Post-inflationary particle production: Sterile Neutrino with Secret Interactions

Anish Ghoshal

Laboratorie Nazionale Frascati - INFN University Roma Tre

anishghoshal1@gmail.com

September, 2019 Corfu

Based on - A. Paul, A. Ghoshal, A. Chatterjee and S. Pal, arXiv:1808.09706 [astro-ph.CO] ¹

Outline of talk:

Preheating

- Analytic Understanding
- Effect of Self Interaction term
- Numerical Simulations (LATTICEEASY)

Scenario: Sterile Neutrinos

- · Neutrino Anomalies and introducing Sterile Neutrinos
- · Effects of neutrinos in cosmology
- · Secret Interaction with Pseudoscalar
- · Production from Preheating and constraints
- Conclusion

Pointer: A general problem for all cosmology models which predict light bosonic degrees of freedom with negligible initial abundance - Sterile nu, light DM, asymmetric DM, non-standard neutrino interaction, leptogenesis models, etc. Enhanced production from inflationary reheating.

What is Preheating?

Inflation:

- Accelerated expansion of universe at the beginning to solve Horizon problem, Flatness problem, give initial seed fluctuation to explain structure formation
- Driven generally by energy density stored in a Scalar field, Inflaton

• Dynamics of Inflaton after Inflation:

- · After slow-roll ends, inflaton field oscillates around the minima of potential
- Energy density of oscillating inflaton field evolves as matter $\sim 1/a^3$ for quadratic inflation
- Oscillating inflaton field is interpreted as collection of stationary inflaton particles which decay perturbatively - Reheating
- Preheating:
 - · Non-perturbative production of particles form the classical oscillating inflaton field
 - Any field χ can be decomposed into fourier modes,

$$\chi(t,x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left(a_k \chi_k e^{-ik.x} + a_k^{\dagger} \chi_k^* e^{ik.x} \right)$$

• Dynamics of the modes χ_k of a field χ are given by Mathieu equation -

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

(where
$$z = m_{\phi}t$$
, $q = \frac{\lambda_{\phi\chi}\Phi^2}{4m_{\phi}^2}$, $A_k = \frac{k^2}{m_{\phi}^2a^2} + 2q$, a=Scale factor, t=time,
 Φ =Amplitude of ϕ oscillation, the potential is $\frac{1}{2}m_{\phi}^2\phi^2 + \frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$)

Mathieu instability bands

• Mathieu equaton has oscillatory solution in certain regions (blue) of the $A_k - q$ parameter space, and exponentially growing solution at other regions (white) -

- Growing modes are interpreted as particle production
- For some q, lowest Ak has highest exponent of growing
- In terms of decay process of inflaton into bosons, this exponential growth in certain momentum modes can be understood as Bose enhancement, i.e. when a inflaton decays into two χ particles with momentum $m_{\phi}/2$, decayrate gets enhanced by a factor $(1 + 2n_k)$, resulting a exponential growth in those modes

Identifying Growing modes with time

• We have,
$$q=rac{\lambda_{\phi\chi}\Phi^2}{4m_{\phi}^2}$$
, $A_k=rac{k^2}{m_{\phi}^2a^2}+2q$

- For an interaction $\frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$, an effective mass term of inflaton emerges $m_{\phi}^{\text{eff}} = \sqrt{m_{\phi}^2 + \lambda_{\phi\chi}\langle\chi^2\rangle}$
- So, with time Φ decreases and $m_{\phi}^{e\!f\!f}$ increases, resulting a decrement in q
- The bands of growing modes gets narrower, but lower momentum modes become growing modes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Effect of Quartic self-interaction of χ

- $\lambda_\chi \chi^4$ gives rise to effective mass term of χ , $m_\chi^{e\!f\!f}=\sqrt{\lambda_\chi \langle \chi^2 \rangle}$
- A_k gets modified into $A_k = rac{k^2}{m_{\phi}^2 a^2} + rac{m_{\chi}^2}{m_{\phi}^2} + 2q$

