Dark Matter Searches at the LHC

E. Barberio, The University of Melbourne On behalf of the ATLAS and CMS collaborations

Corfu Summer Institute

19th Hellenic School and Workshops on Elementary Particle Physics and Gravity Corfy, Greece 2019

Dark Matter Observation

Dark matter properties:

- 🔹 Stable,
- Gravitationally interacting,
- Cold (non relativistic),
- Dark (Does not interact with light)

Cosmological observation

Dark Matter Interaction

Dark Matter Production at Colliders

Probe SM – dark matter particle interactions up to the TeV scale

Measure the properties of the dark matter particles (once detected)

Develop methods to enhance the complementarity with direct and indirect dark matter searches

Dark Matter Models

Direct production

Generally referred to as "Mono-X" searches

Search for deviation from the Standard Model expectation

Missing transverse energy plus visible objects

Direct production

Generally referred to as "Mono-X" searches

Search for deviation from the Standard Model expectation

Missing transverse energy plus visible objects

ATLAS mono-jet candidate

Mono-X / Missing Energy

$\underset{\text{ATLAS: JHEP 01 (2018) 092005}}{\text{Mono-jet/V(had) Search}} \quad Mono-jet/V(had) Search$

CMS: PRD 97 (2018) 092005 ATLAS : JHEP 01 (2018) 126

Mono-jet Searches


```
JHEP 10 (2018) 180
```


ATLAS

Limits on visible cross-section

inclusive in b-tag multiplicity

[200,250)

 $W(qq) + E_{-}^{miss}$

 $\sigma_{\rm vis,W+DM}$ at 95% CL

After all selections,

inclusive in m_{ii}/m_i

[150,200)

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

[250,300)

CL_s upper limit on $\sigma_{
m vis,W+DM}$ [fb]

 10^{3}

10²

10╞

Mono-V(hadronic) Search

CL_s upper limit on $\sigma_{vis,Z+DM}$ [fb] 1 0 σ_{0}

10

Large-R jets for boosted W/Z hadronic decays

- * Sub-structure information for discrimination
- \clubsuit Z(vv)/W(lv)+jets dominant background → normalised in CBs
- main uncertainty: large-R jet modelling

Expected 95% CL

Observed 95% CL

 $\pm 1\sigma$ and $\pm 2\sigma$)

[300,400) [400,600) [600,1500)

Range in E^{miss}₋ [GeV]

Dark matter with b and t

Dark matter with b and t

ATLAS: JHEP 06 (2018) 108, EPJC 78 (2018) 18 CMS: PRL 122 (2019) 011803, JHEP 03 (2019) 141,

Mono-h(bb) Search

ATLAS-CONF-2018-039 CMS: arXiv:1908.01713

Probe coupling of Higgs boson to mediator

Mono-h($\gamma\gamma$) Search

ATLAS: PRD 96 (2017) 112004 CMS: arXiv:1908.01713

New signature arXiv:1908.02699

Mono-Z(II) γ Search

Searches for the Mediators

No dark matter in the final state: model dependent indirectly constrain

Constraints on couplings (See exclusion plots)

Traditional bump-hunting: look for **di-jet resonances**

41.1 fb⁻¹ (2017) (13 TeV)

Events / 5 GeV 12000 CMS Data ······ W(aa)+jets Preliminary Total SM pred. ---- Z(qq)+jets 10000 Multijet pred. - tt/single-t (gg)+jets Z'(qq), g,=1/6, m,=110 GeV (×8) 8000 p_: 525-575 GeV 6000 CMS-PAS-EXO-18-012 4000 2000 20 Data - (Multijet + tt) 01ata 100 150 200 250 300 50 m_{SD} (GeV)

20

resonance

g_a

Constraints on Couplings

Constraints on Couplings

Interpretation

Exclusions directly depend on couplings and Dark Matter

Interpretation

Exclusions directly depend on couplings and Dark Matter

Comparison with Direct Detection

JHEP 05 (2019) 142

Model dependent comparison

Complementarity between LHC and direct detection experiments

Conclusion/Outlook

Much more to come from Run2 data.. ... and then....

