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Goal

small Goal: presentation of the theoretical background for the
following G.Bonneau (1980) and C.P.Martín and D. Sánchez-Ruiz
(1999) formulas:
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1PI ∣∣∣

pi≡ǧ≡0
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1.9. Theorem on renormalizability



2. The basic Bonneau identity; Trace anomaly
2.1. De�nition of R̄G

ν,ε and inclusion of regularization scale 2.2.
Two Lemmas
2.3. Basic Bonneau identity
2.4. Trace anomaly and its expression in terms of Bonneau
identities

3. Bonnau identities and Slavnov Taylor identities
3.1. Regularized action principle
3.2. Slavnov Taylor identities and anomalous insertions
3.3. Bonneau identities for anomalous insertions in the
renormalized action



1. The BM renormalization of graph amplitudes

1.1 Some basic notions on the graphs

♦ graph G = {VG = {Vi},LG = {``}, e = {e`i}}
♦M = #Vi ; L = #``; hG = # loops
♦ e`i = {1 if Vi = Vf` ; −1 if Vi = Vf` ; 0 otherw.} r(e) = M − 1
♦ G 's: connected (con.), 1PI, 1PR, non-empty, nontrivial (n.t.), reduced
(G/H)(red.), tree, chord, two-tree, 1PI-component of G , subgraph,
proper subgraph, non-overlapping subgraphs
♦
∑

i pi = 0: pE , eE , AE , A(k ; k), A(ki ; kj), (A−1E )ij = A(ki ; kj)/A(k ; k)
♦ Symanzik polynomials: d(α) = A(k ; k)

∏
`∈LG

=
∑

T

∏
6̀∈T α`;

Dk
ij = A(ki ; kj)

∏
`∈LG

=
∑

T2

∏
` 6∈T2

α`
♦ k-invariants: d(α), pTE A

−1
E pE (A = eTαe, AE = eTE αeE )



Labelled forest

pE = (p1 . . . , pk−1
k

| pk+1 . . . pM−1) eE =

(
· · ·

k∣∣∣∣ . . .
)

Labelled forest: G con.; forest; maximal forest C; ∀H ⊂ G def.
M = {H ′|H ′max ⊂ H}, H̄ = H/M; mapping σ : C → LG ,
σ(H) ∈ H̄; labelled forest= (C, σ); joining unique subset of α-space
(α = {α1, . . . , αL})

D(C, σ) = {α|α` ≥ 0 ∀`, α` ≤ ασ(H) for ` ∈ H ∈ C} (3)

Properties:
1. G with n 1PI components ⇒ C =

⊕n
i=1
Ci

2. any maximal forest C may be labelled
3. ∀ H ∈ G there is 1− 1 corresp. {C, σ}G ↔ ((C1, σ1)G/H , (C2, σ2)H)
4. Any C has hG elements
5. G − σ(C) is a tree in G
6.
⋃

(C,σ)D(C , σ) covers whole α-interaction region

7. if (C1, σ1) 6= (C2, σ2) overlap has Lebesgue measure zero.



1.2. Basic expressions for an amplitude

TG (p) = (2π)n/2
∫

exp (ipx)TG (x)dx
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∑

pi )(i/2)
−nhG/2

∫ ∏
`∈LG

dα`Iε(p, u, β)|u=0

Iε(p, u, α) = d(α)−n/2
∏
i∈L
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(
pi ,−

∂

∂u`

) ∏
`∈LG

Z`
(
− ∂

∂u`

)
exp iW (p, u, β)

W (p, u, α) = V (p, u, α) +−α(m2 − iε)

V (p, u, α) = (pT , uT )

(
0 −2eTE
−2eE −4α

)(
p
u

)
≡ (pT , uT )M

(
p
u

)
d(α) = detM/(−4)L (4)

Z` are spin structures of propagators; Xi are vertex factors.



