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What’s ABJM theory?

In 2008 Aharony, Bergman, Jafferis & Maldacena introduced
ABJM theory [JHEP 10(2008)091]

It’s a susy U(N)×U(N) gauge theoy in 3D Minkowski:
Chern-Simons terms at κ and −κ levels + Matter.
It has N = 6 supersymmetries and it is conformal invariant.
It’s the holographic dual of M theory on AdS4×S7/Zκ with N units
of Flux through AdS4: a particular realization of the Gauge/gravity
duality.
It affords the possibility of studying quantum gravity in 4D.

Also in 2008, Bandres, Epstein and Schwarz [JHEP 0809 (2008)
027] proved by explicit computation that indeed the action of the
theory is invariant under N = 6 susy transformations.
In 2009, Buchbinder et al. [JHEP 0910 (2009) 075] proved by
using the N = 3 harmonic superspace formalism that the ABJM
is UV finite in the supergraph expansion.
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Moving to noncommutative spacetime

In 2008 Imeroni [JHEP 0810 (2008) 026] constructed the gravity
dual of noncommutative of ABJM theory by deforming the ordinary
dual. The noncommutative ABJM theory was not formulated.
And yet, it was not until 2018 that noncommutative ABJM theory
was considered in the scientific literature:

Enter "find t noncommutative and t ABJM" in Inspire hep searching
engine and you get just 2 entries:

Noncommutative massive unquenched ABJM
Y. Bea, N. Jokela, A. Ponni, A. V. Ramallo.
Int.J.Mod.Phys. A33 (2018) no.14n15, 1850078
Quantum noncommutative ABJM theory: first steps
C. P. Martin, J. Trampetic, J. You
JHEP 1804 (2018) 070

In the first reference applications of the gravity dual of the
noncommutative massive unquenched Chern-Simons matter theory
using its gravity dual was studied.
In reference 2 the action of the NCABJM theory was displayed for
the first time and their susy invariances proved.
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Aim of the of the piece of research in the paper

Purpose of the paper:
Establish the action of NC ABJM theory without auxiliary fields
and its supersymmetries.
Set up the BRST quantization of the theory and derive the
Feynman rules.
Take the first steps towards showing that the limit of vanishing
noncommutativity parameters yield the ordinary theory:

This is nontrivial in spite of the fact that ordinary ABJM theory is UV
finite, for UV finiteness is achieved by cancellation among diagrams
so that remnants (Lorentz violating ) with a non well defined limit
may survive.
Notice that UV/IR mixing would imply that no divergences arise as
the noncommutavity parameters go to zero.
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Field content of the model

We considered the U(1)×U(1) NC theory, for it is the most different
from its ordinary counterpart: NC U(1) is nonabelian.
Field content:

Two Chern-Simons noncommutative gauge fields Aµ and Âµ .

Four complex scalar fields XA, A = 1,2,3,4 carrying the 4 IRREP
of SU(4) (R-symmetry) & their complex conjugates X A.

Four Dirac spinors ΨA, A = 1,2,3,4 carrying the 4̄ IRREP of
SU(4) (R-symmetry)& their Dirac conjugates Ψ̄A.
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The Moyal product

Being in noncommutative spacetime is tantamount to saying that
functions of the coordinates are not multiplied pointwise but by means
of the Moyal product –also known as ?-product:

(f ?g)(x) = f (x)?g(x) = f (x)e
i
2

←
∂µ θ µν

→
∂ν g(x), (1)

θ µν is the so-called noncommutativity tensor parameter.
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Gauge symmetries and covariant derivatives

