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• Amazing progress in perturbative QCD 

• Responsible for a meaningful comparison with LHC measurements 

• Theory and experiment are now of a similar accuracy in the most 
interesting observable 

• Experimental precision will surpass theoretical estimates until the 
end of the high-luminosity LHC programme 

• Theory will be the limiting factor 

• We need more processes to be evaluated at next-to-next-to-next-
to-leading order and beyond 

• for scattering processes of five (NNLO) and four 



PROCESSS 
CLASS EXAMPLES STATUS

POSSIBLE 
Phenomenolog

y motivated 
GOAL

H,W,Z,WH,ZH N3LO N3LO

jet inclusive, 
diboson, top-

pair, photon-jet,
…

NNLO N3LO

ttH,diphton+jet,
WW/ZZ/ZW+jet, 
top-pair+jet,…

NLO NNLO

A wish list…

2 → 1

2 → 2

2 → 3

2 → 3

Are we ready for such a leap?



Challenges
• One big challenge is the 

proliferation of Feynman 
diagrams. 


• The integrands are simple rational 
functions of loop-momenta


• But established integration 
methods for loop amplitudes 
perform numerous costly 
operations on the integrands 
before final integrations. 


• These operations are 
necessitated by the presence of 
divergences

Order  Diagrams

tree 1

1-loop 10

2-loop 189

3-loop 134225

(In qq̄ → QQ̄)

(Similar pattern for increasing  
the number of external legs)



Feynman Integrals

Feynman 
Parameters

Mellin -
Barnes

Reduction to 
Master 

Integrals

Differential or 
Difference 
equations 

Sector  

decomposit
ion Unitaritty

Cau
ch

y

Canoncical  

basis

Powerful schemes which have lead to impressive breaktroughs.  
But, I feel, that we have already achieved most of what is possible with them.

NEED TO THINK OF ALTERNATIVES



Alternative approach
• Generate amplitudes in momentum 

space. 


• Integrate them directly after 
subtracting or deforming the 
integration contour away from 
singularities. 


• The theoretical foundation for this 
program lies in the proofs of 
factorization for perturbative QCD 
(Collins, Soper, Sterman) 

• For wide-angles and high energy, 
scattering amplitudes can be separated 
into short-distance (hard functions) and 
long-distance factors (jet and soft 
functions)

Figure 1. Depiction of a general pinch surface for two-to-two scattering. Shaded blobs

represent jet subdiagrams, and the open circle a subdiagram of “soft” lines, whose mo-

menta vanish at the pinch surface. In the center is a “hard” subdiagram consisting of

lines o↵-shell by the order of the momentum transfer. Each line connecting the soft, jet

and hard subdiagrams represents an arbitrary number of lines. For the purposes of this

discussion, all lines are scalars, and the dashed lines simply represent soft lines attached to

jet subdiagrams. Note the possibility that soft lines as well as jet lines attach to the hard

subdiagram.

of the external lines. To find the behavior of the integral at pinch surface �, we

introduce a dimensionless scaling variable � and study the behavior of the integrand

and integration volume for � ! 0, where it takes all momenta to the pinch surface.

To keep track of dimensions, we label by Q the typical hard-scattering momentum

scale, say Q ⇠
p

ŝ, for 2 ! n fixed angle scaling.

Now, for soft lines, which vanish in all four components at the pinch surface, we

take

k
µ

i
⇠ �Q . (2.1)

Jet line momenta, on the other hand, approach a fraction of the corresponding ex-

ternal momentum according to

k
µ

j
⇠ xj p

µ + �j⌘
µ

p
+ k

µ

? , (2.2)

where ⌘
µ

p
is a lightlike vector moving opposite to p

µ, with ⌘
2
p

= 0, and where p · k? =

⌘p · k? = 0. The scalings for these jet line components are then

�j ⇠ � Q ,

k? ⇠ �
1/2

Q . (2.3)
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Factorization in momentum-space



Basic idea

G = ∫
∞

−∞
[dk]ℐ(k)

G = ∫C
[dk][ℐ(k) − ℐapprox(k)]

+∫
∞

−∞
[dk]ℐapprox(k)

Amplitude

Monte-Carlo Integration

Factorization / Analytic Integration 
or combination with reak-radiation  

approximations
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Nested subtractions at 2-
loops

• Order of subtractions:  
- double-soft 
- soft-collinear  
- double-collinear 
- single-soft 
- single-collinear 

• Approximations in singular regions 
do not need to be strict limits!  

• Good approximations should not 
introduce ultraviolet divergences 

• Good approximations should be 
easy to integrate exactly.  