1.3. Dimensional covariants, normal form and regularization of the amplitude

Use tHVBM scheme :

1. D dim. objects pµ, gµν , γµ satisfy the same algebra as in 4
dimensions up to gµµ = D. Even gµνενρστ = εµρστ although ενρστ
is pure 4-dim. quantity (as well as γ5),
2.D − 4 dim. objects introduced, leading to splitting the D dim.
objects to D − 4 dim. ones and 4 dim. ones e.g.
gµν = ĝµν + (gµν − ĝµν)
Contraction of D object with D − 4 (4) object represents the
projection of D object to D − 4(4) space, while the contaction of
D − 4 object with 4 object gives zero result.
3. εµνρσ and γ5 are de�ned in 4 dim, space, and
(anti)commutation rules of γ5 and γ-matrices as follows



εµ1µ2µ3µ4
εν1ν2ν3ν4 = −

∑
π∈S4

signπ
4∏

i=1

(gµiνπ(i)
− ĝµiνπ(i)

) (5)

Tr(γ5γµ1
γµ2

γµ3
γµ4

) = εµ1µ2µ3µ4
Tr 1 (6)

{γα, γ5} = {γ̂α, γ5} = 2γ̂αγ5 (7)

4. Normal form (NF)

4.1 eliminate γ5 using (6)
4.2 to eliminate Tr use {γµ, γν} = 2gµν , Trγµ = 0, Tr 1 = 4
4.3 antisymetrize product of γ's
4.4 use (5) to remove ε-tensors
4.5 eliminate gµν 's, ĝµν 's performing contractions with them
4.6 use gµµ = D, ĝµµ = 4− D, pµqµ = p · q,
p̂µqν = pµq̂µ = p̂µq̂µ = p̂ · q



5. Regularization

5.1. Interpreting all covariants in the described algebra, considering
the amplitude as formal power series, performing all the derivatives
over u` variables and putting u` = 0 and reducing the expressions
to their normal form one obtains explicit D-dependence of the
amplitude, which can be used to de�ne the counterterms.

5.2 With determined counterterms, one can interpret the
amplitude as a 4-dimensional setting all "hatted" objects to zero.
The Feynman integrand Iε(p, u, α) becomes a distribution in M − 1
4-momenta and amplitude, TG ,ε(p,D) a distribution in M
4-momenta, which corresponds to a meromorphic function in the
D-dimensional complex plane having the singularities lying on the
manifolds which correspond to subdiagrams H of the graph G
(r` (vi )is degree of Z` (Vi ) : ωH = is degree of divergence)

ωH(D) = DhH − 2LH +
∑
`

r`(+
∑
i

vi ) (8)



1.4. Renormalized amplitude in terms of labelled forests

Using 6-th property of the labelled forest the amplitude becomes

TG = lim
ε→0

TG ,ε = lim
ε→0

∫
dαIG ,ε(p, α)

= lim
ε→0

∑
(C,σ)

∫
D(C,σ)

dαIG ,ε(p, α) (9)

Using the forest formula, assuming the action of CH on IG is
known, and de�ning CH so that, for the forest F ,∫
D(C,σ) dα

∏
H∈F (−CH)IG ,ε(p, α) = 0 unless F ⊆ C, renormalized

amplitude reads (F = {F} is set of all forests of G ).

RG = lim
ε→0

RG
ν,ε = lim

ε→0

∑
(C,σ)

∫
D(C,σ)

dα
∑
F∈F

∏
H∈F

(−CH)IG ,ε(p, α)

= lim
ε→0

∑
(C,σ)

∫
D(C,σ)

dα
∏
H∈C

(1− CH)IG ,ε(p, α) (10)



1.5. The amplitude using the variables in terms of which the divergent part can be

clearly expressed.

