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PARTICLE INTERACTIONS ARE ENCODED IN GEOMETRY

„Our imagination is struck only by what is great; but the lover of natural
philosophy should reflect equally on little things.”
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ALL FUNDAMENTAL INTERACTIONS COME FROM GEOMETRY

GEOMETRY OF THE PARTICLES & SPACETIME

1 what matters is spinors
2 spin geometry is the Dirac operator
3 spinor bundle and the Dirac operator encode most of geometry
4 spinor bundle and the Dirac operator encode all/most of physics

GEOMETRY OF THE SPACETIME

1 the metric is encoded in the Dirac operator (or Laplace operator)
2 gauge connections, Higgs, particle masses are in the Dirac operator
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Spectral triples provide a generalized setup for geometry

DEFINE THE GEOMETRY IN AN ALGEBRAIC WAY [Á LA CONNES]
Algebra A, its (faithful) representation ⇡ on a Hilbert space H, a selfadjoint
operator D, satisfying several (reasonable) conditions.

1 Each fermion is described by a spectral triple (spinor + Dirac)
2 the collection of all particles with the interactions corresponds to a finite

spectral triple (finite algebra)
3 the full geometry of SM is (almost) a product geometry
4 the fluctuations of the Dirac operator are gauge fields

DIRAC OPERATORS ARE „PHYSICAL DEGREES OF FREEDOM”

1 make sure that D is a first-order operator
2 choose D to be nondegenerate,
3 guarantee that D is a differential operator
4 & ...+ make sure that you can compute something
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Spectral action is an effective tool to get the action functional

PROPOSE A FUNCTIONAL ON THE SPACE OF ADMISSIBLE DIRAC
OPERATORS

S⇤,f (D) = Tr f
✓

D2

⇤2

◆

or, more explicitly

S⇤,f (D) =
X

w

⇤w↵w Resz=w Tr|D|�z

THE METHOD: USE THE HEAT TRACE EXPANSION

By parametrizing the degrees of freedom of the Dirac operator (in the classical
case) through metric, torsion and connections (to allow for twisted Dirac
operators) we obtain an esymptotic expansion of the action functional as:

S⇤(D) = ⇤4↵4

Z

M

p
g + ⇤2↵2

Z

M

p
(g)(R(g) + �|T |2) + ↵0

Z

M

p
g|F |2 + · · ·
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SPECTRAL ACTION IS IN MANY CASES COMPUTABLE

EXAMPLES

1 classical manifolds (Gilkey - Sakharov)
2 finite spectral triples,
3 almost commutative manifolds (products of the above)
4 noncommutative tori, NC Bieberbach manifolds
5 quantum Podleś sphere, SUq(2)

WHY THE FERMIONIC ACTION IS NOT SPECTRAL ?
Physics requires that the full action is the action for bosonic fields (fields that
are part of the Dirac operator) as well as the fermionic fields.

Yet the action for
fermions is of different type:

S� = h |D(g,A) | i ,
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SPECTRAL ACTION CAN BE APPLIED TO FERMIONS

HOW TO MAKE FERMIONIC ACTION SPECTRAL ?
We propose (for the simplest Euclidean model) the cutoff fermionic action

Sg,⇤ = h | | g⇤(DA) | i ,

NOTE THE USE OF DA NOT D2
A

Se,⇤ = h | f⇤
�
D2

A
� | i ,

So,⇤ =
1
⇤
h | DAh⇤

�
D2

A
� | i ,

and

So,⇤ =
1
⇤
h | h⇤

�
D2

A
� |DA i ,
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NONMINIMAL FERMION COUPLINGS

THE PURE GRAVITY CASE

We obtain the usual fermion kinetic term:

⇤3
Z

M

p
g h (x)|D | (x)i ,

and nonminimal coupling of gravity (through scalar curvature) to fermions.

⇤

Z

M

p
g

R
12

h (x)|D | (x)i .