NC U(1) BRST transformations:

sAµ = Dµ Λ = ∂µ Λ + i[Aµ
?, Λ], sÂµ = Dµ Λ̂ = ∂µ Λ̂ + i[Âµ

?, Λ̂],

sXA =−iΛ?XA + iXA ? Λ̃, sX A = iX A ?Λ− iΛ̃?X A,

sΨA =−iΛ?ΨA + iΨA ? Λ̃, sΨA = iΨA ?Λ− iΛ̃?ΨA,

sΛ =−iΛ?Λ, sΛ̂ =−iΛ̂? Λ̂,

with covariant derivatives

DµXA = ∂µXA + iAµ ?XA− iXA ? Âµ ,

DµX A = ∂µX A + i Âµ ?X A− iX A ?Aµ ,

Dµ ΨA = ∂µ ΨA + iAµ ?ΨA− iΨA ? Âµ ,

Dµ ΨA = ∂µ ΨA + i Âµ ?ΨA− iΨA ?Aµ .
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Finite gauge transformations

For finite noncommutative U(1)×U(1) gauge transformations –useful
to quickly get the correct action, we have

Aµ → g ?Aµ ?g†− ig ?∂µg†, Âµ → ĝ ? Âµ ? ĝ†− i ĝ ?∂µ ĝ†

XA→ g ?XA ? ĝ†, X A→ ĝ ?X A ?g†,

ΨA→ g ?ΨA ? ĝ†, ΨA→ ĝ ?ΨA ?g†,

g ?g† = g† ?g = 1, ĝ ? ĝ† = ĝ† ? ĝ = 1, g(x), ĝ(x) being real
functions.
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Guessing the action I

The action must be invariant under
the previous noncommutative gauge transformations,
the Rigid SU(4) ≈ SO(6) R-symmetry,
N = 6 supersymmetry transformations,

AND
Quadratic in the fermion fields
and made out of Lorentz invariant polynomials (Ψ and Ψ̄ in pairs),
if we also transform the θ µν

One should recall that the ?-product defines a trace:∫
d3x (f1 ? f2 ? ....... ? fn)(x) =

∫
d3x (fπ(1) ? fπ(2) ? ....... ? fπ(n))(x),

π(1)...π(n) being any cyclic permutation of 1,2, .......,n.
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Guessing the action II

After some guessing and a little bit of tinkering, one comes out with the
following action for U(1) noncommutative ABJM theory:

S = SCS + Skin + S4 + S6,

SCS = κ

2π

∫
d3x εµνλ

(
1
2Aµ ?∂νAλ + i

3Aµ ?Aν ?Aλ

− 1
2 Âµ ?∂ν Âλ − i

3 Âµ ? Âν ? Âλ

)
,

Skin = κ

2π

∫
d3x

(
−DµX A ?DµXA + iΨ̄A ?D/ΨA) ,
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Guessing the action III

S4 = S4a + S4b + S4c ,

S4a = iκ
2π

∫
d3x

[
εABCD(Ψ̄A ?XB ?ΨC ?XD)− εABCD(Ψ̄A ?X B ?ΨC ?X D)

]
,

S4b = iκ
2π

∫
d3x

[
Ψ̄A ?ΨA ?XB ?X B− Ψ̄A ?ΨA ?X B ?XB

]
,

S4c = iκ
2π

∫
d3x

[
2(Ψ̄A ?ΨB ?X A ?XB)−2(Ψ̄A ?ΨB ?XA ?X B)

]
,

Ψ̄A→ [Ψ̄A]i ≡ [ΨA]jγ
0
ji = ([ΨA]j)

∗γ0
ji =⇒ Ψ̄A carries the 4̄
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Guessing the action IV

S6 =−1
6

κ

2π

∫
d3x N IA ?N I

A

= 1
3

κ

2π

∫
d3x

[
X A ?XA ?X B ?XB ?X C ?XC + XA ?X A ?XB ?X B ?XC ?X C

+4XA ?X B ?XC ?X A ?XB ?X C−6X A ?XB ?X B ?XA ?X C ?XC

]
,

where

N IA = Γ̃IAB
(

XC ?X C ?XB−XB ?X C ?XC

)
−2Γ̃IBCXB ?X A ?XC ,

N I
A = ΓI

AB

(
X C ?XC ?X B−X B ?XC ?X C

)
−2ΓIBCX B ?XA ?XC ,

ΓI
AB being 4×4 matrices, the generators of the SO(6) group:

ΓI
AB =−ΓI

BA, ∀I = 1, ...,6; ΓIΓJ + ΓJΓI = 2δ IJ

Γ̃I = (ΓI)† ⇐⇒ Γ̃IAB = (ΓI
BA)∗ =−(ΓI

AB)∗ = 1
2εABCDΓI

CD,

N I
A =

(
N IA)†

.
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How gauge invariance comes about

Gauge invariance occurs because of the trace property of the
?-product:
It is the action which is gauge invariant not the Lagrangian, unlike
in the ordinary ABJM theory.