Variables α` are inapropriate for extracting the amplitude
singulaties. New variables appropriate for this purpose
{(t, β) = (tH ,H ∈ C), ` ∈ L′G = LG\σ(C)} and auxiliary variables
ζH and ξH are introduced

α` =


∏

H⊂H′∈C t
2

H′ = t2Hξ
2

H = ζ2H if ` = σ(H), H ∈ C

β`ζ
2

H if ` ∈ L′
H̄
, H ∈ C

(11)

and taking β` = 1 for ` ∈ σ(H). In terms of new variables the
image of the D(C, σ) reads

D(C, σ) = (12)

{(t, β)|0 ≤ tG <∞; 0 ≤ tH ≤ for H 6= G ; 0 ≤ β` ≤ for ` ∈ L′G}



1.6. Regularized amplitude in terms of (t, β) variables

Substituting α`'s in terms of (t, β) one obtains D(C, σ)
contributon to TG ,ε∫

D(C,σ)

dαIG ,ε(p, α) =
∏
`∈L′

G

∫
1

0

dβ`
∏
H∈C

2dtH
tH

tνhH−ωH+rH
H

×Z
(
− i

∂

∂u`

)
g(p, u, t, β, ν) (13)

g(p, u, t, β, ν) beeing an analytic function.

Set of all mappings the H → H/M(H) = H̄ intoduces linear
tranformation of p momenta to the momenta q = Rp associated

with vertices of H̄. With accompanied decomposition of
u = (uH , ` ∈ LH̄ ,H ∈ C), and transformed incidence matrix eRT

one can express V (p, u, α) in terms of the H̄ momenta q:
Introducing scaled dimensionless quantities q̃ = (q̃

H
, qHζH ,H ∈ C),

ũ = (ũH = uH/ζH ,H ∈ C), ẽ = ẽHH′ = eHH′ζH/ζH′ , H,H
′ ∈ C one

obtains V (p, u, α) in terms of dimensionless quantities



V (p, u, α) = (q̃T , ũT )M̃−1
(

q̃

ũ

)
M̃ =

(
0 −2ẽT
−2ẽ −4β

)
, β = (β` = α`/ζ

2

H ,H ∈ C) (14)

Properties of R, eRT , d(α),
1. R is up to permutations triangular, with diagonal values 1, and
detR = ±1
2. eRT has the block diagonal structure with: eHH′ = 0 for H̄ if
H 6⊇ H ′; eHH′ = incidence matrix eH̄ if H = H ′; if H ⊃ H ′, eHH′

indicates how H ′ is contained in H.
3. d(α) = d̃

∏
H∈C ζ

2hH̄
H , d̃ = M̃/(−4)L ∀` ∈ LG

4. M̃ as M̃(t, β) are independent of tG , and polynomials in
remaining variables
5. if for C hH̄ ≤ 1 ∀H ∈ C then d̃ ≥ 1 so d̃−1 and M̃−1 are C∞ in
(t, β). (e.g. for 1PI G , and (C, σ))



Using result (14) one obtains the expression for the D(C, σ)
contribution to the regularized amplitude TG ,ε, from Eq. (13)∫

D(C,σ)

dαG ,εIG ,ε(p, u)

=
∏
`∈L′

G

∫
1

0

dβ`
∏
H∈C

∫ θH

0

2dtH
tH

tνhH−ωH

H ZH

( ∂
∂ũ

)
gε(q, u, t, β, ν)

=
∏
H∈C

{∫
dµHζ

ν−ω̄H

H ZH

(
− i

∂

∂ũ

)}
gε(q, u, t, β, ν)

ν = D − 4; ωH = ωH̄ −
∑

H′∈M(H)

ωH′ ; θG =∞, θH = 1,H 6= G

∫
dµH =

∫ θH

0

2dtH
tH

∫ ∞
0

∏
`∈LH̄

dβ` (15)

ZH are polynomials in t, gε(q, u, t, β, ν) is C∞ in (t, β), analytic in
ν, and exponentially decreasing as tG →∞. Therefore all
divergences are contained in factors tνhH−ωH−1

H .



