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Strong homotopy Lie algebras from Physics

“... and there is no new thing under the sun.”
Ecclesiastes

“It’s like déjà vu all over again.”
Yogi Berra

Christian Saemann L∞-algebras of Classical Field Theories



Berends–Giele recursion relation 4/32

Recursion relation for currents in Yang–Mills theory
Directly translate to relations for amplitudes
These were used to prove Parke–Taylor (MHV) formula
Relations have deep algebraic meaning: Quasi-Isomorphisms!
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Birth of strong homotopy Lie algebras 5/32

This paper has all the important ingredients:
BV-formalism
L∞-algebras
quantum L∞-algebras
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Why should I care? 6/32

Strong homotopy Lie algebras = L∞-algebras.

They are everywhere:
L∞-algebras from BV (this talk) → perturbative QFT
Basis for string field theory (because of above)
in higher gauge theories (SUGRA, string/M-theory,...)
L∞-algebroids in AKSZ formalism
L∞-algebroids in Generalized Geometry/T-duality
L∞-algebroids in nonassociative geometry
Deformation theory
Beautiful mathematics

“Before functoriality, people lived in caves.”
Brian Conrad

Christian Saemann L∞-algebras of Classical Field Theories



L∞-algebras 7/32

Two formulations dual to each other:
Formulation as differential graded algebras (dga)
Formulation as “higher brackets” (from codifferential)
Both are important and helpful!
Signs are messy, but can usually be reconstructed
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L∞-algebras as dgas 8/32

L∞-algebras as differential graded algebras
Graded vector space E = · · · ⊕ E−1 ⊕ E0 ⊕ E1 ⊕ . . .
Vector field Q on E, |Q| = 1, Q2 = 0

Note: E vector bundle → L∞-algebroid

Example: Lie algebras
E = g[1], coordinate functions ξα of degree 1:

Q = −1
2f

α
βγξ

βξγ
∂

∂ξα
, Q2 = 0 ⇔ Jacobi identity

Example: BRST complex
E = ghosts[1]⊕ fields, coords.: c, |c| = 1 and A, |A| = 0:

Qc = −1
2 [c, c] , QA = dc+ [A, c]
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From dgas to higher brackets 9/32

L∞-algebras as differential graded algebras
Graded vector space E = · · · ⊕ E−1 ⊕ E0 ⊕ E1 ⊕ . . .
Vector field Q on E, |Q| = 1, Q2 = 0

Q encoded in “structure constants”:

Q = ±
∑
i≥0

1

i!
mβ
α1...αi

ξα1 . . . ξαi
∂

∂ξβ

These encode higher brackets on basis τα of L = E[−1]:
µi(τα1 , . . . ταi) = mβ

α1...αi
τβ .

L∞-algebras as higher brackets
Graded vector space L = · · · ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ . . .
Higher brackets/products µi : L∧i → L, |µi| = 2− i
Higher Jacobi identities: (⇔ Q2 = 0)∑

i+j=n

∑
σ∈Sh(i,n−i)

±µi+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(n)) = 0

Christian Saemann L∞-algebras of Classical Field Theories



Example: Lie 2-Algebras 10/32

Graded vector space: ∗ ←W [1]← V [2]← ∗ ← . . .

Coords: wa of degree 1 on W [1], vi of degree 2 on V [2]
Most general vector field Q of degree 1:

Q = −ma
i v

i ∂

∂wa
− 1

2
mc

abw
awb ∂

∂wc
−mj

aiw
avi

∂

∂vj
− 1

3!
mi

abcw
awbwc ∂

∂vi

Induces “brackets”/“higher products”:
µ1(τi) = ma

i τa
µ2(τa, τb) = mc

abτc , µ2(τa, τi) = mj
aiτj

µ3(τa, τb, τc) = mi
abcτi

Q2 = 0⇔ Homotopy Jacobi identities, e.g.
µ1(µ1(−)) = 0: µ1 is a differential
µ1(µ2(x, y)) = µ2(µ1(x), y)±µ2(x, µ1(y)): compatible w. µ2,
µ2(x, µ2(y, z)) + cycl. = µ1(µ3(x, y, z)): Jacobiator

Analogously: Lie 3-, 4-, ...-algebras

L∞-algebras are generalizations of dg Lie algebras.
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L∞-algebras: Inner products 11/32

Inner product on Lie algebra g: 〈−,−〉 : g× g→ R
positive definite/non-degenerate
symmetric
bilinear
satisfying cyclic relation:

〈`1, [`2, `3]〉 = 〈`2, [`3, `1]〉

generalized naturally (more later) to

Cyclic structure on L∞-algebra L: 〈−,−〉 : L× L→ R
non-degenerate
graded symmetric
bilinear
satisfying cyclic relation:

〈`1, µi(`2, . . . , `1+i)〉 = ±〈`2, µi(`3, . . . , `1+i, `1)〉
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Example: L∞-algebras from tensor products 12/32

“dg commutative algebra ⊗ L∞-algebra yields L∞-algebra”

Example: Ω•(M, L) := Ω•(M)⊗ L =
⊕

k∈Z Ω•k(M, L):

Ω•k(M, L) := Ω0(M)⊗Lk ⊕ Ω1(M)⊗Lk−1 ⊕ · · · ⊕ Ωd(M)⊗Lk−d
Higher products:

µ̂1(α1 ⊗ `1) := dα1 ⊗ `1 ± α1 ⊗ µ1(`1)

µ̂i(α1 ⊗ `1, . . . , αi ⊗ `i) := ±(α1 ∧ . . . ∧ αi)⊗ µi(`1, . . . , `i)

Cyclic structure for compact manifolds and cyclic L:

〈α1 ⊗ `1, α2 ⊗ `2〉Ω•(M,L) := ±
∫
M
α1 ∧ α2 〈`1, `2〉L
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Homotopy Maurer–Cartan Theory

“One ring to rule them all ...”
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Homotopy Maurer–Cartan Theory 14/32

Maurer–Cartan equation for differential graded Lie algebra, (g, d):

da+ 1
2 [a, a] = 0 , a ∈ g .

L∞-algebras are generalizations of dg Lie algebras.

Homotopy Maurer–Cartan equation:

f := µ1(a) + 1
2µ2(a, a) + 1

3!µ3(a, a, a) + · · · = 0 , a ∈ L1

Nomenclature: a: gauge potential f : curvature
Bianchi identity:

µ1(f)− µ2(f, a) + 1
2µ3(f, a, a)− 1

3!µ4(f, a, a, a) + · · · = 0 .

Homotopy Maurer–Cartan Action:

SMC[a] :=
∑
i≥1

1

(i+ 1)!
〈a, µi(a, . . . , a)〉L .

Also: this is the structure underlying closed string field theory.
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Example: Chern–Simons Theory 15/32

Tensor product L∞-algebra L̂ = Ω•(M)⊗ g with g Lie algebra:
gauge potential

A ∈ L̂1 = Ω1(M)⊗ g

higher products:

µ̂1 = d and µ2 = [−,−]

Homotopy Maurer–Cartan equation:

F := dA+ 1
2 [A,A] = 0

Homotopy Maurer–Cartan action:

SMC[A] :=

∫
M

〈
1
2(A,dA) + 1

3!(A, [A,A])
〉
.
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Example: 4d Higher Chern–Simons Theory 16/32

For d = 4, need cyclic “Lie 2-algebra:” L = L−1 ⊕ L0.

Tensor product L∞-algebra L̂ = Ω•(M)⊗ L:
gauge potential

A+B ∈ L̂1 = Ω1(M)⊗ L0 ⊕ Ω2(M)⊗ L−1

higher products are µ̂1 = d + µ1, µ2, µ3

Homotopy Maurer–Cartan equation:
F = dA+ 1

2µ2(A,A) + µ1(B)

H = dB + µ2(A,B)− 1
3!µ3(A,A,A)

Homotopy Maurer–Cartan action:

SMC =

∫
M

{
〈B, dA+ 1

2µ2(A,A) + 1
2µ1(B)〉L+

+ 1
4!〈µ3(A,A,A), A〉L

}
,

Generalizes to arbitrary dimensions d ≥ 3!
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BRST/BV-Formalism
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Classical BRST-BV formalism 18/32

Classical space of observables:

\ Functionals on fields F
/

ideal I := 〈solutions to eom〉 gauge symmetry G

Observation:
Orbit spaces are often not nice
Better: derived quotient

Consider action groupoid
quotient space in cohomology.
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BRST formalism: Modding out gauge symmetry 19/32

Action Lie groupoid (“derived quotient”)

(symmetry groupn field space)⇒ field space

Φ
(g,Φ)−−−−→ g B Φ

This differentiates to the action Lie algebroid

FBRST :=
(
Lie(symmetry group) n field space→ field space

)
BRST complex is the dga-description of this Lie algebroid.