Examples:∫
d3x Ψ̄′

A ?D/
′
Ψ
′A =

∫
d3x ĝ ? Ψ̄A ?g† ?g ?D/ΨA ? ĝ† =∫

d3x Ψ̄A ?g† ?g ?D/ΨA ? ĝ† ? ĝ =
∫
d3x Ψ̄A ?D/ΨA∫

d3x εABCDΨ̄
′
A ?X

′
B ?Ψ

′
C ?X

′
D =∫

d3x εABCDĝ ? Ψ̄A ?g† ?g ?XB ? ĝ† ? ĝ ?ΨC ?g† ?g ?XD ? ĝ† =∫
d3x εABCDΨ̄A ?XB ?ΨC ?XD ? ĝ† ? ĝ =

∫
d3x εABCDΨ̄A ?XB ?ΨC ?XD
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Setting θ µν = 0 in the action

S4 and S6 VANISH, when θ µν = 0.
By removing the ? from the previous eqs.

S4a = iκ
2π

∫
d3x

[
εABCD(Ψ̄AXBΨCXD)− εABCD(Ψ̄AX BΨCX D)

]
= 0,

S4b = iκ
2π

∫
d3x

[
Ψ̄AΨAXBX B − Ψ̄AΨAX BXB

]
= 0,

S4c = iκ
2π

∫
d3x

[
2(Ψ̄AΨBX AXB)−2(Ψ̄AΨBXAX B)

]
= 0,

N IA = Γ̃IAB
(

XCX CXB −XBX CXC

)
−2Γ̃IBCXBX AXC = 0,

N I
A = ΓI

AB

(
X CXCX B −X BXCX C

)
−2ΓIBCX BXAXC = 0,

Hence
S6 =−1

6
κ

2π

∫
d3x N IAN I

A = 0.

Huge difference between ordinary and NC U(1) ABJM theory: Not clear what the limit
limθ→0 of the quantum theory will be.
NC U(1) theory closer to ordinary U(N) ABJM theory, at least in the planar limit: Replace
in the action the gauge fields with U(N) fields and the matter fields with fields transforming
thus

Field → UA FIELD U†
Â
.
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The N = 6 supersymmetry transformations
After inspection of the susy transformations of the ordinary U(N), we
came up with the following proposal for the susy transformations of the
NC U(1) ABJM theory:

δAµ = ΓI
AB ε̄ Iγµ ΨA ?X B − Γ̃IABXB ? Ψ̄Aγµ ε I ,

δ Âµ = ΓI
ABX B ? ε̄ Iγµ ΨA− Γ̃IABΨ̄Aγµ ε I ?XB ,

δXA = iΓI
AB ε̄ IΨB

δX A =−iΓ̃IABΨ̄Bε I ,

δΨA =−Γ̃IABD/XBε I + N IAε I ,

δΨA = ΓI
ABD/X Bε I + N I

Aε I ,

δΨ̄A = δΨT
A γ0 =−ΓI

AB ε̄ ID/X B + N I
Aε̄ I ,

N IA = Γ̃IAB
(

XC ?X C ?XB −XB ?X C ?XC

)
−2Γ̃IBCXB ?X A ?XC

ε̄
I = (ε

I)T
γ

0, (N I
A)T = N I

A, (N IA)† = N I
A.

The summands in RED do not occur in the ordinary U(1) theory.

Now, is δS = 0?
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N = 6 susy invariances

After a lengthy algebra, we obtained that indeed

δS = 0.

