
Adler’s induced gravity
achieved through Scherk-Schwarz compactification

Balthazar de Vaulchier

CNRS and Ecole Polytechnique

September 12, 2019

Based on work done in collaboration with
Alex Kehagias and Hervé Partouche
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Introduction

Several ways to deal with gravity and quantum mechanics:

� Conservative approach is string theory

� Gravity can also be emergent

• Entropic forces [Jacobson, Verlinde]

• Adler’s induced gravity [Adler, Sakharov, Zee]

−→ already employed in the DGP model to induce 4D gravity
on a brane in 5D [Dvali, Gabadadze, Porrati, 2000]
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Adler’s induced gravity

� Consider a curved spacetime without dynamics

• gµν is in the action, not its derivatives

• The metric is a background field, not quantized

� Inject a massive field and integrate it out

−→ The effective action contains gravity
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� Integrate the massive fields out

eiSeff[g] =

∫
d{φ} eiS[{φ},g]

• Seff is a perturbative expansion:

Seff =

∫
d4x
√
−g
[ 1

16πGind

(
R− 2Λind

)]
+O(∂λgµν)4

� The little trick is to apply gµν(y) δ
δgµν(y) on both sides:

gµν(y)
δ

δgµν(y)

∫
d4x
√
−g
[ 1

16πGind

(
R− 2Λind

)]
=

∫
d{φ} eiS[{φ},g]gµν(y) δ

δgµν(y)S[{φ}, g]∫
d{φ} eiS[{φ},g]
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� Identifying the terms gives

− 1

2π

Λind

Gind
= 〈T (0)〉 (1)

1

16πGind
=
−i
96

∫
d4x x2

〈
T
(
T̃ (x)T̃ (0)

)〉
(2)

• T is the trace of the flat-space stress-energy tensor

• T̃ = T − 〈T 〉 is the variation around its background value

• T is the time-ordering operator
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Divergences in 4D

� Question: Is Gind finite?

• In 4D the calculation is divergent. For instance, a real scalar field
has a cosmological constant written as∫

dtd4k e−(k2+M2)t ∝
∫ ∞

0
dt t−2 e−M

2t

=⇒ UV divergent

� The solution is to use extra dimensions
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Kaluza-Klein tower

� [Antoniadis, Benakli, Quiros, 2001]

−→ Finite Higgs mass without supersymmetry

• An infinite tower of KK states gives a finite contribution to
the one-loop radiative correction

• The reason why it works lies in Poisson resummation:

e−M
2t −→

KK

∑
m

e−
m2

R2 t −→
Poisson

√
πR√
t

∑
m̃

e−
π2m̃2R2

t
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KK is not enough

� Without supersymmetry, there are two problems for the induced
gravity:

• The cosmological constant is infinite

• The mode m̃ = 0 is divergent for the gravitational constant

� Supersymmetry can fix it but it needs to be spontaneously
broken

=⇒ Scherk-Schwarz compactification
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Scherk-Schwarz mechanism

A Scherk-Schwarz mechanism is a KK dimensional reduction
together with a spontaneous symmetry breaking

• If there is a symmetry with charges Q in 4 + 1 dim, we may
impose Q-dependent boundary conditions

Φ(xµ, x4 + 2πR4) = e2iπQΦ(xµ, x4)

=⇒ Φ(xµ, x4) =
∑
m4

Φm4(xµ) e
i
m4+Q
R4

x4

=⇒ M2 =
(m4 +Q

R4

)2

• If Q = F
2 (F is the fermion number) then supersymmetry is broken

−→ m3/2 = 1
2R4
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Summary of the calculation

� Consider n compactified circles of radii Ri

� Impose ~Q-dependent boundary conditions

• ~Q is non-zero for all fields because we want to integrate them out
(no massless mode)

• Qj is different for bosons and fermions (QF − QB = 1/2)

� Calculate the contribution of a real scalar field φ, a vector field
Aµ and a Weyl fermion ψ