1.7. Treatment of tνhH−ωH−1
H factors

tλH may be understood as a distribution (generalized function) with
a property it corresponds to a meromorphic function of λ with
poles at all nonnegative numbers (ω):

tνh−ω−1 = (−)ωδ(ω)(t)/(ω!νh) + regular at ν = 0, (16)

δ(ω)(t)/ω! := 0 for ω < 0

Using it the tH integral is splitted into divergent and regular part∫ θ

0

dtHt
νhH−ωH−1
H g(. . . tH . . . )

= (ωH !νhH)
−1
( d

dtH

)ωH
∣∣∣
tH=0

+

∫ ∞
0

(. . . )reg.dtH (17)∫ ∞
0

(. . . )reg.dtH =

∫ ∞
0

dtHt
νhH−ωH−1
H

[
g(. . . tH . . . ) (18)

−
ωH−1∑
k=0

tkH
k!

g (k)
ε (. . . tH = 0 . . . )− θ(1− tH)

( tωH
H

ωH !
g (ωH )(. . . tH = 0 . . . )

)]



1.8. De�nition of the counterterm, and de�nition of the renormalized amplitude

1. Algebra AG of covariants {pi,µ}i∈VG , {u`,µ}`∈LG
,

2. Def. C (A ∈ AG ) = sing. part at n = 4 of NF (A|u=0)
3. De�nition of domain for the CH : DH :
3.1. GG = {X̂ = {X ,FX , (C, σ)X}}, H ⊂ G , FX ∈ F̂ ′ = {forests of 1PI
proper subgraphs of X}, (C, σ) a labelled forest for X/FX .
3.2. EG = {f : GG → AG}, f (X̂ ) = f (X̂ )(p, u), (p, u) ∈ X/FX

3.3. DH = {f ∈ EG : ∀X̂ of the form X̂ =
(H, ∅, (C, σ)H),C (f (X̂ )) is a polynomial in p}
4. De�nition of counterterm CH :

4.1. Some defs.: Ĥ = (H, ∅, (C, σ)H), X̂ : H = (X ,FX ∪ {H}, (C, σ)H:X );

((C, σ), (C, σ)H:X ) pair of labelled forests for H resp.

H : X = X/FX ∪ {H} corresponding to (C, σ)X ,

UX : q
H
→ q

H
− eTGH∂/∂u

T
G



4.2. On DH the operator CH is de�ned by

(CH f )(X̂ ) =


f (X̂ ) if either X ∩ H = ∅ or H ⊂ H ′ for some H ′ ∈ FX

C (f (Ĥ)) if H = X and FX = ∅
UH(C (f (Ĥ0)))f (X̂ : H) if H 6∈ FX ,FX ∪ {H} ∈ F ′X
0 else

(19)

5. The de�nition of the renormalized amplitude RG :
The renormalized amplitude (10) is to be interpreted as

RG = lim
ε→0

∑
(C,σ)

∫
D(C,σ)

dtdβ

×
[ ∏
H∈C

(1− CH)IG ,ε(p, α)
]
(G , ∅, {C, σ})|u=0 (20)



1.9. Theorem on renormalizability

1. The singular parts of the subdiagrams H:

1.1. The singular part of the H integral is de�ned as the divergence
of H integral after removal of singular parts of all its subdiagrams.

1.2. The singular part of G (tG integral)∫ ∞
0

dtG
tG

tνhGG gε(t, β, q) (21)

follows from the assumption that all spin polynomials Z` are
homogeneous in q, m` and

√
ε so the only dependence on those

variables in gε(t, β, q) comes in combinations tGq, tGm`, tG
√
ε.

While for ωG < 0 there is no singularity, for ωG ≥ 0 the singularity
is proportional to [(ωG !)−1(d/dt)ωG gε]tG=0

which is homogeneous
polynomial of order ωG in mentioned three variables.

1.3. In similar way one can treat the reduced diagrams G/H
leading to the homogeneous polynomials of order ωG − ωH

(hG = hG/H + hH , LG = LG/H + LH).



1.4. Relating the expressions for integrals IG and IG/H intregrals
(proof not shown) one obtains the relation between the expression
for the generalized vertex obtained contracting H to the point
ξωH
H P(qH) and integrals IG and IG/H

UH [ξωH
H P(q

H
)]IG/H = [(ωH !)−1(d/dt)ωH IG ]tH=ũ=0

(22)

from which follows that the degree of divergence of IH is ωH .

