Natural Alignment & Quartic Coupling Unification in multi-Higgs Doublet Models

Apostolos Pilaftsis

Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

Corfu, $E\lambda\lambda\alpha\varsigma$, 6 September 2019

Based on: • P.S.B. Dev, AP, JHEP1412 (2014) 024

- AP, PRD93 (2016) 075012
- N. Darvishi, AP, PRD99 (2019) 115014

Outline:

- Brief history of symmetries for natural SM alignment
- SM alignment in the 2HDM and beyond
- Quartic coupling unification in the 2HDM
- Phenomenological implications at the LHC
- Conclusions

• Brief history of symmetries for natural SM alignment

- Flavour unitarity of the CKM mixing matrix [Gell-Mann, Levy '60; Cabbibo '63; Kobayashi, Maskawa '73]
- GIM mechanism to explain the smallness of the strangeness-changing interaction at the quantum level (requires the existence of the *c*-quark) [Glashow, Iliopoulos, Maiani '70]
- Conditions for diagonal neutral currents in Z-boson interactions to quarks [Paschos '77]
- Natural diagonal neutral currents in Z- & multi-Higgs-boson interactions [Glashow, Weinberg '77]
- Renormalizable models with partial flavour non-conservation at tree level (GIM suppressed).
 [Branco, Grimus, Lavoura '96]
- Yukawa alignment in the 2HDM broken by RG effects (no global symmetry protected)
 [Pich, Tuzon '09]
- Natural SM alignment of New Physics

• SM Alignment in the 2HDM and beyond

• 2HDM potential

[T. D. Lee '73; Review: G. C. Branco et al '12.]

$$\begin{split} \mathcal{V} &= -\mu_{1}^{2}(\phi_{1}^{\dagger}\phi_{1}) - \mu_{2}^{2}(\phi_{2}^{\dagger}\phi_{2}) - m_{12}^{2}(\phi_{1}^{\dagger}\phi_{2}) - m_{12}^{*2}(\phi_{2}^{\dagger}\phi_{1}) \\ &+ \lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1}) \\ &+ \frac{\lambda_{5}}{2}(\phi_{1}^{\dagger}\phi_{2})^{2} + \frac{\lambda_{5}^{*}}{2}(\phi_{2}^{\dagger}\phi_{1})^{2} + \lambda_{6}(\phi_{1}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{6}^{*}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{1}) \\ &+ \lambda_{7}(\phi_{2}^{\dagger}\phi_{2})(\phi_{1}^{\dagger}\phi_{2}) + \lambda_{7}^{*}(\phi_{2}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1}) \,. \end{split}$$

• Physical (CP-conserving) spectrum:

CP-even Higgs bosons H and h; CP-odd scalar a; charged scalars h^{\pm} .

• Higgs coupling to gauge bosons V = W, Z:

$$g_{HVV} = \cos(\beta - \alpha), \qquad g_{hVV} = \sin(\beta - \alpha),$$

where $\tan\beta = \langle \phi_2 \rangle / \langle \phi_1 \rangle$ and α diagonalizes the CP-even mass matrix.

• Global fit to SM mis-alignment

[e.g. D. Chowdhury, O. Eberhardt, JHEP11 (2015) 052.]

Pheno favoured limit $\beta \to \alpha$: $g_{HVV} = \cos(\beta - \alpha) \to g_{H_{SM}VV} = 1$.

• SM Alignment $\beta \rightarrow \alpha$:

- (i) Decoupling: [Georgi, Nanopoulos '79; Gunion, Haber '03; Ginzburg, Krawczyk '05] $M_h^2 \simeq M_a^2 + \lambda_5 v^2 \simeq M_{h^{\pm}}^2 \gg v_{SM}^2$ $M_H^2 \simeq 2\lambda_{SM}v^2 - \frac{v^4 s_\beta^2 c_\beta^2}{M_a^2 + \lambda_5 v^2} \left[s_\beta^2 \left(2\lambda_2 - \lambda_{345} \right) - c_\beta^2 \left(2\lambda_1 - \lambda_{345} \right) + \dots \right]^2$
- (ii) Fine-tuning: [Krawczyk et al. '99; Carena, Low, Shah, Wagner '14; Dev, AP '14] $\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0$
- (iii) Natural SM alignment (independent of $M_{h^{\pm}}$ and t_{β}): [Dev, AP '14] $\lambda_1 = \lambda_2 = \frac{\lambda_{345}}{2}$ (with $\lambda_{345} \equiv \lambda_3 + \lambda_4 + \lambda_5$), $\lambda_6 = \lambda_7 = 0$ • Sp(4): $\lambda_4 = \lambda_5 = 0 \rightarrow \lambda_{345} = \lambda_3$ • SU(2): $\lambda_5 = 0 \rightarrow \lambda_{345} = \lambda_{34} \equiv \lambda_3 + \lambda_4$ • SO(2)×CP: $\lambda_{3,4,5} \neq 0$