· Blocks lower momentum modes to come into play - Quartic Blocking

Numerical Simulation: LATTICEEASY

- As time goes and the fluctuations grow, these effects begin to show up, Mathieu equation becomes insufficient to describe the preheating dynamics
- Numerical simulations become important to get accurate dynamics
- We use publicly available code LATTICEEASY for the simulation

Figure: Quartic blocking - $\lambda_{\chi} = 10^i$ for i = -7 to 1 (from top to bottom)

Scenario 1: Sterile Neutrino Sector ¹

- Neutrino oscillation: Neutrinos can change flavour
- A flavour eigenstate is linear combination of mass eigenstates (which evolve in time as hamiltonian eigenstates)

$$ert
u_lpha >= \sum_{k=1}^3 U^*_{lpha k} ert
u_k >$$
 $u_lpha(t) >= \sum_{k=1}^3 U^*_{lpha k} e^{-iE_k t} ert
u_k >$

· Probability of detecting another flavour at time t,

$$P_{\nu_{\alpha} \to \nu_{\beta}} = | < \nu_{\beta} | \nu_{\alpha}(t) > |^{2} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} e^{-i(E_{k} - E_{j})t}$$

· For relativistic neutrinos,

$$E_{i} = \sqrt{|\vec{p}|^{2} + m_{i}^{2}} \approx |\vec{p}| + \frac{m_{i}^{2}}{2|\vec{p}|}$$
$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{kj}^{2}}{2|\vec{p}|}t\right)$$

⇒ Neutrino Oscillation (depends on momentum and mass squared difference)

Based on - A. Paul, A. Ghoshal, A. Chatterjee and S. Pal, arXiv:1808.09706 [astro-ph.CO] 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Neutrino Anomalies

- Small Baseline Experiments:
 - LSND and MiniBooNE observed excess in $ar
 u_\mu o ar
 u_e$ channel
 - MiniBooNE have also indicated an excess of u_e in the u_μ beam
- Within a 3+1 framework, MiniBooNE result hints towards the existence of a sterile neutrino with eV mass at 4.8σ significance, which raises to 6.1σ when combined with the LSND data
- Daya Bay, NEOS, DANSS and other reactor experiments probed the ν_e disappearance in the $\bar{\nu}_e \rightarrow \bar{\nu}_e$ channel
- GALLEX ,SAGE have performed similar measurements in the $u_e
 ightarrow
 u_e$ channel
- Caution: $\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})$ appearance in LSND and MiniBooNE are in tension with strong constraints on ν_{μ} disappearance, mostly from MINOS and IceCUBE, while attempting to fit together using a 3+1 framework
- Although debatable in 3+1 framework, such a light additional sterile neutrino, with mixing sin $\theta \lesssim \mathcal{O}(0.1)$ with the active neutrino species, can be consistent with constraints from various terrestrial neutrino experiments

From Particle Physics and Cosmology

Conclusions (from PP)-

1. Neutrinos are massive (atleast (n-1) of n species) and oscillate between flavour eigenstates

2. Neutrino anomalies can possibly be solved if an extra sterile neutrino with eV mass and sizable mixing with active neutrinos is postulated

- · Cosmology is affected mainly by 2 parameters related to neutrinos -
 - 1. Total mass of neutrinos $\sum m_{\nu_i}$
 - 2. Effective number of neutrinos $N_{\rm eff}$
 - $\sum m_{
 u_i}$ affects cosmology through -

$$\Omega_{\nu} = \frac{\sum m_{\nu_i} n_{\nu,0}}{\rho_{cr,0}} = \frac{\sum m_{\nu_i}}{eV} \frac{1}{94.1(93.1)h^2}$$

N_{eff} affects cosmology through -

$$\rho_R = \rho_\gamma \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$

· These equations assume thermalization of neutrino species

Big Bang Nucleosynthesis (BBN)