2. Alternative expression for the renormalized amplitude

Let X0 ∈ F ′G be any X0 ⊂ C. De�ne

X = {H ′ ∈ C : H ′ ⊂ H for some H ∈ X0}

After performance of all subtractions corresponding to subgraphs
H ∈ X , the contribution of the (C, σ) to RG ,ε is a sum of the terms
of the form



(RG
ν,ε)(C,σ)G =

∏
H∈C\X

{∫
dµH(1− CH)ζ

ν−ωH̄

H ZH

( ∂
∂ũ

)}
×

∏
H′∈X0

{
ξ−ωH′gH′(ξH , ν)

}
gX ′(q̃, ũ, t, β, ν)|ũ=0 (23)

'
∏

H∈C\X

∫
dµH(1− CH)ξν−ωH̄ZH

(
− ∂

∂ũ

)
×

∏
H′∈M(H)

(ξ
−ωH′
H′ gH′(ξH′ , ν))gX ′(q̃, ũ, t, β, ν)|ũ=0 (24)

=
{ ∏

H∈C\H1

∫
dµH(1− CH)

}
IG/H1

ν,ε © RH1

ν,ε (25)

= · · · =
{ ∏

H∈Ci
1

∫
dµH(1− CH)

}
IG/Hi
ν,ε © (RHi

ν,ε)(C i
2
,σ2)Hi

(26)

≡ (RG/Hi
ν,ε )(C i

1
,σ1)G/Hi

© (RHi
ν,ε)(C i

2
,σ2)Hi

(27)



(t, β) are scaling variables, ũ are scaled u's for G/X0 (uH = 0 for

H ∈ X ), q̃ are scaled momenta for C\X , gH ∈ JKH (set of analytic
functions) for some K , gX ′ is element of abstract algebra of
covariants analytic at ν = 0 and exponentially decreasing.
{H1, . . . ,H∑n

i=1
hHi
} (n in number of 1PI components of G ) is a set

of ordered subgraphs (smaller come �rst). H1 is the �rst of them
(smallest for 1PI G ). ((C i

1
, σi

1
)G/Hi

, (C i
2
, σi

2
)Hi

) is the pair of
labelled forests associated with labelled forest (C, σ)G .

3. Theorem on Renormalizability
The singular part of the dimensionally regularized amplitude for
any subgraph H of a graph G consists of poles of order ≤ hH , and
is a polynomial of degree ωH in the external momenta of the
graph. Singular part vanishes if H is super�cially convergent. The
amplitudes RG ,ε(p,D) remaining after performing subtractions
corresponding to all 1PI subgraphs are analytic at D = 4 at any
order of pertubation theory. The limit limε→0 RG ,ε exists in the
space of external momenta and is analytic at D = 4, and it
represents the renormalized amplitude RG ,D .



2. The basic Bonneau identity; Trace anomaly

2.1. De�nition of R̄G
ν,ε and inclusion of regularization scale

1. De�nition of R̄G
ν,ε

R̄G
ν,ε =

∫
dµG

{ ∏
Hi∈C\G

∫
µHi

(1− CHi
)
}
IGν,ε(p, t, β) (28)

RG
ν,ε = (1− CG )R̄G

ν,ε

where IGν,ε(p, t, β) is IGν,ε(p, α) expressed in terms of variables (t, β).

2. inclusion of the regularization scale µ
2.1. The regularization scale µ can be included only through the
momentum measure, not through the Lagrangian terms
(parameters).

2.2. Renormalization theorem remains the same.
2.3. In MS scheme singular part is independent of µ.



2.2. Two Lemmas

1. Lemma 1.
For any meromorphic function of ν, f (ν) with poles at ν = 0

[−p.p.(νf (ν))]− [ν × (-p.p.(f (ν)))] = r.s.p.(f (ν)), (29)

[p.p.(νf (ν))] = [ν × (p.p.(f (ν)))] − r.s.p.(f (ν)) (30)

where p.p.f (ν) is singular part of the Laurent series for f (ν) near
ν = 0 and r.s.p. is the residue of the simple pole (coe�cient of
1/ν) of f (ν) at ν = 0.