I will not torture you with the details (please, read the appropriate
6 pages of the paper if you are interested in them).
In hindsight all the efforts were succesfull because

1) the trace property of the ?-product and
2) the "noncommutative" Fierz identity for 2D spinors∫
d3x

(
Ψ1i ? Ψ̄2 ?χ3 + Ψ2i ? χ̄3 ?Ψ1 + χ3i ? Ψ̄1 ?Ψ2

)
= 0, ∀i = 1,2.

We were lucky that the Fierz identity holds in the integrated sense,
otherwise the susy invariance under the previous transformations
would not have hold.
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Path integral BRST quantisation

Quantisation is carried out in a standard BRST fashion by adding
to the classical action the Landau gauge BRST exact bit

Sgf+ghost =− κ

2π

∫
d3x s

[
Λ̄?∂µAµ − ¯̂Λ?∂µ Âµ

]
,

sΛ̄ = B, sB = 0;s ¯̂Λ = B̂,sB̂ = 0.

We have chosen the Landau gauge so that the gauge propagators
have the softest possible IR behaviour:

εµρνpρ

p2 instead of ξ
pµpν

(p2)2 ,

and thus one does not have to face integrals that are not IR finite by
power-counting at nonexceptional momenta, e.g,∫ d3`

(2π)3 ei`µ θ µν Pν
1

(`2)2

The Feynman rules are obtained in a standard way
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UV/IR mixing and the limit θ µν → 0, I

In NC field theories the phenomenon of UV/IR mixing occurs: In
the "nonplanar" part of a 1PI Green function, one meets, when
θ µν is set to 0 in the integrand, non UV finite integrals. These are
integrals of the type∫ dn`

(2π)n e−i`θP Nµ1···µm (q,p1, · · · ,pn)

`2(`+ Q1)2 · · ·(`+ Qs)2 ,

`θP ≡ `µθ
µνPν .

A non zero θ µνPν makes ei`θP oscillate very rapidly in the UV so
that it renders the integral UV finite.

θ µν provides a built-in partial UV cut-off, although non Lorentz
invariant

The divergence reappears when θ µνPν → 0, ie, in the IR.
Hence the limit θ µν → 0 is problematic, unless the theory is finite
by power-counting. See next→
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UV/IR mixing and the limit θ µν → 0, II

An integral that occurs in the Feynman diagram expansion of our
NC ABJM theory is

Iµ (p, q̃) =
∫ d3`

(2π)3 e−i`θq `µ

`2(`−p)2 = Î5 pµ + Î6 q̃µ , q̃µ ≡ θ
µν qν

If we set θ µν = 0 in the integrand –ie, remove the phase factor from the integrand, the
resulting integral is UV divergent –logarithmically– by power-counting

When θ µν 6= 0, Î5 and Î6 read

Î5 = i
2(2π)3/2

∫ 1
0 dx xe−ixpθq

(
p2x(1−x)

q̃2

)−1/4
K−1/2

(√
q̃2p2x(1−x)

)
,

Î6 = 1
2(2π)3/2

∫ 1
0 dxe−ixpθq

(
p2x(1−x)

q̃2

)1/4
K1/2

(√
q̃2p2x(1−x)

)
,

For small q̃µ , we have

Îµ (p, q̃) = 1
8π

q̃µ√
q̃2

+ i
16

pµ√
p2

+ f̂ µ (p, q̃),

f̂ µ (p, q̃)→ 0 as q̃µ → 0.

q̃µ√
q̃2

bounded but NO LIMIT as θ µν → 0.
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The strategy to obtain the limit θ µν → 0

In view of what we’ve discussed in the previous slide, for the limit
θ µν → 0 to exist, we need that the N = 6 susy of the theory be
strong enough as to give rise to a deep cancellation among the
several diagrams contributing to a given 1PI function.
The strategy we followed was

to add up the integrands of classes of diagrams, simplify the
numerators and, then, end up with a Feynman integral that is UV
finite by POWER-COUNTING when θ µν = 0 in the integrand and,
then,
apply Zimmermann’s power-counting th. and Lebesgue’s
dominated converge th.
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The theorems

Zimmermann’s power-counting th.
Make the replacement 1

`2−iε →
1

`2−i~̀2ε
. Then,

Power-counting guarantees that the integral is ABSOLUTELY
convergent.