14

of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),

�(n)
��
div n̂[⇢]

� t⇢�
(n)

��
divn̂[⇢]

=
Y

I

Z
d⌧ (I)

Z
dD�1z(I)

Z
d⌘(I)

Z
dD�1y(I) ⇥(n̂[⇢])

⇥
h
S(⇢)

{µI}(z
(I)) J (⇢)µI⌫I

I
(z(I), y(I)) H(⇢)

{⌫I}(y
(I))

� S(⇢)

{µI}(⌧
(I)) �µI

I
�̄I,µ

0
I

J
(⇢)µ

0
I⌫

0
I

I
(z(I), ⌘(I)) �̄I,⌫

0
I
�⌫I

I
H(⇢)

{⌫I}(y
(I))

i ���
div n̂[⇢]

= 0 , (28)

where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2

I
! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
P

�(n),

Ḡ(n) =
X

�(n)

2

4�
X

N2N [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) + R(n) �(n)

3

5 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(��) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find

Ḡ(n) =
X

�(n)

8
<

:tuv�(n) + (1 � tuv)

2

4�
X

N2NP [�(n)]

Y

⇢2N

�
� t⇢

�
�(n) + R(n)

P
�(n)

3

5

9
=

; , (31)
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FIG. 1. Displayed are the conventions for assigning propagators in a two-loop diagram.

of so-called adapted coordinates: the inverse propagator variables ⇢li, and the auxiliary

variables ↵li and µi
l. The variables µi

l are dependent and fixed by (II.15). The vectors ni

form an orthogonal basis transverse to the scattering plane, i.e ni
·pj = 0. Labels in B✏ refer

to directions beyond four-dimensions and labels in Bct denote transverse directions within

four dimensions. For each strand l of the diagram we use a distinct basis of the scattering

plane, spanned by the vectors vil ,

vil = (Gl)
ijpj , with i, j 2 Bp

l [Bt
l , (II.16)

where (Gl)ij is the inverse of the Gram matrix,

(Gl)ij = pi · pj with i, j 2 Bp
l [Bt

l . (II.17)

The index set Bp
l labels the external momenta which leave the strand l. These momenta

are completed with other independent external momenta pi, with i 2 Bt
l , so as to span the

whole scattering plane. This parameterization follows the conventions of ref. [25], with the

caveat that the vectors spanning Bct are no longer normalized.

The inverse coordinate transformation is often useful and is given by

↵li = pi · `l , i 2 Bt
l , (II.18)

↵li = ni
· `l , i 2 Bct , (II.19)

⇢li = (`l � qli)
2 (II.20)

The on-shell variety is then defined by setting the propagator variables ⇢li to zero. In

D-dimensions the variables ↵li form an independent complete set of coordinates on the

13



Nested subtractions 
Feynman diagrams vs Feynman 

amplitudes



Example: N=4 superymmetric 
Yang-Mills theory at leading colour



Collinear singularities of one-
loop amplitude



Collinear factorization



Does the factorization structure 
present beyond one-loop



“Ward-identity”



Does factorization hold 
locally?

• It appeared so in one of the 
collinear limits 

• But we needed to choose 
properly the routing of the 
loop momenta. 

• But we have many collinear 
limits.  Does one momentum 
routing factorize all? 

• NO....



Possible solution
• Consider sums of copies of the amplitude integrand with diverse momentum 

routings. 

• Tune the routings so that the Ward identities can be applied to factorize all 
limits. 



Global vs local factorisation
• Amplitudes factorize into universal factors, Soft, 

Hard and Jet functions.  

• This can be shown globally, at the integral level, 
exploiting Ward identities and the ability to shift 
separately the momenta in the various singular 
contributions and apply Ward identities which 
factorize all singular limits.  

• Does this factorization hold at the integrand level, 
locally? 

• If so, we can exploit it to build universal 
subtractions for all processes. Leading to an 
automated numerical evaluation of multi-loop 
amplitudes.  

• Ward identities are local...but we are not allowed 
to shift the momenta.  

• Our substitute of shifts: SYMMETRIZATION and 
perhaps some “sectoring”



Application to amplitudes
• Consider the process for the 

production of a heavy 
colourless final-state from the 
scattering of a massless quark-
antiquark pair. 


• This encompasses a large set 
of processes (multi Z,W, photon 
production and combinations)


• Easy to verify at one-loop that 
a simple set of local 
counterterms exists for all 
these processes. 



Application to amplitudes

• Per tree-diagram, there is one 
1-loop diagram with a soft 
singularity. 


• The soft limit is (up to trivial 
factors), an one-loop scalar 
integral times a tree-diagram. 



Application to amplitudes

• Many graphs yield collinear 
divergences. 


• Summing over all such 
graphs, cancellations take 
place (“Ward”-identity)


• The net-result is factorization 
of the amplitude in the 
collinear limit in terms of a 
splitting-functions and a tree-
diagram.



Application to amplitudes
• We could find factorizing 

universal counterterms for the 2-
loop amplitude as well.  

• We employed 8 symmetrizations 
of the two-loop amplitude.  

• Tricky regions...collinear 
emissions from hard and self-
energy corrections in 
propagators adjacent to 
external legs 

• Could be dealt with a sectoring 
in the counterterms.



Summary/ prospects
• Factorization of infrared divergences has been instrumental for the foundations of 

QCD.  

• It is established at the integral level.  

• We are seeing that it can be made manifest at an inner level, the integrand of the 
amplitudes.  

• Can then be turned into a computational tool for complete numerical evaluations of 
amplitudes...removing soft and collinear singularities locally.  

• We have worked it out fully for scattering processes with colorless final states at the 
LHC.  

• Currrently, working out other issues pertinent to the numerical evaluation of the hard 
remainder, after infrared and ultraviolet subtractions.  

• If successful, we can automate the evaluation of 2 to 3 processes at NNLO in the 
midterm and processes at N3LO in the long term.