- Before nucleosynthesis protons and neutrons were in equilibrium by weak interactions through active neutrinos
- · As long as equilibrium holds, n:p ratio decreases exponentially with time -

$$\frac{n}{p} = \exp\left(\frac{-\Delta m}{T}\right)$$

unless interaction rate becomes comparable to expansion rate H

- \rightarrow reaction seizes
- \rightarrow equilibrium breaks down
- \rightarrow neutrinos decouple and n:p ratio stays frozen
- Nucleosynthesis (production of light neuclei ²H, ³He, ⁴He, ⁷Li from neutron and proton) happens
- Neutrons are unstable \rightarrow only primordial n's present today are preserved in atoms mostly in ${}^{4}\textsc{He}$
- Larger N_{eff}
 - \rightarrow larger radiation density
 - \rightarrow larger Hubble parameter
 - \rightarrow earlier neutrino decoupling
 - \rightarrow larger n:p at freezeout
 - \rightarrow larger ⁴*H*e abundance
- ⁴He abundance data $\rightarrow N_{eff}$ is allowed upto 3.5 at 68% CL

Plot taken from Neutrino Cosmology, Lesgourgues et al

-

Cosmic Microwave Background (CMB)

- Larger N_{eff}
 - \rightarrow larger radiation density
 - \rightarrow later matter radiation equality
 - \rightarrow less time between equality and photon decoupling
 - \rightarrow smaller sound horizon
 - \rightarrow CMB TT peaks at higher I values with higher peak heights
- From CMB PS, adding the extra parameter N_{eff} with the other six, we can constrain N_{eff}

(日)、

э

Plot taken from Neutrino Cosmology, Lesgourgues et al

Large Scale Structure (LSS)

• In linear scalar perturbation theory, modes evolve as -

$$\delta_i^{\prime\prime} + \frac{a^\prime}{a} \delta_i^\prime + \left(k^2 - \frac{3a^2\mathcal{H}^2}{c_s^2}\right) c_s^2 \delta_i = 0$$

- Neutrino density enters the equation through ${\cal H}$ and ${\cal H}^2$ term by Friedman equation
- A freestreaming length can be defined under which length scale the perturbation is suppressed -

$$\lambda_{fs}(\eta) = a(\eta) \frac{2\pi}{k_{fs}} = 2\pi \sqrt{\frac{2}{3}} \frac{c_{\nu}(\eta)}{\mathcal{H}(\eta)}$$

(日)、

э

Plot taken from Neutrino Cosmology, Lesgourgues et al

Constraints from Cosmology and Saving Sterile Neutrino: Pseudoscalar Interaction

 $\bigtriangleup \textit{N}_{\rm eff} \lesssim 0.5$

$$\sum m_{
u_i} < 0.16 \; eV \; (ext{PLANCK TT} + ext{Low E} + ext{BAO})$$

 Conclusion from Standard Cosmology-Extra neutrino species needed by particle physics is no

 Extra neutrino species needed by particle physics is not allowed in cosmology if thermalized

• Saving Sterile Neutrino: Hannested et al. showed that adding a pseudoscalar interaction can solve the tension -

$$\mathcal{L} \sim g_s \chi \overline{\nu}_s \gamma_5 \nu_s$$

- MSW like potential induced by new interaction with $10^{-4}\gtrsim g_s\gtrsim 10^{-6}$ suppress sterile neutrino production by suppressing mixing angle until after neutrino decoupling, thus not letting it thermalise with plasma
- At late time, annihilation of ν_s to χ particles with chosen $m_\chi \lesssim 0.1 {\rm eV}$ can evade the mass bound of neutrinos
- From supernova energy loss argument $g_s \lesssim 10^{-4}$

Problem with this model

- · We start at the inflationary epoch and see if the model fits in there
- Our workplan -

Assume ϕ as inflaton with quadratic potential \downarrow Constrain related parameters from PLANCK \downarrow Produce χ and H by Preheating \downarrow Study energy density of χ and H with parameter variation \downarrow ν_s production through $\chi\chi \rightarrow \nu_s\nu_s$ \downarrow Find parameter ranges allowed by Cosmology

- A pseudoscalar χ coupled to the inflaton gets produced copiously during preheating
- Such an extra relativistic species is in direct conflict with $N_{
 m eff}$ bounds of BBN
- Need to suppress production of χ from preheating Quartic Blocking or non-relativistic phase of inflaton