Lebesgue’s dominated convergence theorem:

If
∫ dn`

(2π)n |g(`)|< +∞, |f (`,θ)| ≤ |g(`)| almost everywhere∀θ ∈ [−a,a]

Then limθ→0
∫ dn`

(2π)n f (`,θ) =
∫ dn`

(2π)n limθ→0f (`,θ)

In our case

|∑ ei`θPi
N(Polinomial)
D(Polinomial)

| ≤∑ |
N(Polinomial)
D(Polinomial)

|

Apply Zimmermann’s th to

∑
N(Polinomial)
D(Polinomial)
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An instance of how a well-defined θ µν → 0 limit occurs

The one-loop 1PI, Π̂
µ1µ2µ3

AAÂ
, contribution to

〈
Aµ1Aµ2Âµ3

〉
is given by

Π̂
µ1µ2µ3

AAÂ
= Π̂

µ1µ2µ3

AAÂ+
+ Π̂

µ1µ2µ3

AAÂ−

Π̂
µ1µ2µ3

AAÂ+
= Ŝµ1µ2µ3

tria1 + F̂ µ1µ2µ3
tria1 + Ŝµ1µ2µ3

bub1 + Ŝµ1µ2µ3
bub3+

Π̂
µ1µ2µ3

AAÂ− = Ŝµ1µ2µ3
tria2 + F̂ µ1µ2µ3

tria2 + Ŝµ1µ2µ3
bub2 + Ŝµ1µ2µ3

bub3− .
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Scalar Triangle 1

←
p1, µ1

←
p2, µ2

→
p3, µ3

ℓ− p1

ℓ

ℓ− p1 − p2

A3

B3

B1A1

B1

A2

Ŝµ1µ2µ3
tria1 = ∑

A
e

i
2 p1θp2

∫ dD`
(2π)D e−i`θ(p1+p2)

· (2`−p1)µ1 (2`−2p1−p2)µ3 (2`−p1−p2)µ2

`2(`−p1)2(`−p1−p2)2 .

IN RED, integrals which give rise to an ill-defined θ µν → 0 limit.
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Fermion Triangle 1

←
p1, µ1

←
p2, µ2

→
p3, µ3

ℓ− p1

ℓ

ℓ− p1 − p2

F̂ µ1µ2µ3
tria1 =−∑

A
e

i
2 p1θp2

∫ dD`
(2π)D e−i`θ(p1+p2) trγµ1 /̀γµ3 (/̀−p/1−p/2)γ

µ2 (/̀−p/1)
`2(`−p1)2(`−p1−p2)2 .

IN RED, integrals which give rise to an ill-defined θ µν → 0 limit.
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Scalar Bubble 1

ℓ− p2

µ1,
←
p1 ℓ

µ2,
→
p2

µ3,
←
p3

A

B D

C

Ŝµ1µ2µ3
bub1 =−∑

A
e

i
2 p1θp2

∫ dD`
(2π)D e−i`θ(p1+p2) η

µ2µ3 (2`−p1)µ1

`2(`−p1)2 .

IN RED, integrals which give rise to an ill-defined θ µν → 0 limit.
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Scalar Bubble 3

ℓ− p2

µ1,
←
p1 ℓ

µ2,
→
p2

µ3,
←
p3

A

B D

C

Ŝµ1µ2µ3
bub3 = Ŝµ1µ2µ3

bub3+ + Ŝµ1µ2µ3
bub3−

Ŝµ1µ2µ3
bub3+ =−e

i
2 p1θp2 ∑

A

∫ dD`
(2π)D e−i`θ(p1+p2) η

µ1µ2 (2`−p1−p2)µ3

`2(`−p1−p2)2

Ŝµ1µ2µ3
bub3− =−e−

i
2 p1θp2 ∑

A

∫ dD`
(2π)D e−i`θ(p1+p2) η

µ1µ2 (2`−p1−p2)µ3

`2(`−p1−p2)2

IN RED, integrals which give rise to an ill-defined θ µν → 0 limit.
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All dangerous summands add up to zero