• Maximally Symmetric Two Higgs Doublet Model [P.S.B. Dev, AP '14] $G_{\Phi} = SU(2)_L \otimes Sp(4)/Z_2 \simeq SU(2)_L \otimes SO(5).$ $V = -\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2 \right) + \lambda \left(|\Phi_1|^2 + |\Phi_2|^2 \right)^2 = -\frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} \left(\Phi^{\dagger} \Phi \right)^2,$ where [R. A. Battye, G. D. Brawn, AP, JHEP1108 (2011) 020.] $oldsymbol{\Phi} \ = \left(egin{array}{c} \phi_1 \ \phi_2 \ i\sigma^2 \phi_1^* \ i\sigma^2 \phi_2^* \end{array} ight) \,, \hspace{1em} ext{with} \hspace{1em} U_L \in \hspace{1em} ext{SU}(2)_L: \hspace{1em} oldsymbol{\Phi} \ \mapsto \hspace{1em} oldsymbol{\Phi}' \ = \hspace{1em} U_L \hspace{1em} oldsymbol{\Phi} \ ,$

such that under global field transformations, [AP, Phys. Lett. B706 (2012) 465.] Sp(4): $\Phi \mapsto \Phi' = U \Phi$, with $U \in U(4)$ & $UCU^{T} = C \equiv i\sigma^{2} \otimes \sigma^{0}$ SU(2)_L gauge kinetic terms remain invariant.

Breaking Effects: $-m_{12}^2 \phi_1^{\dagger} \phi_2$, U(1)_Y coupling g', Yukawa couplings $\mathbf{Y}^{u,d}$.

References (an incomplete list on SM Alignment in the 2HDM)

• On the SM Higgs basis (also Decoupling of FCNC Effects): H. Georgi and D. V. Nanopoulos, Phys. Lett. B82 (1979) 95.

• Alignment via Decoupling:

- J. F. Gunion, H. E. Haber, Phys. Rev. D67 (2003) 075019.
- I. F. Ginzburg, M. Krawczyk, Phys. Rev. D72 (2005) 115013.

• Alignment via Fine-tuning:

- P. H. Chankowski, T. Farris, B. Grzadkowski, J. F. Gunion, J. Kalinowski, M. Krawczyk, Phys. Lett. B496 (2000) 195.
- A. Delgado, G. Nardini, M. Quiros, JHEP1307 (2013) 054.
- M. Carena, I. Low, N. R. Shah, C. E. M. Wagner, JHEP1404 (2014) 015.
- Natural Alignment without Decoupling and without Fine-tuning:
 - P.S.B. Dev, AP, JHEP1412 (2014) 024.
 - B. Grzadkowski, O. M. Ogreid, P. Osland, Phys. Rev. D94 (2016) 115002.

References (an incomplete list on symmetries in the 2HDM)

- Spontaneous CP Violation: T. D. Lee, Phys. Rev. D8 (1973) 1226.
- Z₂ symmetry: S. L. Glashow, S. Weinberg, Phys. Rev. D15 (1977) 1958.
- Inert Z₂ symmetry: N. G. Deshpande, E. Ma, Phys. Rev. D18 (1978) 2574.
- PQ U(1) symmetry: R. D. Peccei, H. R. Quinn, Phys. Rev. Lett. 38 (1977) 1440.
- Custodial SU(2)_L-preserving symmetry:
 P. Sikivie, L. Susskind, M. B. Voloshin, V. I. Zakharov, Nucl. Phys. B173 (1980) 189.
- Bilinear formalism:
 M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, EPJC48 (2006) 805;
 C. C. Nishi, Phys. Rev. D74 (2006) 036003.
- SU(2)_L⊗U(1)_Y-preserving symmetries: <u>6</u>
 I. P. Ivanov, Phys. Rev. D75 (2007) 035001;
 P. M. Ferreira, H. E. Haber, J. P. Silva, Phys. Rev. D79 (2009) 116004.
- Hypercustodial SU(2)_L-preserving symmetries: <u>13</u> R. A. Battye, G. D. Brawn, AP, JHEP1108 (2011) 020.
- On completeness and uniqueness of classification: AP, Phys. Lett. B706 (2012) 465.