Potential and Parameter Choice

• The scalar potential is,

$$V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{\lambda_H}{4}|H|^4 + \frac{\sigma_{\phi\chi}}{2}\phi\chi^2 + \frac{\sigma_{\phi H}}{2}\phi|H|^2 + \frac{\lambda_{\phi\chi}}{2}\phi^2\chi^2 + \frac{\lambda_{\phi H}}{2}\phi^2|H|^2 + \frac{\lambda_{\chi H}}{2}\chi^2|H|^2$$

• Parameter choices: $m_{\phi} = 10^{-6} M_{\rm pl}$ (successful inflation with small non-minimal coupling to gravity $\mathcal{O}(10^{-3})$)

 $\lambda_{\phi} = 10^{-14}$ (even if kept 0, will be generated through RGE) $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}, 10^{-6} \ (\gtrsim 10^{-8}$ for efficient preheating, higher value can ruin inflation)

 $\sigma_{\phi H}=10^{-10}$ and $10^{-8}~\rm M_{pl}$ (to show two scenarios, one with a non-relativistic phase and one without)

 $\lambda_H = 10^{-7}$ and 10^{-4} (to keep minima of potential at 0,0,0 in field space, avoiding any additional mass term for χ or H)

 $\sigma_{\phi\chi}$ neglected (to avoid additional χ population during decay of ϕ)

 $\lambda_{\chi H}$ neglected (to avoid thermalisation between χ and H)

 λ_χ kept variable to suppress χ production variably

• Isocurvature bounds $(m_H, m_\chi > H \text{ during inflation})$ are trivially satisfied for parameter choice of $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}$

$\triangle N_{\text{eff}}$ contribution from χ produced in (p)reheating

Figure: $\lambda_H = 10^{-7}$, $\sigma_{\phi H} = 10^{-10} M_{Pl}$, $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$, 10^{-6} from bottom to top for the left panel. Plots in the centre and right panels correspond to the cases $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$, 10^{-6} , when a fraction of the inflaton (0 to 0.1 in steps of 0.01, from bottom to top) decays into χ respectively.

Figure: $\lambda_H = 10^{-4}$, $\sigma_{\phi H} = 10^{-8} M_{Pl}$, $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$, 10^{-6} from bottom to top for the left panel. Plots in the centre and right panels correspond to the cases $\lambda_{\phi \chi} = \lambda_{\phi H} = 10^{-7}$, 10^{-6} , when a fraction of the inflaton (0 to 0.1 in steps of 0.01, from bottom to top) decays into χ respectively.

Additional bounds in $m_{\chi} - g_s$ plane

Figure: The blue and magenta regions correspond to the allowed regions in $m_{\chi} - g_s$ plane from $N_{\rm eff}$ constraints of BBN ($\triangle N_{\rm eff} \lesssim 0.5$) for $\theta_0 = 0.1$ and 0.05

Figure: The region with lighter shade corresponds to the allowed region from $N_{\rm eff}$ constraints of BBN (for $\triangle N_{\rm eff} \lesssim 0.5$). The region with darker shade is the new bound, if χ being produced during (p)reheating leads to a $\triangle N_{\rm eff} = 0.4$. Left and right panels correspond to $\theta_0 = 0.1$ and 0.05.

 Production of a scalar during preheating can be suppressed with a quartic self interaction term

- Production of a scalar during preheating can be suppressed with a quartic self interaction term
- Scenario:
 - A sterile neutrino (with eV mass and sizable mixing with active neutrinos) is required to solve neutrino anomalies
 - This species, if thermalised with SM, is highly constrained by $N_{
 m eff}$ bounds from BBN
 - Secret interaction with χ is required to block ν_s production from ν_{active} upto BBN
 - New production channel opens through $\chi\chi \rightarrow \nu_s \nu_s$
 - To suppress this production channel, χ needs to be of sub-dominant energy-density after (p)reheating
 - This can be achieved through Quartic blocking and/or late inflaton decay into H giving rise to a non-relativistic phase

