]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	—			
$\Delta \phi(ec{E}_{ ext{T}}^{ ext{miss}}, bec{b})$	$> 120^{\circ}$		_	—			
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_			
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	_			
p_{T}^{V} regions	>	$150 {\rm GeV}$		$75 \text{ GeV} < p_{\mathrm{T}}^{V} < 150 \text{ GeV}, > 150 \text{ GeV}$			
Signal regions	_	$m_{bb} \ge 75~{ m GeV}$ o	r $m_{\rm top} \leq 225~{\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)			
Control regions	_	$m_{bb} < 75 {\rm ~GeV}$ and	ad $m_{\rm top} > 225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges			

Simulation samples

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order	
Signal, mass set to 125 GeV and $b\bar{b}$ branching fraction to 58%						
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(*) [77]	Pythia 8.212 [68]	AZNLO [78]	NNLO(QCD)+ NLO(EW) [82–88]	
$qq ightarrow ZH ightarrow u u b ar{b} / \ell \ell b ar{b}$	Powheg-Box v2 + $GoSAM + MINLO$	NNPDF3.0NLO $(*)$	Рутніа 8.212	AZNLO	$NNLO(QCD)^{(\dagger)} + NLO(EW)$	
$gg ightarrow ZH ightarrow u u b ar{b}/\ell\ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]	
Top quark, mass s	et to 172.5 GeV					
$tar{t}$ s-channel t-channel Wt	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]	
Vector boson + je	ts					
$ \begin{array}{c} W \to \ell\nu \\ Z/\gamma^* \to \ell\ell \\ Z \to \nu\nu \end{array} $	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO	
Diboson						
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO	

Acceptance

Process	$\sigma \times \mathcal{B}$ [fb]	Ac	%]	
1100000		0-lepton	1-lepton	2-lepton
$qq \to ZH \to \ell\ell b\bar{b}$	29.9	< 0.1	0.1	6.0
$gg \to ZH \to \ell \ell b \bar{b}$	4.8	< 0.1	0.2	13.5
$qq \to WH \to \ell \nu b \overline{b}$	269.0	0.2	1.0	_
$qq \to ZH \to \nu\nu b\bar{b}$	89.1	1.9	—	_
$gg \to ZH \to \nu \nu b \bar{b}$	14.3	3.5	_	_

Background modeling

Z + jets, W + jets, ttbar, single top-quark and multi-jet production

	Z + jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + HF normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30-40%
Z + cc-to- $Z + bb$ ratio	13-15%
Z + bl-to- $Z + bb$ ratio	20-25%
0-to-2 lepton ratio	7%
$m_{bb},p_{ m T}^V$	S
	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + HF normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
$m_{bb},p_{ m T}^V$	S
$t\bar{t}$ (all are uncorrelation	ated between the $0+1$ - and 2 -lepton channels)
$t\bar{t}$ normalisation	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet)
0-to-1 lepton ratio	8%
2-to-3-jet ratio	9% (0+1-lepton only)
W + HF CR to SR ratio	25%
$m_{bb},p_{ m T}^V$	S
	Single top-quark
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)
Acceptance 2-jet	17% (t-channel), 55% ($Wt(bb)$), 24% ($Wt(other)$)
Acceptance 3-jet	20% (t-channel), $51%$ ($Wt(bb)$), $21%$ ($Wt(other)$)
$m_{bb},p_{ m T}^V$	S (t-channel, $Wt(bb)$, $Wt(other)$)
	Multi-jet (1-lepton)
Normalisation	60 - 100% (2-jet), $90 - 140%$ (3-jet)
BDT template	S