• Natural Alignment Beyond the 2HDM

For *n*HDM with m < n inert scalar doublets, there are still <u>3</u> continuous alignment symmetries in the **field space of the** *non*-inert sector:

(i)
$$\operatorname{Sp}(2N_H) \times \mathcal{D}$$
; (ii) $\operatorname{SU}(N_H) \times \mathcal{D}$; (iii) $\operatorname{SO}(N_H) \times \mathcal{CP} \times \mathcal{D}$,

where $N_H = n - m$, \mathcal{D} acts on the inert sector *only*, and \mathcal{CP} is the canonical CP: $\Phi_i(t, \mathbf{x}) \to \Phi_i^*(t, -\mathbf{x})$ (with $i = 1, 2, ..., N_H$).

Symmetry invariants:

(i)
$$S = \Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 + \ldots = \frac{1}{2} \Phi^{\dagger} \Phi$$

(ii) $D^a = \Phi_1^{\dagger} \sigma^a \Phi_1 + \Phi_2^{\dagger} \sigma^a \Phi_2 + \ldots$
(iii) $T = \Phi_1 \Phi_1^{\mathsf{T}} + \Phi_2 \Phi_2^{\mathsf{T}} + \ldots$

Symmetric part of the scalar potential:

$$V_{\text{sym}} = -\mu^2 S + \lambda_S S^2 + \lambda_D D^a D^a + \lambda_T \operatorname{Tr} (T T^*) .$$

Minimal Symmetry of Alignment: $Z_2^{EW} \times Z_2^{I}$.

CORFU 2019

• Quartic coupling unification in the MS-2HDM

[Dev, AP '14; N. Darvishi, AP '19]

Symmetry-breaking of $Sp(4)/Z_2 \sim SO(5)$:

• Soft breaking (e.g. through m_{12}^2):

$$M_{H}^{2} = 2\lambda_{2}v^{2}, \qquad M_{h}^{2} = M_{a}^{2} = M_{h^{\pm}}^{2} = \frac{\operatorname{Re}(m_{12}^{2})}{s_{\beta}c_{\beta}}$$

Heavy Higgs spectrum is degenerate at tree level.

• Explicit breaking through RG running (two loops):

$$\begin{array}{rcl} \operatorname{Sp}(4)/\operatorname{Z}_{2}\otimes\operatorname{SU}(2)_{L} & \xrightarrow{g'\neq 0} & \operatorname{SU}(2)_{\operatorname{HF}}\otimes\operatorname{U}(1)_{Y}\otimes\operatorname{SU}(2)_{L} \\ & \xrightarrow{\mathbf{Y}^{u,d}} & \operatorname{U}(1)_{\operatorname{PQ}}\otimes\operatorname{U}(1)_{Y}\otimes\operatorname{SU}(2)_{L} \\ & \xrightarrow{m_{12}^{2}} & \operatorname{U}(1)_{\operatorname{em}} \end{array}$$

• Quartic Coupling Unification (two loops)

First conformal unification point: $\mu_X^{(1)} \sim 10^{11}$ GeV (of order PQ scale)

Second conformal unification point: $\mu_X^{(2)} \sim 10^{18}$ GeV (of order $m_{\rm Pl}$) [N. Darvishi, AP '19]

Natural Alignment & Quartic Coupling Unification

A closer look at the RG evolution of λ_2

Natural Alignment & Quartic Coupling Unification

Low- and high-scale quartic coupling unification: aneta vs $\mu_X^{(1,2)}$

• Misalignment in the MS-2HDM

CP-even mass matrix in Higgs basis:

$$\mathcal{M}_{\mathcal{S}}^2 = \begin{pmatrix} \widehat{A} & \widehat{C} \\ \widehat{C} & \widehat{B} \end{pmatrix} \xrightarrow{\text{seesaw}} M_H^2 \simeq \widehat{A} - \frac{\widehat{C}^2}{\widehat{B}} \& M_h^2 \simeq \widehat{B} \gg \widehat{A}, \ \widehat{C}$$

