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This STU-model was first encountered in the study of

equivalent compactifications of different string theories.

Sen, Vafa, 1995
Gregori, Kounnas, Petropoulos, 1999

In its type-Ill description the dilaton belongs to a hypermultiplet,
and therefore the N=2 vector multiplet moduli space does not
receive quantum corrections. The symmetry group of the model is
FQ(Q)S X FQ(Q)T X FO(Z)U! WhereFO(Q) C SL(Q,Z)

This model has a high degree of symmetry, and therefore one
may expect that important features of this model can be exactly

determined. As we shall see, this is indeed the case.
arXiv: 1907:04077

Furthermore the relation with the topological string partition
function can be studied in more detail based on a framework that

we have presented some time ago.
Cardoso, dW, Mahapatra, 2014



The classical moduli space is a product of a special-Kahler and
a quaternion-Kahler space:

 SL(2) SL(2)  SL(2)

SO(4, 4)
Muector = 552) * 50@2) * 50(2)

SO(4) x SO(4)

Mhyper —

The corresponding effective (supergravity) action for the vector
supermultiplets is based on the holomorphic homogeneous
function of degree 2, in order to have N=2 local supersymmetry,

Xt xX2Xx3
_ =0
where X°, X1, X2, X belong to four different N=2 vector multiplets.
The exact dualities involve 8 electric and magnetic charges and

constitutes the [['(2)]® subgroup of SL(2)q x SL(2)1 x SL(2)y-
EM duality

F(X) =

The special-Kahler coordinates are defined by

X!t - X? X3
=% T=-i%5 U=-i%5



To describe the coupling to the square of the Weyl tensor, we
deform the function to
XtX2Xx3

X0
The STU dualities (and triality!) should be preserved. This requirement
is very restrictive and will enable us to explicitly determine Q( X, A).

/ square of the Weyl tensor

F(X,A)=— +2iQ(X, A)

The actual requirement is that the 8-component ‘period vector’ (X I F 7)
transforms according to the (2,2,2) representation of the STU duality group.

This leads to the transformations equations for S-duality:
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Leads to:
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Cardoso, dW, Mahapatra, 2008

Local supersymmetry requires €2(X, A) to be homogeneous and

holomorphic:

A

Q(X,A)=A [7 In % + (S, T,U) + nz::l ((XO)Q)n Wt (S, T, U)

Note the presence of the (hecessary) logarithmic term, which
can be interpreted as a contribution from the GV term.

Gopakumar, Vafa, 1998 Denef, Moore, 2011
Dabholkar, Denef, Moore, Pioline, 2005  Sen, 2012
Dedushenko, Witten, 2015



Duality requires that w® (S, T,U) = w(S) + w(T) + w(U) with

w(S") = w(S) — 2v In Ag(S) w(8) = (647) "L In ¥ (S)
\ v = — (256m) "
moaular form Agrees with: Gregori, Kounnas, Petropoulos, 1999 !

Some higher-order contributions...
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Obviously, we are dealing with an infinite series. In principle this
evaluation will thus become more and more involved, but we
expect that, in principle, the effective Wilsonian action can be
determined to any given order in perturbation theory.

However, we find it more interesting at this stage to exploit the
connection with the corresponding topological string partition

function, by following the prescription that was outlined a few
years ago.

There is a subtle relation between the function F'( X, A) that
encodes the effective Wilsonian action and the topological string
partition function (which had been overlooked in the past).

Cardoso, dW, Mahapatra, 2014



Relation with the topological string partition function

As we have seen, the fields in the (Wilsonian) effective action
transform under duality in a way that depends non-trivially on
deformations. In the topological string partition function these fields
are related to different moduli associated with the underlying string

compactification, which are not affected by the deformations of the
effective action.

This is reminiscent to the phenomenon that one observes when
comparing invariances of a Lagrangian and its corresponding
Hamiltonian. These two quantities are related by a Legendre
transformation. For the Hamiltonian the invariance transformations
constitute a subgroup of the canoncial transformations. Likewise, the
effective action and the topological string partition function are
related by a Legendre transformation.

The Legendre transformation of F'(X, A) is the so-called Hesse potential
(known from real special geometry) which transforms as a real function
invariant under the dualities. The Hesse potential can be decomposed
into many different invariant functions,



H=HO +HD 4+ HPD ¢ (HP + 1 +he) + 1 +HY + 1+ HY
WW+H§+HW+HW+HW+H9+hQ”.