Upon adding the INTEGRANDS and doing a little algebra, one
shows that all the dangerous contributions IN RED cancel at the
integrand level:

Π̂
µ1µ2µ3
AAÂ+

= Ŝµ1µ2µ3
tria1 + F̂ µ1µ2µ3

tria1 + Ŝµ1µ2µ3
bub1 + Ŝµ1µ2µ3

bub3+ ,

Π̂
µ1µ2µ3
AAÂ+

=−e
i
2 p1θp2

(
Π

µ1µ2µ3
1 · I(p1 + p2) + Π

µ1µ2µ3
2 · Î(p1) + Π

µ1µ2µ3
3 · I+

+ Π
µ1µ2
4 (p1,p2) · Iµ3

+ + Π
µ2µ3
4 (p2,p3) · Iµ1

+ + Π
µ1µ3
4 (p1,p3) · Iµ2

+

)
,

Î(p1) =
∫ dD`

(2π)D
e−i`θ(p1+p2)

`2(`−p1)2 ,

I+ =
∫ dD`

(2π)D
e−i`θ(p1+p2)

`2(`−p1)2(`−p1−p2)2 , Iµ

+ =
∫ dD`

(2π)D
`µ e−i`θ(p1+p2)

`2(`−p1)2(`−p1−p2)2

Π
µ1µ2µ3
1 = 2

(
ηµ2µ3 (p1 + p2)µ1 −ηµ1µ3 (p1 + p2)µ2

)
,Π

µ1µ2µ3
2 = 2ηµ2µ3 pµ1

2 ,

Π
µ1µ2µ3
3 = pµ1

1 (p1 + p2)µ3 (2p1 + p2)µ2 + ηµ1µ2
(
pµ3

1 (2p1 ·p2 + p2
2)−pµ3

2 p2
1
)

−ηµ1µ3
(
pµ2

2 p2
1 + pµ2

1 (2p1 · (p1 + p2) + p2
2)
)

+ ηµ2µ3
(
pµ1

2 p2
1−pµ1

1 (2p1 ·p2 + p2
2)
)
,

Π
µ1µ2
4 = 2(ηµ1µ2 p1 ·p2−pµ2

1 pµ1
2 ).

(2)

The integrals IN RED are finite by power-counting when θ µν = 0 in the integrand. Hence
Zimmermann’s th. and Lebesgue’s dominated convergence th. imply that the limit θ µν → 0
can be taken inside the integral safely.

Likewise for Π̂
µ1µ2µ3
AAÂ− .
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Superficial UV degree and the limit θ µν → 0

The superficial degree, D of divergence of a 1PI Feynman diagram with, EG, external
gauge legs, EF , external fermion legs and Ex , external scalar legs, reads

D = 3−EG−EF −
1
2

EX

Hence, all diagrams with EG + EF > 3 are UV finite by power-counting when all the Moyal
phases are removed and, therefore, they have a well-defined limit when θ µν → 0, which
agrees with the ordinary –ie, in Minkowski– value: just apply Zimmermann‘s th. and
Lebesgue’s dominated convergence limit.

There remains to be analysed the diagrams corresponding to the following
triplets,(EG,EF ,EX ):

(2,0,0),(0,2,0),(0,0,2),(3,0,0,),(1,0,2),(1,2,0),(0,0,4),(1,0,4),(0,0,6)

In the paper we have shown that all 1PI functions corresponding to the triplets in RED have
a well-defined θ µν → 0 limit and that this limit is the value of the ordinary 1PI function. It
remains to see what happens with (0,0,4),(1,0,4),(0,0,6).
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Conclusions

Noncommutative ABJM theory as defined above seems to be a
perfectly (at least in the perturbative regime) well-defined finite
theory with N = 6 supersymmetries
Seems to flow to ordinary ABJM theory in the IR.
Can be put to work to further study the gauge/gravity duality and,
perhaps, give a definition of noncommutative quantum gravity in
4D.

THANK YOU FOR LISTENING!
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