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Thank You

Scenario 2: Dark Matter ²

- Presence of Dark Matter (DM) χ is motivationally well-established from observations at all scales Astrophysical to Cosmological
- Production mechanism of DM is not so well-established
 - Standard mechanisms like freeze-out require SM-DM interactions
 - No such hint till now from direct or in-direct searches
- Interesting to explore DM production mechanisms without SM-DM interaction Production of two uncoupled sectors (DM and SM) from (p)reheating ?
- To keep in mind:
 - Right DM relic, i.e. $\rho_{\chi}/\rho_{SM} = 5.3$ now
 - BBN bounds on extra relativistic species, i.e. $\rho_{\chi}/\rho_{SM} \lesssim 0.051$ during BBN

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Isocurvature bounds

Based on - N. Bernal, A. Chatterjee and A. Paul, arXiv:1809.02338 [hep-ph] ²

Initial ρ_{χ}/ρ_{SM} required

• $\rho_{\chi}/\rho_{SM} = 5.3$ now, ρ_{χ} if present from beginning, needs to start much low on density (as depending on their mass m_{χ} , they become non-relativistic, giving boost to their density)

Figure: $m_{\chi} = 0.01, 0.05, 0.3, 2, 10, 50$ and 300 MeV (from top to bottom)

• BBN bounds are trivially satisfied for $m_{\chi} \gtrsim 0.01$ MeV as clear from figure $(\Box \rightarrow \langle B \rangle \land \langle \Xi \rightarrow \langle E \rangle \land \langle \Xi \rightarrow \langle E \rangle \land \langle$

Potential and Parameter Choice

The scalar potential is,

$$V = \frac{m_{\phi}^2}{2}\phi^2 + \frac{\lambda_{\phi}}{4}\phi^4 + \frac{\lambda_{\chi}}{4}\chi^4 + \frac{\lambda_H}{4}|H|^4 + \frac{\sigma_{\phi\chi}}{2}\phi\chi^2 + \frac{\sigma_{\phi H}}{2}\phi|H|^2 + \frac{\lambda_{\phi\chi}}{2}\phi^2\chi^2 + \frac{\lambda_{\phi H}}{2}\phi^2|H|^2 + \frac{\lambda_{\chi H}}{2}\chi^2|H|^2$$

- Parameter choices: m_φ = 10⁻⁶ M_{pl} (successful inflation with small non-minimal coupling to gravity O(10⁻³)) λ_φ = 10⁻¹⁴ (even if kept 0, will be generated through RGE) λ_{φχ} = λ_{φH} = 10⁻⁷ (≥ 10⁻⁸ for efficient preheating, higher value can ruin inflation) λ_H = 10⁻⁷ (to prevent quartic blocking of Higgs) σ_{φH} = 10⁻¹⁰ M_{pl} (to keep minima of potential at 0,0,0 in field space, avoiding any additional mass term for χ or H) σ_{φχ} neglected (to avoid additional χ population during decay of φ) λ_χ kept variable to suppress χ production variably
- Isocurvature bounds ($m_H, m_\chi > H$ during inflation) are trivially satisfied for parameter choice of $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}$

Production from Preheating with Quartic Blocking

Figure: Result from LATTICEEASY with $\lambda_{\chi}=10^i$ for i= -7 to 1 (from top to bottom)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Is Quartic Blocking enough for right DM relic ?

A D > A P > A B > A B >

ж

• Yes, for a very small range of m_{χ}

Is Quartic Blocking enough for right DM relic ?

A D > A P > A B > A B >

э

- Yes, for a very small range of m_χ
- But, Bullet cluster excludes $\sigma/m_{\chi} > 1.25 \text{ cm}^2/\text{g}$

Is Quartic Blocking enough for right DM relic ?