Chevalley–Eilenberg resolution:

0 −→ C∞(F/G) ∼= H0(F/G) ↪−→ C∞0 (FBRST)
Q−−→ C∞1 (FBRST)

Q−−→ · · ·
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Antifields: Equations of motion 20/32

Classical observables:
field configurations modulo symmetries satisfying eom

Field space F

Enlarged: FBV := T ∗[−1]F coords. fields ΦA, “antifields” Φ+
A

SBV defines QBV = {SBV,−} with Q2
BV = 0

Note: QBVΦ+
A = {SBV,Φ

+
A} = δΦAS, classical eoms.

Note: QBV(C∞−1(T ∗[−1]F)) = I, ideal vanishing on solutions

Koszul–Tate resolution:
· · · Q−−→ C∞−1(T ∗[−1]F)

Q−−→ C∞0 (T ∗[−1]F) −→ H0(T ∗[−1]F) = C∞(F)/I −−→ 0
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Classical BRST-BV formalism 21/32

Essentially:

Classical BRST-BV
formalism

= Chevalley–Eilenberg
resolution

+ Koszul–Tate
resolution

We have
SBV , QBV := {SBV,−} , Q2

BV = 0

Question: What is the L∞-algebra dual to the BV complex?
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The L∞-algebra of a classical field theory 22/32

Recall dualization (invert sign) and shift by one:

Lie algebra g ←→ (g[1], Q = . . . ) ←→ dg algebra (C∞(g[1]), Q)

Translate coordinate functions to elements of vector spaces.

Example: Gauge theory
Field Φ of degree 0 ←→ Φ ∈ L1

Ghost c of degree 1 ←→ c ∈ L0

antifield Φ+ of degree −1 ←→ Φ+ ∈ L2

antifield of ghost c+ of degree −2 ←→ c+ ∈ L3

etc. for higher gauge theories

Altogether:

· · · L0 L1 L2 L3 · · ·
· · · gauge physical equations of Noether · · ·

transf. fields motion identities
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Example: Yang–Mills theory 23/32

For Yang–Mills theory:
Manifold M , Lie algebra g, Coord. functions: A, A+, c, c+

Symplectic form: ω =

∫
M

{
〈δA, δA+〉g − 〈δc, δc+〉g

}
Action: S =

∫
M

{
1
2〈F, ?F 〉g − 〈A

+,∇c〉g + 1
2〈c

+, [c, c]〉g
}

Homological vector field: Q := {S,−} with Q2 = 0

This is the dual of an L∞-algebra.
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Example: Yang–Mills theory 24/32

L∞-algebra picture:

Complex:

Ω0(M, g)︸ ︷︷ ︸
L0

µ1 := d−−−−−→ Ω1(M, g)︸ ︷︷ ︸
L1

µ1 := d?d−−−−−−−→ Ωd−1(M, g)︸ ︷︷ ︸
L2

µ1 := d−−−−−→ Ωd(M, g)︸ ︷︷ ︸
L3

Higher Products:
µ1(c1) := dc1 , µ1(A1) := d?dA1 , µ1(A+

1 ) := dA+
1 ,

µ2(c1, c2) := [c1, c2] , µ2(c1, A1) := [c1, A1] , µ2(c1, A
+
2 ) := [c1, A

+
2 ] ,

µ2(c1, c
+
2 ) := [c1, c

+
2 ] , µ2(A1, A

+
2 ) := [A1, A

+
2 ] ,

µ2(A1, A2) := d?[A1, A2] + [A1, ?dA2] + [A2, ?dA1] ,

µ3(A1, A2, A3) := [A1, ?[A2, A3]] + [A2, ?[A3, A1]] + [A3, ?[A1, A2]]

Homotopy Maurer–Cartan action with a = A is Yang–Mills action!
hMC action with a = c0 +A+A+ + c+ is BV action!
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Quantum master equation 25/32

Classical BV:
SBV ∈ C∞(F) solving classical master equation:

{SBV, SBV} = 0
with

Q := {SBV,−} with Q2 = 0

Full BV:
S~

BV ∈ C∞(F)[[~]] solving quantum master equation:

~∆S~
BV + {S~

BV, S
~
BV} = 0

yields
Q~ := ~∆ + {S~

BV,−} with (Q~)2 = 0

Q~ is differential, but not derivation!
Defines quantum L∞-algebra:∑

i+j=n,σ,g1,g2

±µg1i+1(µg2j (`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(n))−~
∑
a

µg1+g2−1
i+2 (τa, τa, `1, . . . , `i) = 0
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Examples of Applications
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Quasi-isomorphisms 27/32

Question: When are two L∞-algebras essentially the same?