They are functions of the ‘canonical’ variables X! and for the STU-model
their duality transformations are the ones associated with the classical
function
xXtx2xs

X0

F(X) = —

The first function, Y (X, X) = —i [X1F(X) — X1 F1(X)], does not
depend on the deformation Q(X, A).

The second function HV (X, X) depends on Q(X, A). From now on it is
convenient to make the replacement (X, A) — Q(X, A) + Q(X, A), which
does not affect our previous analysis.

H (X, X ) can be written as an expansion in the deformation. It is the
only function that is harmonic in terms of the deformation (2(X’, A)!
This is characteristic for the topological string partition function.

Cardoso, dW, Mahapatra, 2014



These considerations have give rise to the following expression:
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Generally true for deformations whose duality variation is harmonic



Comment: The logarithmic term can at a later stage be replaced by a term
which is not holomorphic, but transforms in the same way under STU-duality,

In|A? = In|det Nrj|=2In|(S+ S)(T +T)(U + U)|

Hence we identify 7 () (S, T, U, \) with the topological string
partition function.
The first two terms in this expansion}:\
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which is indeed STU-duality invariant!
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Ow 27y

55 " 513 (non-holomorphic)

Duality covariant derivatives: Dgw =

Note: h(S,T, U, \) depends holomorphically on w and A, but not
on S, 1'and U, because the covariant derivative is not
holomorphic. This leads to a holomorphic anomaly equation,

Bershadsky, Cecotti, Ooguri, Vafa,, 1993

Oh 2\
= __DrhDyh
S — (s+ S "V

Equivalent to the the well-known holomorphic anomaly equation of the
topological string!



(Partial) resummation of h
When suppressing the functions w in the the topological string
partition function A (S, T, U, \), we use
2
(S + S)»

to write 1(S,T,U, \) as a power series in terms of a single complex
parameter ),

ho(A) =) an A" = —89°X = 329°A% + O(\?)
n=2

Dgnw - —

~ A
h )\ = _ _ _ Alim, Yau, Zhou, 201
wnere (S—l—S)(T—I—T)(U—I—U) im, Yau, Zhou, 2015
The holomorphic anomaly equation then yields
n—2
—(n—1)a, =—-8y(n—2)ap_1 +2 Z (r—1D(n—-—r—1)aan_,
r=2
N 2 N
which can be used to derive ()\ 8@) + (i — 47) A Oho +4~4%=0.
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Two solutions

~

corresponding to the two sheets of a Riemann surface.
Instead of working in a single sheet we may be working with a single
variable u on the Riemann surfaceso that

- 2_1
A= 1
167y
u+1 u—1
ho(u) = 2y(2 1 -—)
o(u) Y n 9 w1
with a logarithmic branchcut starting at © = —1 and a zero

coupling pointat © = 1.

However, this result is incomplete!



~ ~ A
Covariantize A — A = T§8 Dsw(S) Drw(T) Dyw(U)

and compare to the terns we have already obtained. It then follows
that there is yet an another invariant function that contributes:
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where

0w 1 /70w\?2
I9(8) =55 +3 (as) ’

83w 3 0%w &,u 1 ow
(3)
G 083 7852 85 (85) ’

84w 6 0w dw 3 /0°wWN\2 12 J%w /Ow\ 2 3 /0w
(4) bl hdihed 2 (2
IS) =551+ 393 (‘95_'_7(352) T2 952 (as) T35 (as)

are holomorphic invariants (can be expressed in terms of linear
combinations of products of Eisenstein series of 1'y(2).

Cardoso, Nampuri, Polini, 1903.07586

7(n) (S)

It is convenient to choose the basis functions (™) (S) = (D3 w)
sw)"

These terms have to be determined separately, again by imposing
the holomorphic anomaly equation!



For instance,

~

hi = Z(z;') (Z:&) [1"(S) + I™(T) + I"(U)]
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1/u pole



Conclusions

The results that have been obtained apply only to a special
STU-model, where duality symmetry is very restrictive and
simplifies the calculations.

When suppressing all the non-holomorphic corrections the
topological string partition function tends to the function that
encodes the effective action.

The results confirm the consistency of the conjectured relation
between the Wilsonian action and the topological string

The higher-order terms exhibit also poles at v = 1, whose
implications are not yet quite clear.

It is possible to take limits in which the real part of some of the
moduli are taken to infinity.

There have already been applications to BPS black holes
Cardoso, Nampuri, Polini, 1903.07586