Light-to-heavy scalar mixing:

$$\theta_{\mathcal{S}} \equiv \frac{\widehat{C}}{\widehat{B}} = \frac{v^2 s_\beta c_\beta \left[s_\beta^2 \left(2\lambda_2 - \lambda_{34} \right) - c_\beta^2 \left(2\lambda_1 - \lambda_{34} \right) \right]}{M_a^2 + 2v^2 s_\beta^2 c_\beta^2 \left(\lambda_1 + \lambda_2 - \lambda_{34} \right)} \ll 1$$

Higgs couplings to V = W, Z:

$$g_{HVV} \simeq 1 - \frac{1}{2} \theta_{\mathcal{S}}^2, \qquad g_{hVV} \simeq -\theta_{\mathcal{S}}$$

Higgs couplings to quarks:

$$g_{Huu} \simeq 1 + t_{\beta}^{-1} \theta_{\mathcal{S}}, \qquad g_{Hdd} \simeq 1 - \theta_{\mathcal{S}} t_{\beta},$$
$$g_{huu} \simeq -\theta_{\mathcal{S}} + t_{\beta}^{-1}, \qquad g_{hdd} \simeq -\theta_{\mathcal{S}} - t_{\beta}.$$

Predictions for Higgs-boson couplings to V = W, Z and b-quarks

Misalignment predictions in the MS-2HDM with low- and high-scale quartic coupling unification, assuming $M_{h^{\pm}} = 500 \,\text{GeV}$.

[N. Darvishi, AP '19]

Couplings	ATLAS	CMS	aneta=2	aneta=20	aneta=50
$ g_{HZZ}^{low-scale} $	[0.86, 1.00]	[0.90, 1.00]	0.9999	0.9999	0.9999
$ g_{HZZ}^{high ext{-scale}} $			0.9981	0.9999	0.9999
$ g_{Htt}^{low-scale} $	$1.31\substack{+0.35 \\ -0.33}$	$1.45 \substack{+0.42 \\ -0.32}$	1.0049	1.0001	1.0000
$ g _{Htt}^{high ext{-scale}} $			1.0987	1.0003	1.0001
$ g_{Hbb}^{low-scale} $	$0.49 \substack{+0.26 \\ -0.19}$	$0.57\substack{+0.16 \\ -0.16}$	0.9803	0.9560	0.9590
$ g_{Hbb}^{high-scale} $			0.8810	0.9449	0.9427

 \rightarrow Misalignment predictions consistent with experiment

Natural Alignment & Quartic Coupling Unification

• Phenomenological implications at the LHC

Discovery channels for aligned Higgs doublets:

[Dev, AP '14]

Natural Alignment & Quartic Coupling Unification

• $gg \to t\bar{t}(\mathbf{h}, \mathbf{a}) \to t\bar{t}t\bar{t}$

[Dev, AP '14]

Natural Alignment & Quartic Coupling Unification

Realistic simulation analysis with a reconstruction BDT

[Emily Hanson, W. Klemm, R. Naranjo, Yvonne Peters, AP, PRD100 (2019) 035026]

Natural Alignment & Quartic Coupling Unification

Reconstruction BDT trained on 57 observables:

- $\Delta R(b_i, l^a)$, $\Delta \eta(b_i, l^a)$, $\Delta \phi(b_i, l^a)$, $p_T^{b_i + l^a}$, $m(b_i, l^a)$, where i = tH, t and a = +, -
- $|m(l^+, b_{tH}) m(l^-, b_t)|$ and $|m(l^-, b_{tH}) m(l^+, b_t)|$
- $p_T^{b_j}$, where j = tH, H, t
- $\Delta R(b_{tH}, b_k)$, $\Delta \eta(b_{tH}, b_k)$, $\Delta \phi(b_{tH}, b_k)$, $p_T^{b_{tH}+b_k}$, $m(b_{tH}, b_k)$, where k = H, t
- $\Delta R(t_{H^a}, b_H)$, $\Delta \eta(t_{H^a}, b_H)$, $\Delta \phi(t_{H^a}, b_H)$, $p_T^{t_{H^a}, b_H}$, $m(t_{H^a}, b_H)$, where a = +, -
- $\Delta R(t_{H^a}, t_c)$, $\Delta \eta(t_{H^a}, t_c)$, $\Delta \phi(t_{H^a}, t_c)$, where $(H^a, t_c) = (H^+, \bar{t})$ or (H^-, t)