Morphisms in dga-picture clear:

C∞(E)
Φ−−→ C∞(E′) , Q′ ◦ Φ = Φ ◦Q

Morphisms of L∞-algebras φ : L→ L′ induced:

φi : L∧i → L , |φi| = 1− i , φ1∗ : H•µ1(L)→ H•µ′1
(L′)

L∞-algebras L and L′ quasi-isomorphic:
There is a φ : L→ L′ with φ1 : H•µ1(L) ∼= H•µ1(L′)

Equivalent field theories
FT∼FT’

↔ Quasi-isomorphic L∞-algebras
L u L′
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Example: First order Yang–Mills theory 28/32

Classical BV formalism:
Manifold M , Lie algebra g,
Coords: A ∈ Ω1(M, g), B ∈ Ω2

+(M, g), A+, B+
+ , c, c+

Symplectic form ω obvious/canonical, Action:

S =

∫
M

{
〈F,B+〉g + ε

2〈B+, B+〉g−

− 〈A+,∇c〉g − 〈B+
+ , [B+, c]〉g + 1

2〈c
+, [c, c]〉g

}
Yields L∞-algebra LYM1BV

Morphism of L∞-algebras:
Easy to check: H•µ1(LYM2BV) ∼= H•µ1(LYM1BV)

Moreover: We have Φ : C∞(FYM1BV)→ C∞(FYM2BV) with

Φ(c) := c , Φ(B+) := −1
εF+ , Φ(A) := A ,

Φ(B+
+) := 0 , Φ(A+) = A+ , Φ(c+) := c+ .

This satisfies QYM2BV ◦ Φ = Φ ◦QYM1BV
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Minimal models and tree level amplitudes 29/32

Definition: L∞-algebra with µ1 = 0: minimal (not u to “smaller”)

Minimal Model Theorem
Every L∞-algebra is quasi-isomorphic to a minimal one.

In field theory:
L∞-algebra L encoding field theory
quadratic term 〈a, µ1(a)〉: µ1 encodes inverse propagator
Minimal model H•µ1(L) u L encodes equivalent FT’
FT’ has trivial propagator

Conclusion:

The higher products of the minimal model yield
the tree level amplitudes of a field theory:

〈Ψ1, µ
◦
i (Ψ2, . . . ,Ψi+1)〉 ←→ 〈Ψ1Ψ2 . . .Ψi+1〉
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Berends–Giele recursion for all field theories 30/32

Explicitly:

〈Ψ1, µ
◦
i (Ψ2, . . . ,Ψi+1)〉 ←→ 〈Ψ1Ψ2 . . .Ψi+1〉

µ◦1(Ψ1) := 0 ,

µ◦2(Ψ1,Ψ2) := (p ◦ µ2)(φ1(Ψ1), φ1(Ψ2)) ,

...

µ◦i (Ψ1, . . . ,Ψi) :=
i∑

j=2

1

j!

∑
k1+···+kj=i

∑
σ

±(p ◦ µj)
(
φk1
(
Ψσ(1), . . . ,Ψσ(k1)

)
, . . . , φkj

(
. . .
))

Recursion for currents φi:
φ1(Ψ1) := e(Ψ1) ,

φ2(Ψ1,Ψ2) := −(h ◦ µ2)(φ1(Ψ1), φ1(Ψ2)) ,

...

φi(Ψ1, . . . ,Ψi) := −
i∑

j=2

1

j!

∑
k1+···+kj=i

∑
σ

±(h ◦ µj)
(
φk1
(
Ψσ(1), . . . ,Ψσ(k1)

)
, . . . , φkj

(
. . .
))
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Scattering amplitudes 31/32

Note:
Explicit formulas for computing minimal model:

Formulas are recursive.
In case of Yang–Mills theory: Berends–Giele relations
Our perspective: generalizes this to all Lagrangian field theories

Generalize to quantum L∞-algebras
Formulas are recursive.
Exist for all Lagrangian field theories
Interesting mathematical challenges

Our perspective:

perturbative QFT ↔ algebraic problem
+ analytical complications
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Conclusions 32/32

Summary:
The BV-formalism assigns to every Lagrangian field theory:

an equivalent classical L∞-algebra
an equivalent quantum L∞-algebra

Minimal models ↔ Scattering amplitudes
Very useful:

Classical/quantum equivalence of field theories
Recursion relations for scattering amplitudes
Algebraic understanding of Feynman diagrams

Soon to come:
� Quantum recursion relations (WIP)
� MHV amplitudes from quasi-isomorphisms (WIP)
� Applications to Integrable Systems (WIP)
� Better algebraic understanding of Feynman diagrams
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