Conserved quantities in general relativity and anomalies

Brian P. Dolan

Dept. of Theoretical Physics, Maynooth University

Corfu Workshop on Quantum Geometry, Field Theory and Gravity, 19th September 2019

Outline

Noether's theorem

Phase space formulation

Killing symmetries

Double differential complex

Anomalies

Brian Dolan

Noether's Theorem

Lagrangian *L*(*F¹*, ∂_μ*F*), dynamical fields *F¹* (metric, matter),

$$\delta \boldsymbol{L}(\boldsymbol{F}') = \boldsymbol{E}_{J}(\boldsymbol{F}')\delta \boldsymbol{F}^{J} + \boldsymbol{d}\boldsymbol{\theta}(\boldsymbol{F}',\delta \boldsymbol{F}')$$

where $E_l(F^l) = 0$ are the equations of motion.

• If $\delta_{Q} = \epsilon T_{Q}$ generates a symmetry of $L, \delta_{Q}L = 0$, then

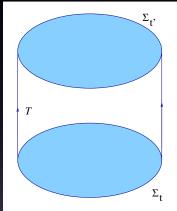
 $d\theta = 0$

on shell, $\theta(S', \delta S')$ with $S' \subset S$: solutions of EoM.

$$\int_{\mathcal{M}} d\theta = \int_{\Sigma} \theta - \int_{\Sigma'} \theta = 0.$$

 ${\mathcal M}$ bounded by hypersurfaces Σ and $\Sigma'.$

Noether's Theorem



Noether charge, $\boldsymbol{\theta} = *\boldsymbol{j} \quad (\theta_{\mu\nu\rho} = \epsilon_{\mu\nu\rho\sigma} j^{\sigma})$ $\mathcal{Q} = \int_{\boldsymbol{\Sigma}} *\boldsymbol{j} = \int_{\boldsymbol{\Sigma}'} *\boldsymbol{j} \quad \left(= \int_{\boldsymbol{\Sigma}} j_{\mu} d\boldsymbol{\Sigma}^{\mu} \right)$

Phase space and symplectic form

• Under a second variation define, on-shell $S' \subset S$,

$$\omega(\mathcal{S}', \delta_1 \mathcal{S}', \delta_2 \mathcal{S}') := \delta_1 \theta_2 - \delta_2 \theta_1$$

where $\theta_1 = \theta(S', \delta_1 S')$ and $\theta_2 = \theta(S', \delta_2 S')$.

Define a symplectic form Ω

$$\Theta = \int_{\Sigma} heta, \qquad \Omega = \delta \, \Theta = \int_{\Sigma} \omega$$

- δ is the exterior derivative on the space of solutions, $\delta^2 = 0$.
- $d\delta = \delta d$.
- $\boldsymbol{L} \to \boldsymbol{L} + d\alpha \quad \Rightarrow \quad \boldsymbol{\theta} \to \boldsymbol{\theta} + \delta \alpha \text{ and } \Omega = \delta \Theta \text{ is invariant.}$

Symplectic form for scalar field theory

• Scalar field ϕ

$$L = -rac{1}{2}d\phi \wedge *d\phi - m^2\phi^2 * 1$$

- $\theta = -(\delta \phi) \wedge *d\phi$
- Conjugate momentum: $\pi = \dot{\phi}$

$$\boldsymbol{\omega} = (\boldsymbol{\delta} \phi) \wedge * d(\boldsymbol{\delta} \phi).$$

• Choose t = const hypersurface Σ ,

$$\mathbf{\Omega} = \int_{\Sigma} (\delta \, \phi) \wedge st \, \delta \, (d \phi) = \int_{\Sigma} (\delta \, \phi) \wedge (\delta \, \pi) \, \widetilde{st} \, \mathsf{1},$$

 $\tilde{*} 1 = volume \text{ form on } \Sigma.$

Diffeomorphisms

- δS^{l} on the space of solutions S includes gauge transformations and diffeomorphisms, G.
- Restrict S to $\widehat{S} = S/G$.
- $\widehat{\Omega}$ on $T^*\widehat{S}$ must pull-back to Ω on T^*S under this projection.
- $\Omega = \int_{\Sigma} \omega$ must vanish if one of the field variations is a diffeomorphism, $\delta_{\vec{X}} S^{I} = \varepsilon \mathcal{L}_{\vec{X}} S^{I}$, (ε a constant 1-form on S, $\varepsilon \delta = -\delta \varepsilon$).
- This will be the case if

$$oldsymbol{\omega} = oldsymbol{d}ig(arepsilon \wedge oldsymbol{\phi}(ec{X})ig)$$

for some $\phi(ec{X})$ and field variations vanish on $\partial\Sigma$

Crnković + Witten (1987), Lee + Wald (1990).

Hamiltonian

• If a Hamilton $h(\vec{X})$ exists that generates the flow \vec{X} then

$$\omega = -\delta\left(\varepsilon h(\vec{X})\right) = d\left(\varepsilon \wedge \phi(\vec{X})\right)$$

 $\Rightarrow \quad \Omega = 0$

when one of the variations is a diffeomorphism.

