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Noether’s Theorem

• Lagrangian L(F I , ∂µF ), dynamical fields F I (metric,
matter),

δL(F I ) = EJ (F I )δF J + dθ(F I , δF I )

where EI (F I ) = 0 are the equations of motion.
• If δQ = εTQ generates a symmetry of L, δQL = 0, then

dθ = 0

on shell, θ(S I , δS I ) with S I ⊂ S: solutions of EoM.∫
M

dθ =

∫
Σ
θ −

∫
Σ′
θ = 0.

M bounded by hypersurfaces Σ and Σ′.
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Noether’s Theorem

Σ

Σ

T

t

t’

Noether charge, θ = ∗j (θµνρ = εµνρσjσ)

Q =

∫
Σ
∗j =

∫
Σ′
∗j

(
=
∫

Σ jµdΣµ
)
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Phase space and symplectic form

• Under a second variation define, on-shell S I ⊂ S,

ω(S I , δ1S I , δ2S I ) := δ1θ2 − δ2θ1

where θ1 = θ(S I , δ1S I ) and θ2 = θ(S I , δ2S I ).

Define a symplectic form Ω

Θ =

∫
Σ
θ, Ω = δΘ =

∫
Σ
ω

• δ is the exterior derivative on the space of solutions,
δ 2 = 0.

• dδ = δ d .
• L→ L + dα ⇒ θ → θ + δ α and Ω = δΘ is invariant.
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Symplectic form for scalar field theory
• Scalar field φ

L = −1
2

dφ ∧ ∗dφ−m2φ2 ∗ 1

• θ = −(δ φ) ∧ ∗dφ
• Conjugate momentum: π = φ̇

ω = (δ φ)∧ ∗ d (δ φ).

• Choose t = const hypersurface Σ,

Ω =

∫
Σ

(δ φ)∧ ∗ δ (dφ) =

∫
Σ

(δ φ)∧ (δ π) ∗̃1,

∗̃1 = volume form on Σ.
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Diffeomorphisms

• δ S I on the space of solutions S includes gauge
transformations and diffeomorphisms, G.

• Restrict S to Ŝ = S/G.
• Ω̂ on T ∗Ŝ must pull-back to Ω on T ∗S under this projection.
• Ω =

∫
Σω must vanish if one of the field variations is a

diffeomorphism, δ ~X S I = εL~X S I ,
(ε a constant 1-form on S, ε δ = −δ ε ).

• This will be the case if

ω = d
(
ε∧φ(~X )

)
for some φ(~X ) and field variations vanish on ∂Σ

Crnković + Witten (1987), Lee + Wald (1990).
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Hamiltonian
• If a Hamilton h(~X ) exists that generates the flow ~X then

ω = −δ
(
εh(~X )

)
= d

(
ε∧φ(~X )

)
⇒ Ω = 0

when one of the variations is a diffeomorphism.
• Define

H[~X ] :=

∫
Σ

h(~X )

then δH[~X ] =
∫

Σ δ h(~X ) =
∫
∂Σφ(~X ) = 0 if ~X vanishes on

∂Σ.
• For example in general relativity, for a time-like vector field
~X , H[~X ] = 0 is a constraint.
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Killing symmetries
• If ~X = ~K is a Killing vector then the symplectic density is

invariant, ω = 0, and φ is d -closed

dφ(~K ) = 0.

• ~K need not vanish on ∂Σ.
• If Σ has an inner and an outer boundary, ∂Σ = σ1 ∪ σ2

then ∫
Σ

dφ(~K ) =

∫
σ2

φ(~K )−
∫
σ1

φ(~K ) = 0.∫
σ φ(~K ) is independent of the surface σ.

• If ε∧φ(~K ) = δ ψ(~K ) is δ -exact then
∫
σ φ(~K ) = δQ[~K ].

• Let ψ(~K ) = ε ∗ J (~K ): Noether 2-form

Invariant Wald [gr-qc/9307038]

Q(~K ) =

∫
σ
∗J
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Summary

• (Pre)-symplectic form Ω =
∫

Σω. (2-form on S)

• ω = ε∧dφ(~X ) for a diffeo. (~X = 0 on ∂Σ)

• For a Killing symmetry ω = 0, φ(~K ) is d -closed.
(~K 6= 0 on ∂Σ)

• If φ is δ -exact, φ = −δ ∗ J , then

Q[~K ] =

∫
σ
∗J

is an invariant associated with the Killing vector ~K .
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Mass in General Relativity
L =

1
16π

Rab ∧ ∗eab , Rab = dωab + ωac ∧ ωc
b

(eab = ea∧eb).