2. Lemma 2.
2.1. Let G be a 1PI graph and RG

ν,ε its renormalized amplitude.
2.2. Consider the same graph with ν attached to a "special" vertex
V of G , G ν , with amplitude and let RGν

ν,ε be its amplitude. Let
Oδ(x) be the monomial of �elds and its derivatives corresponding
to the "special" vertex V and δ its canonical dimension. The goal
it to evaluate renormalized amplitude of RGν

ν,ε and show lemma 2:



Lemma 2.

RGν
ν,ε − νRG

ν,ε =
∑
γi

Uγi (r.s.p R̄
γi
ν,ε)R

G/γi
ν,ε (31)

≡
∑
γi

∑
(C,σ)G/γi

∏
H∈C

(1− CH)Uγi (r.s.p.(R̄
γi
ν,ε))IG/γiν,ε (32)

Here Uγi : q
γi
→ q

γi
− eTGγi∂/∂u

T
G , is an operator acting on I

G/γi
ν,ε

Proof:
1. divide a labelled forest (C, σ) into three forests FV , FA and FB :

FV : v i ∈ FV ⇔ v i ∈ C and V ∈ v i

FA : ai ∈ FA ⇔ ai ∈ C,V 6∈ ai and ai ⊂ v i

FB : bi ∈ FB ⇔ bi ∈ C and bi 6∈ FV ,FA



2. Perform all subtractions associated with the forest FA, unaware
of ν joined to the special vertex V

(RGν

ν,ε )(C,σ) = (RGν/ap

ν,ε )(C1,σ1)G/ap
© (Rap

ν,ε)(C2,σ2)ap
(33)

where ap is largest element of the forest FA
3. The elements of vi ∈ are strictly ordered
v1 ⊂ v2 ⊂ · · · ⊂ vq ≡ G . Perform the subtraction −Cv1 �rst,
according to that ordering, and using (30)

(RGν/v1

ν,ε )© (Rv1

ν,ε) + Uv1(r.s.p.(R̄ν,ε))(C2,σ2)v1
(RG/v1
ν,ε )(C1,σ1)G/v1

(34)

4. Perform subtractions associated with elements of FB , which do
not depend on the factor ν associated with special vertex V .
5. Repeat the procedure 3. and 4. for all remaining vi -s, each
giving one additional summand corresponding to the second term
in (34).



6. Final result for the (C, σ) contribution to (RGν
ν,ε )− (RG

ν,ε)

(RGν

ν,ε )(C,σ) − ν(RG
ν,ε)(C,σ)

=
∑
v i∈C
V∈v i

Uv i (r.s.p.(R̄ν
i

ν,ε))(C2,σ2)vi
(RG/v1
ν,ε )(C1,σ1)G/vi

(35)

Here one-to-one correspondence between (C, σ) and
((C2, σ2)vi ), (C1, σ1)) is used.

7. Summing over all labeled forests (each γi is in one of (C, σ))
the result can be written as

(RGν

ν,ε )− ν(RG
ν,ε) =

∑
γ i :1PI ⊆G

V∈γ i

Uγi

(
r.s.p.

∑
(C2,σ2)

(R̄γ
i

ν,ε)
)

(C2,σ2)

×
∑

(C1,σ1)

(RG/γ i

ν,ε )
)

(C1,σ1)
(36)

Note: Through (35) all information on renormalization of (RGν
ν,ε ) is

contained in renormalization of (RG
ν,ε) and the expression (36).



2.3. Basic Bonneau identity(ies)

1. From renormalization theorem follows that singular part of the
amplitude for γi subtracted for all its 1PI subgraphs is a
polynomial in the masses and the external momenta of degree ωγi .
ωγi depends on the canonical dimension δ of the special vertex V
�eld monomial Oδ. So, one can reexpress r.s.p.R̄γiν,ε as (pi are
external momenta of the subgraph γi with ni external lines)

R̄γiν,ε =

ωγi (ni ,δ)∑
r=0

∑
{i1,...,ir}
1≤ij≤ni

1

r !