•
$$m(H^a) - m(b_H)$$
, where $a = +, -$

• $m(H^+) - m(\bar{t})$ and $m(H^-) - m(t)$

•
$$p_T^{H^{\pm}+t_{\text{other}}}$$

• $m(H^{\pm}, t_{\text{other}})$

Results

• Conclusions

• Symmetries for natural alignment *without* decoupling in multi-HDMs:

(i) $\operatorname{Sp}(2N_H)$ (ii) $\operatorname{SU}(N_H)$ (iii) $\operatorname{SO}(N_H) \times \mathcal{CP}$

 $N_H > 1$: number of EWSB Higgs doublets

- Soft breaking \longrightarrow minimal alignment symmetry: $Z_2^{EW} \times Z_2^{I}$ \rightarrow Naturally aligned heavy Higgs sector is Z_2^{EW} odd.
- Quartic coupling unification for maximally symmetric nHDMs: $G_{\Phi} = SU(2)_L \otimes Sp(2n)/Z_2$ (here n = 2). INPUT: $M_{h^{\pm}} \& \tan \beta \rightarrow \mu_X^{(1)} \sim 10^{11} \text{ GeV } \& \mu_X^{(2)} \sim 10^{19} \text{ GeV}.$
- Two-loop RG effects give rise to definite misalignment predictions for all *H*-couplings to SM particles in terms of $M_{h^{\pm}} \& \tan \beta$.

• Probing new aligned Higgs doublets via the production channels: (a) $gg \to t\bar{b}h^- \to t\bar{b}\bar{t}b$ (b) $gg \to t\bar{t}(h, a) \to t\bar{t}t\bar{t}$

More experimental analyses needed

Back-Up Slides

• Symmetries of the 2HDM Potential

[R. A. Battye, G. D. Brawn, AP, JHEP1108 (2011) 020.]

Introduce the $SU(2)_L$ -covariant 8D complex field multiplet

$$oldsymbol{\Phi} \ = \ egin{pmatrix} \phi_1 \ \phi_2 \ i\sigma^2\phi_1^st \ i\sigma^2\phi_2^st \ i\sigma^2\phi_2^st \end{pmatrix} \,, \quad ext{with} \ \ U_L \in \ \mathsf{SU}(2)_L: \ oldsymbol{\Phi} \ \mapsto \ oldsymbol{\Phi}' \ = \ U_L \,oldsymbol{\Phi} \ .$$

 Φ satisfies the Majorana constraint

$$\Phi \ = \ \mathsf{C}\,\Phi^* \ ,$$

where C is the charge conjugation 8D matrix

$$\mathsf{C} = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = \begin{pmatrix} \mathbf{0}_4 & \mathbf{1}_4 \\ -\mathbf{1}_4 & \mathbf{0}_4 \end{pmatrix} \otimes (-i\sigma_2) .$$

• The SO(1,5) Bilinear Formalism

Introduce the *null* 6-Vector

$$\mathbf{R}^{\mathbf{A}} = \mathbf{\Phi}^{\dagger} \Sigma^{\mathbf{A}} \mathbf{\Phi} = \begin{pmatrix} \phi_{1}^{\dagger} \phi_{1} + \phi_{2}^{\dagger} \phi_{2} \\ \phi_{1}^{\dagger} \phi_{2} + \phi_{2}^{\dagger} \phi_{1} \\ -i \left[\phi_{1}^{\dagger} \phi_{2} - \phi_{2}^{\dagger} \phi_{1} \right] \\ \phi_{1}^{\dagger} \phi_{1} - \phi_{2}^{\dagger} \phi_{2} \\ \phi_{1}^{\dagger} i \sigma^{2} \phi_{2} - \phi_{2}^{\dagger} i \sigma^{2} \phi_{1}^{*} \\ -i \left[\phi_{1}^{\mathsf{T}} i \sigma^{2} \phi_{2} + \phi_{2}^{\dagger} i \sigma^{2} \phi_{1}^{*} \right] \end{pmatrix},$$