Define

$$\mathcal{H}[ec{X}] := \int_{\Sigma} h(ec{X})$$

then $\delta \mathcal{H}[\vec{X}] = \int_{\Sigma} \delta h(\vec{X}) = \int_{\partial \Sigma} \phi(\vec{X}) = 0$ if \vec{X} vanishes on $\partial \Sigma$.

• For example in general relativity, for a time-like vector field \vec{X} , $\mathcal{H}[\vec{X}] = 0$ is a constraint.

Killing symmetries

 If X = K is a Killing vector then the symplectic density is invariant, ω = 0, and φ is *d*-closed

 $d\phi(\vec{K}) = 0.$

- \vec{K} need not vanish on $\partial \Sigma$.
- If Σ has an inner and an outer boundary, $\partial \Sigma = \sigma_1 \cup \sigma_2$ then

$$\int_{\Sigma} d\phi(ec{K}) = \int_{\sigma_2} \phi(ec{K}) - \int_{\sigma_1} \phi(ec{K}) = 0.$$

 $\int_{\sigma} \phi(\vec{K})$ is independent of the surface σ .

• If $\varepsilon \wedge \phi(\vec{K}) = \delta \psi(\vec{K})$ is δ -exact then $\int_{\sigma} \phi(\vec{K}) = \delta \mathcal{Q}[\vec{K}]$. • Let $\psi(\vec{K}) = \varepsilon * \mathcal{J}(\vec{K})$: Noether 2-form

Invariant

Wald [gr-qc/9307038]

$$\mathcal{Q}(ec{K}) = \int_{\sigma} *\mathcal{J}$$

Brian Dolan

Summary

- (Pre)-symplectic form $\Omega = \int_{\Sigma} \omega$.
- $\omega = \varepsilon \wedge d\phi(\vec{X})$ for a diffeo.

- (2-form on S) ($\vec{X} = 0$ on $\partial \Sigma$)
- For a Killing symmetry $\omega = 0$, $\phi(\vec{K})$ is *d*-closed. $(\vec{K} \neq 0 \text{ on } \partial \Sigma)$
- If ϕ is δ -exact, $\phi = -\delta * \mathcal{J}$, then

$$\mathcal{Q}[ec{\mathcal{K}}] = \int_{\sigma} * \mathcal{J}$$

is an invariant associated with the Killing vector \vec{K} .

Mass in General Relativity

$$\begin{split} \boldsymbol{L} &= \frac{1}{16\pi} \boldsymbol{R}_{ab} \wedge * \boldsymbol{e}^{ab}, \qquad \boldsymbol{R}_{ab} = \boldsymbol{d}\omega_{ab} + \omega_{ac} \wedge \omega^{c}{}_{b} \\ & (\boldsymbol{e}^{ab} = \boldsymbol{e}^{a} \wedge \boldsymbol{e}^{b}). \\ \boldsymbol{\theta} &= (\boldsymbol{\delta} \, \omega_{ab}) \wedge * \boldsymbol{e}^{ab}, \qquad \boldsymbol{\phi}(\vec{K}) = \frac{1}{16\pi} \Big(i_{\vec{K}} \boldsymbol{\theta} + \boldsymbol{\delta} \, * \boldsymbol{K} \Big). \end{split}$$

Schwarzschild metric

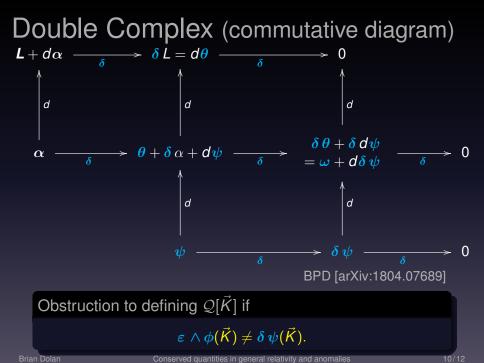
$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2m}{r}\right)} + r^{2}(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2})$$

• Time-like Killing vector $\vec{K} = \frac{\partial}{\partial t}$, metric variation $m \to m + \delta m$, $e^2 = r \, d\vartheta$, $e^3 = r \sin \vartheta d\varphi$.

$$\phi(\vec{K}) = \frac{1}{4\pi} \frac{\delta m}{r^2} e^{23} \quad \Rightarrow \quad \mathcal{Q}[\vec{K}] = \frac{1}{4\pi} \int_{S^2} \frac{m}{r^2} e^{23} = m.$$

- ADM mass in general, lyer+Wald [gr-qc/9403028].
- Brown-York mass; Bondi-Sachs mass, BPD [1804.10451].

Brian Dolan



Quantum anomalies

- δL = dθ reminiscent of the Stora-Zumino descent equations for quantum anomalies in gauge theories Stora-Zumino (1983), Alvarez-Gaumé+Witten, (1983) Alvarez-Gaumé+Ginsparg (1985).
- The differential complex structure is the same for both classically conserved quantities and quantum anomalies.