(日) (四) (日) (日) (日)

- Yes, for a very small range of m_χ
- But, Bullet cluster excludes $\sigma/m_{\chi} > 1.25 \text{ cm}^2/\text{g}$

Suppression due to non-relativistic phase of inflaton

- After preheating, a similar amount of energy density (like H) is still stored in inflaton
- Reheating ends when this left over energy density decays into other visible or dark sectors
- $\sigma_{\phi H}$ and $\sigma_{\phi \chi}$ helps to decay inflaton into H and χ
- $\sigma_{\phi\chi}$ is kept negligible *w.r.t* other parameters in order to avoid population of already overpopulated χ sector
- Decay energy scale of inflaton depends solely on $\sigma_{\phi H}$
- If inflaton decays (only to H) after it becomes non-relativistic, ρ_{χ}/ρ_{SM} gets additional depletion by a factor a_d/a_t (where a_d is scale factor during decay of inflaton and a_t id scale factor when inflaton becomes non-relativistic) as matter scales as $1/a^3$ and radiation scales as $1/a^4$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• So, by changing $\sigma_{\phi H}$ we can vary a_d/a_t , resulting additonal suppression as required to get right DM relic evading Bullet cluster bounds

Suppression by a_d/a_t

Figure: Lines from top to bottom corresponds to $a_d/a_t = 10^i$ for i = 0 to 6

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Additional Depletion via Cannibalization

- Having a quartic self coupling $\lambda_{\chi}\chi^4$ gives rise to additional suppression of DM energy density through cannibalization mechanism
- This energy density suppression happens due to number depleting 4-2 scattering processes, described by Boltzman equation

$$\frac{dn}{dt} + 3 H(T) n = -\langle \sigma v^3 \rangle_{4 \to 2} \left[n^4 - n^2 n_{eq}^2 \right], \qquad (1)$$
with $\langle \sigma v^3 \rangle_{4 \to 2} \sim \frac{27\sqrt{3}}{8\pi} \frac{\lambda_{\star}^4}{m_{\chi}^8}$

$$\int_{10^{-1}}^{10^{-1}} \frac{f = 10^{-8}}{10^{-1}} \int_{10^{-1}}^{10^{-1}} \frac{f = 10^{-9}}{10^{-1}} \int_{10^{-1}}^{10^{-1}} \frac{f = 10^{-10}}{10^{-1}} \int_{10^{-1}}^{10^{-1}} \frac{f = 1$$

Figure: Values of f that yield the observed DM relic density, in the $(m_{\chi}, \lambda_{\chi})$ plane

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Production of a scalar during preheating can be suppressed with a quartic self interaction term

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Production of a scalar during preheating can be suppressed with a quartic self interaction term
- Scenario 1:
 - A sterile neutrino (with eV mass and sizable mixing with active neutrinos) is required to solve neutrino anomalies
 - This species, if thermalised with SM, is highly constrained by $N_{
 m eff}$ bounds from BBN
 - Secret interaction with χ is required to block ν_s production from ν_{active} upto BBN
 - New production channel opens through $\chi\chi \rightarrow \nu_s \nu_s$
 - To suppress this production channel, χ needs to be of sub-dominant energy-density after (p)reheating
 - This can be achieved through Quartic blocking and/or late inflaton decay into H giving rise to a non-relativistic phase

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Production of a scalar during preheating can be suppressed with a quartic self interaction term
- Scenario 1:
 - A sterile neutrino (with eV mass and sizable mixing with active neutrinos) is required to solve neutrino anomalies
 - This species, if thermalised with SM, is highly constrained by $N_{\rm eff}$ bounds from BBN
 - Secret interaction with χ is required to block ν_s production from ν_{active} upto BBN
 - New production channel opens through $\chi\chi \rightarrow \nu_s \nu_s$
 - To suppress this production channel, χ needs to be of sub-dominant energy-density after (p)reheating
 - This can be achieved through Quartic blocking and/or late inflaton decay into H giving rise to a non-relativistic phase

• Scenario 2:

- Standard DM production mechanisms like freeze-out require SM-DM interaction
- Non-observation of any such hint in the direct and indirect searches lead us to explore non-thermal production processes without need of SM-DM interaction
- We explore production of DM from preheating, and find that it generally overproduces
- Quartic blocking can suppress production of DM during preheating, but that parameter region is excluded by Bullet cluster observations
- Additional depletion of DM/SM ratio by a non-relativistic phase of inflaton before it decays to SM and Cannibalization mechanism can give right DM relic avoiding Bullet cluster bounds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●