with $A = \mu, 4, 5$ and

$$\Sigma^{\mu} = \frac{1}{2} \begin{pmatrix} \sigma^{\mu} & \mathbf{0}_{2} \\ \mathbf{0}_{2} & (\sigma^{\mu})^{\mathsf{T}} \end{pmatrix} \otimes \sigma^{0} ,$$

$$\Sigma^{4} = \frac{1}{2} \begin{pmatrix} \mathbf{0}_{2} & i\sigma^{2} \\ -i\sigma^{2} & \mathbf{0}_{2} \end{pmatrix} \otimes \sigma^{0} , \qquad \Sigma^{5} = \frac{1}{2} \begin{pmatrix} \mathbf{0}_{2} & -\sigma^{2} \\ -\sigma^{2} & \mathbf{0}_{2} \end{pmatrix} \otimes \sigma^{0} .$$

Natural Alignment & Quartic Coupling Unification

A. Pilaftsis

• The 2HDM Potential in the SO(1,5) Formalism

$$V = -\frac{1}{2} M_A R^A + \frac{1}{4} L_{AB} R^A R^B ,$$

with

$$M_A = \left(\mu_1^2 + \mu_2^2, 2 \operatorname{Re}(m_{12}^2), -2 \operatorname{Im}(m_{12}^2), \mu_1^2 - \mu_2^2, 0, 0 \right),$$

$$L_{AB} = \begin{pmatrix} \lambda_1 + \lambda_2 + \lambda_3 & \operatorname{Re}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_6 + \lambda_7) & \lambda_1 - \lambda_2 & 0 & 0 \\ \operatorname{Re}(\lambda_6 + \lambda_7) & \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & \operatorname{Re}(\lambda_6 - \lambda_7) & 0 & 0 \\ -\operatorname{Im}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_6 - \lambda_7) & 0 & 0 \\ \lambda_1 - \lambda_2 & \operatorname{Re}(\lambda_6 - \lambda_7) & -\operatorname{Im}(\lambda_6 - \lambda_7) & \lambda_1 + \lambda_2 - \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \,.$$

• The 2HDM Potential in the SO(1,5) Formalism

$$V = -\frac{1}{2} M_A R^A + \frac{1}{4} L_{AB} R^A R^B ,$$

with

$$M_{A} = \left(\mu_{1}^{2} + \mu_{2}^{2}, 2 \operatorname{Re}(m_{12}^{2}), -2 \operatorname{Im}(m_{12}^{2}), \mu_{1}^{2} - \mu_{2}^{2}, 0, 0 \right),$$

$$L_{AB} = \begin{pmatrix} \lambda_1 + \lambda_2 + \lambda_3 & \operatorname{Re}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_6 + \lambda_7) & \lambda_1 - \lambda_2 & 0 & 0 \\ \operatorname{Re}(\lambda_6 + \lambda_7) & \lambda_4 + \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_5) & \operatorname{Re}(\lambda_6 - \lambda_7) & 0 & 0 \\ -\operatorname{Im}(\lambda_6 + \lambda_7) & -\operatorname{Im}(\lambda_5) & \lambda_4 - \operatorname{Re}(\lambda_5) & -\operatorname{Im}(\lambda_6 - \lambda_7) & 0 & 0 \\ \lambda_1 - \lambda_2 & \operatorname{Re}(\lambda_6 - \lambda_7) & -\operatorname{Im}(\lambda_6 - \lambda_7) & \lambda_1 + \lambda_2 - \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• Unitary Field Transformations:

[AP, Phys. Lett. B706 (2012) 465.]

$$\begin{array}{rcl} \mathsf{Sp}(4): & \Phi \mapsto \Phi' = U \Phi, & \text{with} & U \in \mathsf{U}(4) & \underline{\mathsf{and}} & U \mathsf{C} U^\mathsf{T} = \mathsf{C} \\ \mathsf{SO}(5): & \mathsf{R}^\mathsf{I} \mapsto \mathsf{R}'^\mathsf{I} = \mathsf{O}^\mathsf{I}_\mathsf{J} \mathsf{R}^\mathsf{J}, & \text{with} & \mathsf{O} \in \mathsf{SO}(5) \subset \mathsf{SO}(1,5) \\ & \implies & \mathsf{SO}(5) \sim \mathsf{Sp}(4)/\mathbf{Z}_2 \end{array}$$

• Symmetries of the U(1) _Y-Invariant 2HDM Potential

SO(5)-diagonally reduced basis: Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$.