[ ∂r

∂pµ1

i1
. . . ∂pµr

ir

r.s.p.R̄γ
i

ν,ε

]
pi=0

pµ1

i1
. . . pµr

ir
(37)

2. Rearranging the sum over subgraph γi according to the number
n of external lines of subgraphs Γi of G containing the special
vertex V one obtains



(RGν

ν,ε )− ν(RG
ν,ε)=

n=nmax∑
n=nmin

∑
Γi :V∈Γi⊆G
n ext. lines

ωΓi
(ni ,δ)∑
r=0

∑
{i1,...,ir}
1≤ij≤ni{

r.s.p.
∂r

∂pµ1

i1
. . . ∂pµr

ir

R̄Γi

ν,ε

∣∣∣
pi=0

}[
UΓi

( 1

r !
pµ1

i1
. . . pµr

ir

)
RG/Γi
ν,ε

]
(38)

Here nmin ≥ 2 to have 1PI graph; nmax = nmax(δ, theory) =
maximal number of external lines for a graphh with insertion Oδ(x)
assuring the divergence of the considered term.
3. The insertion of 1

r !p
µ1
i1
. . . pµrir leads to the insertion of the

normal product

(−i)r

r !
N
[ n∏
k=1

[( ∏
iα=k

∂µα

)
Φ(x)

]]
(39)



4. Summing over all graphs G contributing to the general Green
function containing νOδ(x), 〈0|T (N[νOδ(x)]X )|0〉proper , in the
limit ν, ε→ 0 one obtains

〈0|T (N[νOδ(x)]X )|0〉proper

=

nmax (δ)∑
n≥2

ωO(n,δ)∑
r=0

∑
{i1,...,ir}
1≤ij≤ni

{(−i)r

r !

∂r

∂pµ1i1 . . . ∂p
µr
ir

r.s.p.〈0|T (N[Oδ(0)Φ̃(p1) . . . Φ̃(pn)]X )|0〉
proper

|pi=0

}
×〈0|T

(
N
[ 1
n!

n∏
k=1

[( ∏
iα=k

∂µα

)
Φ
]
(x)
]
X
)
|0〉proper (40)

The factor 1/n! is introduced to cancels n! combinations appearing
in evaluation of the matrix element; Φ̃ is Fourier transform of Φ;
bar on the Green function denotes that the overall subtraction has
not been done.



5. Since (40) is valid for any X , it is valid on the operator level

N[νOδ(x)]

=

nmax (δ)∑
n≥2

ωO(n,δ)∑
r=0

∑
{i1,...,ir}
1≤ij≤ni

{(−i)r

r !

∂r

∂pµ1i1 . . . ∂p
µr
ir

r.s.p.〈0|T (N[Oδ(0)Φ̃(p1) . . . Φ̃(pn)]X )|0〉
proper

|pi=0

}
×N
[ 1
n!

n∏
k=1

[( ∏
iα=k

∂µα

)
Φ
]
(x)
]

(41)

which is Bonneau identity.



2.4 The trace anomaly

1. Trace anomaly

Normal product N used in Bonneau identity is not Wick normal
product, but normal product in sense of Collins, the operation
which makes the matrix elements of products of normal ordered
sets of �elds �nite (it includes renormalization and D → 4 limit).
For that reason the contraction with the metric tensor does not
commute with operator N. As a consequence one obtains nonzero
values for

gµν〈0|T (N[gµνP(φ, ∂φ)(x)]X )|0〉 − 〈0|T (N[gµµP(φ, ∂φ)(x)]X )|0〉 (42)

Let's consider this relation on the operator level in more details

gµνN[gµνP(φ, ∂φ)(x)]− N[gµµP(φ, ∂φ)(x)]

= N[νP(φ, ∂φ)(x)] = N[−ĝµµP(φ, ∂φ)(x)] (43)

This equation represents special form of trace anomaly.



Generalization of this relation is

gµνN[Oµνρ...P(φ, ∂φ)(x)]− N[gµνOµνρ...(φ, ∂φ)(x)]

= N[−ĝµνOµνρ...(φ, ∂φ)(x)] (44)

and represent general form of trace anomaly.