� Choose a field content such that the supersymmetric theory (when
QB = QF ) yields

Λind

∣∣
susy = 0 and

1

Gind

∣∣
susy = 0
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Real scalar field

T
∣∣
φ

= −
∑
m

[
∂µφm∂

µφm + 2M2
mφ

2
m

]
� The induced constants are

− 1

2π

Λ

G

∣∣∣
φ

= i
∑
m

δ(0)−
2Γ
(
2 + n

2

)
π4+n

2

∑
m̃

∏
Ri(

m̃2
iR

2
i

)2+n
2

e2iπQB ·m̃

1

16πG

∣∣∣
φ

=
28

3
C(n)

∑
m̃

∏
Ri(

m̃2
iR

2
i

)1+n
2

e2iπQB ·m̃

• The δ-function is an infinite constant that will disappear when
supersymmetry is introduced

• C(n) is a strictly positive number defined for n ≥ 2 (n is the
number of compactified dimensions)

• As explained earlier, the sum is divergent because of the mode
m̃ = 0

11 / 15



Vector field

T
∣∣
Aµ

= −
∑
m

M2
mAm,µA

µ
m

� The induced constants are

− 1

2π

Λ

G

∣∣∣
Aµ

= i
∑
m

δ(0)−
3× 2Γ

(
2 + n

2

)
π4+n

2

∑
m̃

∏
Ri(

m̃2
iR

2
i

)2+n
2

e2iπQB ·m̃

1

16πG

∣∣∣
Aµ

= 4C(n)
∑
m̃

∏
Ri(

m̃2
iR

2
i

)1+n
2

e2iπQB ·m̃

• The propagators are taken in the unitarity gauge in order to
eliminate the ghosts

• The vector field counts as three bosonic degrees of freedom
for the cosmological constant (apart from the irrelevant constant)
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Weyl fermion

T
∣∣
ψ

=
∑
m

[3i

2
∂µψ̄mσ̄

µψm − 2Mmψ
2
m + c.c.

]
� The induced constants are

− 1

2π

Λ

G

∣∣∣
ψ

= −6i
∑
m

δ(0)−
(−2)× 2Γ

(
2 + n

2

)
π4+n

2

∑
m̃

∏
Ri(

m̃2
iR

2
i

)2+n
2

e2iπQF ·m̃

1

16πG

∣∣∣
ψ

= − 32

3
C(n)

∑
m̃

∏
Ri(

m̃2
iR

2
i

)1+n
2

e2iπQF ·m̃

• The Weyl fermion is twice the opposite of a real scalar field for
the cosmological constant

• It gives a negative contribution to the gravitational constant
=⇒ hope for cancellation in susy regime
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Spectrum

� The conditions are

Λind

∣∣
susy = 0 =⇒ nφ + 3nA = 2nψ

1

Gind

∣∣
susy = 0 =⇒ 28nφ + 12nA = 32nψ

• The solution is (nφ, nψ, nA) = (3, 3, 1)k ∈ N −→ for example, one
chiral multiplet and one massive vector multiplet are good
enough

� After breaking of supersymmetry, the induced constants read

− 1

2π

Λ

G
= − nψ

4Γ
(
2 + n

2

)
π4+n

2

∑
m̃

∏
Ri(

m̃2
iR

2
i

)2+n
2

e2iπQB ·m̃
(
1− (−1)m̃j

)
1

16πG
= nψ

32

3
C(n)

∑
m̃

∏
Ri(

m̃2
iR

2
i

)1+n
2

e2iπQB ·m̃
(
1− (−1)m̃j

)
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Discussion

� We found a class of models such that the induced constants are
convergent −→ it requires extra dimensions and susy breaking

� Why n ≥ 2? It could be an artefact caused by the perturbative
expansion.

� Is it valid for all higher derivative terms?

� Is it valid when interactions are introduced?

• Higher loops will appear =⇒ is it convergent even at order R
(Ricci scalar)?
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