The 2HDM potential exhibits a **total** of $\underline{13}$ accidental symmetries:

Symmetry	μ_1^2	μ_2^2	m_{12}^{2}	λ_1	λ_2	λ_3	λ_4	${\sf Re}\lambda_5$	$\lambda_6 = \lambda_7$
$(\mathbf{Z}_2)^2 \times \mathrm{SO}(2)$	_	_	0	_	_	_	_	_	0
$O(2) \times O(2)$	_	_	0	_	_	_	_	0	0
$\checkmark \mathbf{O(3)} imes \mathbf{O(2)}$	_	μ_1^2	0	—	λ_1	—	$2\lambda_1 - \lambda_3$	0	0
$Z_2 imes O(2)$	-	—	Real	—	—	—	_	_	Real
$(\mathbf{Z}_2)^3 \times \mathrm{O}(2)$	-	μ_1^2	0	_	λ_1	_	_	_	0
$\checkmark \ \mathbf{Z}_2 \times [\mathbf{O}(2)]^2$	_	μ_1^2	0	_	λ_1	_	_	$2\lambda_1 - \lambda_{34}$	0
√ SO(5)	_	μ_1^2	0	_	λ_1	$2\lambda_1$	0	0	0
$Z_2 imes O(4)$	-	μ_1^2	0	_	λ_1	_	0	0	0
SO(4)	_	—	0	—	—	_	0	0	0
$O(2) \times O(3)$	-	μ_1^2	0	_	λ_1	$2\lambda_1$	_	0	0
$(\mathbf{Z}_2)^2 \times \mathrm{SO}(3)$	_	μ_1^2	0	—	λ_1	—	_	$\pm\lambda_4$	0
$Z_2 \times O(3)$	_	μ_1^2	Real	_	λ_1	_	_	λ_4	Real
SO(3)	_	_	Real	_	_	_	_	λ_4	Real

✓: Natural SM Alignment

[Dev, AP, JHEP1412 (2014) 024.]

Natural Alignment & Quartic Coupling Unification

 \mapsto

• Symmetry Breaking Scenarios and pseudo-Goldstone Bosons

[AP, Phys. Lett. B706 (2012) 465.]

No	Symmetry	$\begin{array}{c} \text{Generators} \\ T^a \leftrightarrow K^a \end{array}$	Discrete Group Elements	Maximally Broken SO(5) Generators	Number of Pseudo Goldstone Bosons
1	$Z_2 \times O(2)$	T^0	D _{CP1}	_	0
2	$(\mathbf{Z}_2)^2 \times \mathrm{SO}(2)$	T^0	D_{Z_2}	-	0
3	$(\mathbf{Z}_2)^3 \times \mathrm{O}(2)$	T^0	D _{CP2}	_	0
4	$O(2) \times O(2)$	T^3, T^0	_	T^3	1 (a)
√ 5	$Z_2 \times [O(2)]^2$	T^2, T^0	D _{CP1}	T^2	1 (h)
√ 6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	_	$T^{1,2}$	2 (h, a)
7	SO(3)	$T^{0,4,6}$	_	$T^{4,6}$	2 (h^{\pm})
8	$Z_2 \times O(3)$	$T^{0,4,6}$	$D_{Z_2}\cdot D_{CP2}$	$T^{4,6}$	2 (h^{\pm})
9	$(\mathbf{Z}_2)^2 \times \mathrm{SO}(3)$	$T^{0,5,7}$	$D_{CP1} \cdot D_{CP2}$	$T^{5,7}$	2 (h^{\pm})
10	$O(2) \times O(3)$	$T^3, T^{0,8,9}$	_	T^3	1 (a)
11	SO(4)	$T^{0,3,4,5,6,7}$	_	$T^{3,5,7}$	3 (a, h^{\pm})
12	$Z_2 \times O(4)$	$T^{0,3,4,5,6,7}$	$D_{Z_2}\cdotD_{CP2}$	$T^{3,5,7}$	3 (a, h^{\pm})
√ 13	SO(5)	$T^{0,1,2,,9}$	_	$T^{1,2,8,9}$	4 (h, a, h^{\pm})

 \checkmark : Natural SM Alignment \mapsto

[Dev, AP, JHEP1412 (2014) 024.]

Natural Alignment & Quartic Coupling Unification