THE YANG-MILLS SYSTEM

⇤4
R

M
p

g (trP ) = ⇤4N
R

M
p

g h (x)| | (x)i ,
⇤3
R

M
p

g h (x)|DA | (x)i ,
⇤2
R

M
p

g h (x)| � R
12 + F

� | (x)i ,
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FERMIONIC SPECTRAL ACTION FOR NONCOMMUTATIVE SM

THE STANDARD MODEL AS A SPECTRAL GEOMETRY

The discrete Dirac operator written in the basis of fermions, taken in the order
f u
R , f

d
R , f

u
L , f

d
L (each taken multiple times for N generations) is

DF =

0

BB@

⌥⇤
u
⌥⇤

d
⌥u

⌥d

1

CCA ,

and the fluctuated discrete Dirac operator DF (H) is:

DF =

0

BB@

⌥⇤
uH0 ⌥⇤

uH�

�⌥⇤
dH� ⌥⇤

dH0

⌥uH0 �⌥dH�

⌥uH� ⌥dH0

1

CCA ,

where H = H0 + H�j denotes a quaternionic field (Higgs doublet).
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FERMIONIC SPECTRAL ACTION FOR NONCOMMUTATIVE SM

THE PAULI-TYPE TERMS FOR THE SM GEOMETRY

Taking the square of the DF (H) at the Higgs vacuum expectation value we
obtain:

(DF (Hv ))
2 =

0

@
⌥⇤

e⌥e|Hv |2

⌥⇤
e⌥e|Hv |2

1

A ,

which similarly as in the Dirac masses case can only add small corrections to
the already nonvanishing mass of charged leptons.

BUT FOR SOME NONSCALAR FUNCTIONS...
For any nonscalar function

f ⌧⇤ (x) = ⌧ f⇤(x)⌧,

where ⌧ = �2 (Pauli matrix) the term f ⌧⇤ (D
2) is certainly gauge covariant and,

consequently, the terms in the fermionic spectral action remain gauge
invariant.

AS SPECTRAL GEOMETRY 10 / 16



FERMIONIC SPECTRAL ACTION FOR NONCOMMUTATIVE SM

THE PAULI-TYPE TERMS FOR THE SM GEOMETRY

Taking the square of the DF (H) at the Higgs vacuum expectation value we
obtain:

(DF (Hv ))
2 =

0

@
⌥⇤

e⌥e|Hv |2

⌥⇤
e⌥e|Hv |2

1

A ,

which similarly as in the Dirac masses case can only add small corrections to
the already nonvanishing mass of charged leptons.

BUT FOR SOME NONSCALAR FUNCTIONS...
For any nonscalar function

f ⌧⇤ (x) = ⌧ f⇤(x)⌧,

where ⌧ = �2 (Pauli matrix) the term f ⌧⇤ (D
2) is certainly gauge covariant and,

consequently, the terms in the fermionic spectral action remain gauge
invariant.

AS SPECTRAL GEOMETRY 10 / 16



FERMIONIC SPECTRAL ACTION FOR NONCOMMUTATIVE SM

EXPLICIT COMPUTATIONS LEADING TO WEINBERG TERM

Then the terms in the fermionic spectral action, that arise from Tr(P f ⌧⇤ (D2) in
the next-to-leading order, could be explicitly rewritten as:

⇤2(⌥e⌥e
⇤)


(⌫L, eL)

✓
H0

�H�

◆�⇣
H0,�H�

⌘✓ ⌫L
eL

◆�
+ h.c,

NEUTRINO MASS TERMS

1 We obtain the Weinberg term (sometimes called Weinberg operator),
which is used to describe effective mechanism of neutrino mass
generation,

2 After the Higgs field gets its vacuum expectation value, a neutrino mass
is generated, depending on the scale ⇤ - of the correct range.