Summary

- Wald (1993) constructed a generalised Noether charge associated with any diffeomorphic invariant field theory.
- Based on differential forms on the phase space of solutions (infinite dimensional).
- Depending on the field theory there may be cohomological obstructions to defining conserved charges.
- The mathematical framework is identical to that of the Stora-Zumino consistency conditions and their role in the study of quantum anomalies.

Double complex

• Let $W^{p,q}$ be the space of *p*-forms on $T^*\mathcal{M}$ and *q*-forms on $T^*\mathcal{S}$ and let

$$W^r = \bigoplus_{p+q=r} W^{p,c}$$

be the space of forms of total degree r.

Differential operator

$$\boldsymbol{D} = \boldsymbol{\delta} + (-1)^{p} d$$

maps W^r to W^{r+1} with $D^2 = 0$. BPD [1804.07689]

Diffeomorphisms

• Under a diffeomorphism $\delta_{\vec{X}}S' = \varepsilon \mathcal{L}_{\vec{X}}S'$ (ε is an infinitesimal constant).

$$\delta_{\vec{X}} \mathbf{L} o \boldsymbol{\varepsilon} \, \mathcal{L}_{\vec{X}} \mathbf{L} = \boldsymbol{\varepsilon} \, di_{\vec{X}} \mathbf{L}$$

 $\mathcal{L}_{\vec{X}} = d \, i_{\vec{X}} + i_{\vec{X}} \, d, \, i_{\vec{X}} = ext{interior derivative}, \, d \, \boldsymbol{L} = 0.$

- $\boldsymbol{\theta}(\vec{X}) = \boldsymbol{\varepsilon} \, i_{\vec{X}} \boldsymbol{L} + \boldsymbol{\varepsilon} \, \boldsymbol{J}(\vec{X}) \text{ with } \boldsymbol{d} \boldsymbol{J}(\vec{X}) = 0.$
- If $\boldsymbol{J}(\vec{X}) = \boldsymbol{d} \, \boldsymbol{Q}(\vec{X})$ then

$$\boldsymbol{\theta}(\vec{X}) = \boldsymbol{\varepsilon} \left(i_{\vec{X}} \boldsymbol{L} + d \boldsymbol{Q}(\vec{X}) \right).$$

Cohomology

• $\delta \mathbf{L} = d\theta, \mathbf{L} \to \mathbf{L} + d\alpha,$ $\delta \mathbf{L} \to \delta \mathbf{L} + \delta d\alpha, \theta \to \theta + \delta \alpha \text{ and } \Omega = \delta \theta \text{ is invariant}$ because $\delta^2 \alpha = 0.$

$$\omega = \delta_{\vec{X}} \theta + \delta \theta(\vec{X})$$

= $\varepsilon \wedge (i_{\vec{X}} d\theta + di_{\vec{X}} \theta) + \delta \varepsilon (i_{\vec{X}} L + dQ(\vec{X}))$
= $\varepsilon \wedge (i_{\vec{X}} d\theta + di_{\vec{X}} \theta) - \varepsilon \wedge (i_{\vec{X}} \delta L + d\delta Q(\vec{X}))$
= $\varepsilon \wedge d(i_{\vec{X}} \theta - \delta Q(\vec{X})) := \varepsilon \wedge d\phi(\vec{X})$

where we can take

$$\boldsymbol{\phi}(\vec{X}) = i_{\vec{X}}\boldsymbol{\theta} - \boldsymbol{\delta} \boldsymbol{Q}(\vec{X}).$$

Killing symmetries and Noether forms

• If $\vec{X} = \vec{K}$ is a Killing vector then

 $\omega = \varepsilon \wedge d\phi(\vec{K})$

is invariant and $d\phi(\vec{K}) = 0$.

• If Σ has an inner and an outer boundary, $\partial \Sigma = \sigma_1 \cup \sigma_2$ e.g. foliate Σ with a radial co-ordinate r, then $\sigma_{r_1} = \sigma_{r_1}$ and $\sigma_2 = \sigma_{r_2}$ with $r_1 < r_2$ then

$$\int_{\Sigma} d\phi(ec{K}) = \int_{\sigma_1} \phi(ec{K}) = \int_{\sigma_2} \phi(ec{K}) = 0$$

and

$$\Phi[ec{K}] = \int_{\sigma} \phi(ec{K}) = \int_{\sigma} \left(ec{i}_{ec{X}} oldsymbol{ heta} - oldsymbol{\delta} oldsymbol{Q}(ec{X})
ight)$$

is independent of which surface it is evaluated on. • If $i_{\vec{K}}\theta = \delta \mu(\vec{K})$ for some $\mu(\vec{K})$ then

$$\Phi[ec{K}] = \delta \, \mathcal{Q}[ec{K}] \qquad ext{with} \qquad \mathcal{Q}[ec{K}] = \int_\sigma ig(\mu(ec{K}) - oldsymbol{Q}(ec{K})ig).$$