Background modeling

Diboson

ZZ				
Normalisation	20%			
0-to-2 lepton ratio	6%			
Acceptance from scale variations	10-18%			
Acceptance from PS/UE variations for 2 or more jets	6%			
Acceptance from PS/UE variations for 3 jets	7% (0-lepton), $3%$ (2-lepton)			
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with WZ uncertainties)			
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with WZ uncertainties)			
m_{bb} , from matrix-element variations	S (correlated with WZ uncertainties)			
WZ				
Normalisation	26%			
0-to-1 lepton ratio	11%			
Acceptance from scale variations	13-21%			
Acceptance from PS/UE variations for 2 or more jets	4%			
Acceptance from PS/UE variations for 3 jets	11%			
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with ZZ uncertainties)			
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with ZZ uncertainties)			
m_{bb} , from matrix-element variations	S (correlated with ZZ uncertainties)			
WW				
Normalisation	25%			

Signal modeling

Signal					
Cross-section (scale)	0.7%~(qq),27%~(gg)				
Cross-section (PDF)	1.9% $(qq \rightarrow WH)$, 1.6% $(qq \rightarrow ZH)$, 5% (gg)				
$H \to b\bar{b}$ branching fraction	1.7%				
Acceptance from scale variations	2.5-8.8%				
Acceptance from PS/UE variations for 2 or more jets	2.9-6.2% (depending on lepton channel)				
Acceptance from PS/UE variations for 3 jets	1.8-11%				
Acceptance from $PDF + \alpha_S$ variations	0.5-1.3%				
$m_{bb}, p_{\rm T}^V$, from scale variations	\mathbf{S}				
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S				
$m_{bb}, p_{\rm T}^V$, from PDF+ $\alpha_{\rm S}$ variations	\mathbf{S}				
$p_{\rm T}^V$ from NLO EW correction	S				

Yields

	0-1e $p_{\rm T}^V > 150 G$	pton GeV, 2-b-tag	$1-le$ $p_{\rm T}^V > 150 G$	pton GeV, 2-b-tag	$75 GeV < p_{\rm T}^V$	$\begin{array}{l} 2 \text{-lepto} \\ < 150 GeV, 2 \text{-}b \text{-} \text{tag} \end{array}$	n $p_{\rm T}^V > 150 G$	eV, 2-b-tag
Process	2-jet	3-jet	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	≥3-jet
Z + ll	$17\pm~11$	$27\pm~18$	2 ± 1	3 ± 2	14 ± 9	49 ± 32	4 ± 3	30 ± 19
Z + cl	$45\pm$ 18	$76\pm~30$	3 ± 1	$7\pm$ 3	$43\pm~17$	170 ± 67	12 ± 5	$88\pm~35$
Z + HF	4770 ± 140	5940 ± 300	180 ± 9	348 ± 21	7400 ± 120	14160 ± 220	1421 ± 34	5370 ± 100
W + ll	$20\pm~13$	$32\pm~22$	$31\pm~23$	65 ± 48	< 1	< 1	< 1	< 1
W + cl	$43\pm~20$	$83\pm~38$	139 ± 67	$250\pm~120$	< 1	< 1	< 1	< 1
W + HF	$1000\pm~87$	1990 ± 200	2660 ± 270	$5400\pm\ 670$	2 ± 0	$13\pm$ 2	1 ± 0	4 ± 1
Single top quark	368 ± 53	1410 ± 210	2080 ± 290	9400 ± 1400	188 ± 89	440 ± 200	$23\pm$ 7	$93\pm~26$
$tar{t}$	1333 ± 82	9150 ± 400	6600 ± 320	50200 ± 1400	3170 ± 100	8880 ± 220	104 ± 6	839 ± 40
Diboson	254 ± 49	318 ± 90	178 ± 47	$330\pm~110$	152 ± 32	355 ± 68	$52\pm~11$	$196\pm~35$
Multi-jet e sub-ch.	—	_	100 ± 100	41 ± 35	—	—	—	_
Multi-jet μ sub-ch.	—	_	138 ± 92	$260\pm~270$	—	_	_	_
Total bkg.	$7850\pm~90$	19020 ± 140	12110 ± 120	66230 ± 270	10960 ± 100	24070 ± 150	$1620\pm~30$	6620 ± 80
Signal (post-fit)	128 ± 28	128 ± 29	131 ± 30	125 ± 30	$51\pm~11$	86 ± 22	28 ± 6	$67\pm~17$
Data	8003	19143	12242	66348	11014	24197	1626	6686