• θ = (δ ωab) ∧ ∗eab , φ(~K ) = 1
16π

(
i~K θ + δ ∗ K

)
.

• Schwarzschild metric

ds2 = −
(

1− 2m
r

)
dt2 +

dr 2(
1− 2m

r

) + r 2(dϑ2 + sin2 ϑdϕ2)

• Time-like Killing vector ~K = ∂
∂t , metric variation

m → m + δm, e2 = r dϑ, e3 = r sinϑdϕ.

φ(~K ) =
1

4π
δm
r 2 e23 ⇒ Q[~K ] =

1
4π

∫
S2

m
r 2 e23 = m.

• ADM mass in general, Iyer+Wald [gr-qc/9403028].
• Brown-York mass; Bondi-Sachs mass, BPD [1804.10451].
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Double Complex (commutative diagram)
L + dα

δ
// δ L = dθ

δ
// 0

α

d

OO

δ
// θ + δ α + dψ

d

OO

δ
// δ θ + δ dψ

= ω + dδ ψ

d

OO

δ
// 0

ψ

d

OO

δ
// δ ψ

d

OO

δ
// 0

BPD [arXiv:1804.07689]

Obstruction to defining Q[~K ] if

ε ∧φ(~K ) 6= δ ψ(~K ).
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Quantum anomalies

• δL = dθ reminiscent of the Stora-Zumino descent
equations for quantum anomalies in gauge theories
Stora-Zumino (1983), Alvarez-Gaumé+Witten, (1983)
Alvarez-Gaumé+Ginsparg (1985).

• The differential complex structure is the same for both
classically conserved quantities and quantum anomalies.
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Summary
• Wald (1993) constructed a generalised Noether charge

associated with any diffeomorphic invariant field theory.
• Based on differential forms on the phase space of solutions

(infinite dimensional).
• Depending on the field theory there may be cohomological

obstructions to defining conserved charges.
• The mathematical framework is identical to that of the

Stora-Zumino consistency conditions and their role in the
study of quantum anomalies.
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Double complex

• Let W p,q be the space of p-forms on T ∗M and q-forms on
T ∗S and let

W r =
⊕

p+q=r

W p,q

be the space of forms of total degree r .
• Differential operator

D = δ + (−1)pd

maps W r to W r +1 with D2 = 0. BPD [1804.07689]
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Diffeomorphisms

• Under a diffeomorphism δ ~X S I = εL~X S I

(ε is an infinitesimal constant).

δ ~X L→ εL~X L = εdi~X L

L~X = d i~X + i~X d , i~X = interior derivative, dL = 0.

• θ(~X ) = ε i~X L + εJ(~X ) with dJ(~X ) = 0.

• If J(~X ) = dQ(~X ) then

θ(~X ) = ε
(
i~X L + dQ(~X )

)
.
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Cohomology
• δ L = dθ, L→ L + dα,
δ L→ δ L + δ dα, θ → θ + δ α and Ω = δ θ is invariant
because δ 2α = 0.

ω = δ ~Xθ + δ θ(~X )

= ε∧ (i~X dθ + di~Xθ) + δ ε
(
i~X L + dQ(~X )

)
= ε∧ (i~X dθ + di~Xθ)− ε∧

(
i~X δ L + dδQ(~X )

)
= ε∧d

(
i~Xθ − δQ(~X )

)
:= ε∧dφ(~X )

where we can take

φ(~X ) = i~Xθ − δQ(~X ).
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Killing symmetries and Noether forms
• If ~X = ~K is a Killing vector then

ω = ε∧dφ(~K )

is invariant and dφ(~K ) = 0.
• If Σ has an inner and an outer boundary, ∂Σ = σ1 ∪ σ2

e.g. foliate Σ with a radial co-ordinate r , then σr1 = σr1 and
σ2 = σr2 with r1 < r2
then ∫

Σ
dφ(~K ) =

∫
σ1

φ(~K ) =

∫
σ2

φ(~K ) = 0

and
Φ[~K ] =

∫
σ
φ(~K ) =

∫
σ

(
i~Xθ − δQ(~X )

)
is independent of which surface it is evaluated on.

• If i~K θ = δ µ(~K ) for some µ(~K ) then

Φ[~K ] = δQ[~K ] with Q[~K ] =

∫
σ

(
µ(~K )−Q(~K )

)
.
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