3 Corrections for other leptons are negligible.
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LOOK AGAIN AT THE BOSONIC ACTION AND GRAVITY

THE SIMPLEST NONCOMMUTATIVE MODEL IS LEFT-RIGHT:
Consider the algebra A = C1(M)⌦ (C� C), represented on L2(S)⌦ C2.

Do = D ⌦ id + � ⌦ DF , DF =

✓
0 �
�⇤ 0

◆

BUT THIS IS NOT THE MOST GENERAL DIRAC OPERATOR !
Let us consider instead:

D =

✓
D1 ��
��⇤ D2

◆
,

with two independent metrics.

D2 =

✓
D2

1 + ��⇤ �(D1�� �D2)
��(D1�⇤ � �⇤D2) D2

2 + ��⇤

◆
,
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WE COMPUTE THE SPECTRAL ACTION FOR THE FULL
TWO-SHEETED SPACETIME MODEL

ONLY IN THE FRLW ANSATZ

D = �0@t +
1

a(t)
�
�1@1 + �2@2 + �3@3

�
+ �0 3ȧ(t)

2a(t)
,

WE USE PSEUDODIFFERENTIAL CALCULUS AND WODZICKI
RESIDUE

Taking:
D = �0(@t + H(t)) + A(t)D3 + �F (t),

where

H(t) =
✓

H1(t) 0
0 H2(t)

◆
, A(t) =

 
1

a1(t)
0

0 1
a2(t)

!
, F (t) =

✓
0 �(t)

�⇤(t) 0

◆
.
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THE ROBERTSON-WALKER GEOMETRY FOR THE TWO-SHEETED
MODEL IS EXACTLY COMPUTABLE

THE ACTION (FIRST TWO TERMS) IS:

S = 2⇡2
Z

dt
✓
�4 �a1(t)3 + a2(t)3�

��2c
�
ȧ1(t)2a1(t) + ȧ2(t)2a2(t)

�� �2c|�|2 �a1(t)3 + a2(t)3�

+ �2c|�|2
✓
(a1(t)� a2(t))2

(a1(t) + a2(t))

⇣
a1(t)

2 + a1(t)a2(t) + a2(t)
2
⌘◆◆

+ Lm,

THE BIMETRIC GRAVITY MODELS ARE CLOSELY RELATED TO
NONCOMMUTATIVE GEOMETRY

The additional term is an interaction between the two metrics that is similar to
the terms in the bimetric theory of gravity.
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MODIFIED COSMOLOGY MODELS (SIMPLIFIED)

THE EMPTY UNIVERSE

r(t) ⇠ c1e�
p

⇤
24+

1
4
p

6⇤+8↵ + c2e�
p

⇤
24�

1
4
p

6⇤+8↵.

RADIATION DOMINATED UNIVERSE

r(t) ⇠ t
1
4 Jp

5
4
(
p
�2(⇤+ ↵)t),

MATTER DOMINATED UNIVERSE

r(t) ⇠ t�
1
3 sin

✓
1
2
p
�2(⇤+ ↵)t

◆
.
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CONCLUSIONS

1 The spectral action is a powerful tool to obtain interesting terms both for
fermions and for boson.

2 Can possibly explain small neutrino masses.
3 Has unexpected links to bimetric theory of gravity.
4 Full SM model: work in progress.
5 Lorentzian NCG: A. Bochniak, A.Sitarz, Finite Pseudo-Riemannian

Spectral Triples and The Standard Model Phys. Rev. D 97, 115029
(2018)

6 Hodge duality: L.Dąbrowski, A.Sitarz, Fermion masses, mass-mixing
and the almost commutative geometry of the Standard Model, J. High
Energ. Phys. (2019) 2019: 68

7 References for these results:
On almost commutative Friedmann-Lemaître-Robertson-Walker
geometries, Classical and Quantum Gravity, 36, 19 (2019)
Fermionic spectral action and the origin of nonzero neutrino masses,
(with Mairi Sakellariadou) Physics Letters B795 (2019) 351–355
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