2. Bonneu identity for a trace anomaly

2.1 The general form of the regularized Feynman integrand for any
graph H containingspecial vertex V (Oµν)(x) is (pi are external
momenta for the graph H)

IH
Oµν

ν,ε =
∑
i ,j∈vH

piµp
j
νM

H
ij + gµνM

H (45)

2.2 The corresponding matrix element for the contracted special
vertex with ∆ = −ĝµνOµν is

IH
∆

ν,ε = −
∑
i ,j∈vH

p̂i · pjMH
ij + νMH (46)



Using the same methods as for the �nding the basic Bonneau
identites, one �nds the following relation for the contribution of
the labelled forest (C, σ) to the RG∆

ν,ε − (−ĝµν)RGOµν

ν,ε

(RG∆

ν,ε )(C,σ) − (−ĝµν)(RGOµν

ν,ε )(C,σ)

=
∑

γi∈O,V∈vi

Uvi (r.s.p.M̄
v
Oµν
i
ν,ε )(C2,σ2)vi

(RG/γi
ν,ε )(C1,σ1)vi

(47)

The only di�erence in the results for
(RG∆

ν,ε )(C,σ) − (−ĝµν)(RGOµν

ν,ε )(C,σ) in Eqs. (35) (47) is the presence

of r.s.p.(M̄
v
Oµν
i
ν,ε ) in place of the complete one r.s.p.(R̄

v
Oµν
i
ν,ε ). To

characterize the operator whose insertion gives M̄
v
Oµν
i
ν,ε one

introduces a new symmetric metric tensor ǧµν with properties



ǧµµ = 1, ǧµνgνρ = ǧµν ĝνρ = ǧµρ (48)

The insertion N[∆̌] ≡ N[ǧµνOµν ] ≡ ǧµνN[Oµν ] is well de�ned and
gives

R̄
v ∆̌
i
ν,ε ≡

∑
i ,j∈vv1

∨
pi · pj M̄

v
Oµν
i

ij + M̄v
Oµν
i (49)

Comparing with (47) one obtains

r.s.p. M̄
γ
Oµν
i
ν,ε ≡ r.s.p. R̄

γ∆̌
i
ν,ε |ǧ=0 (50)

Therefore, as in the case of simple Bonneau identity

(RG∆

ν,ε )− (−ĝµν)(RGOµν

ν,ε )

=
∑

γi ,V∈γi

Uγi

(
r.s.p.R̄

γ∆̌
i
ν,ε |ǧ=0

)
(RG/γi

ν,ε ) (51)

The remaining steps are the same as for the basic Bonneau identity
and lead to the the G graph contribution



(RG∆

ν,ε )− (−ĝµν)(RGOµν

ν,ε )=
nmax=4∑
nmin=2

∑
Γi :V∈Γi⊆G
n ext. lines

r=4−n∑
r=0

∑
{i1,...,ir}
1≤ij≤n[[

UΓi

( 1

r !
pµ1

i1
. . . pµr

ir

)
RG/Γi
ν,ε

]{
r.s.p.

∂r

∂pµ1

i1
. . . ∂pµr

ir

R̄Γi

ν,ε

∣∣∣
pi=0,ǧ=0

}
(52)

Finally, summing over all graphs G contributing to
〈0|T (N[−ĝµνOµν ](x)X )|0〉prop in the limit ν, ε→ 0 one obtains

〈0|T (N[−ĝµνOµν ](x)X )|0〉prop =
nmax=4∑
nmin=2

r=4−n∑
r=0

∑
{i1,...,ir}
1≤ij≤n

[
r.s.p.

( (−i)r

r !

∂r

∂pµ1

i1
. . . ∂pµr

ir

〈0|T (N[ǧµνOµν ](0)φ̃(p1) . . . φ̃(pn))|0〉prop|pi=ǧ=0

)]
×〈0|T

(
N
[ 1
n!

n∏
k=1

( ∏
iα=k

∂µα

)
φ
]
(x)X

)
|0〉prop (53)

Which is another form of Eq. (2).



3. Bonnau identities and Slavnov Taylor identities

3.1. Regularized action principle

Regularized action principle states the following three equations
hold in dimensionally regularized theories:

1. Arbitrary polynomial variations of the quantized �elds φ,
δφ(x) = δθ(x)P(φ(x)) leave dimensionally invariant dimensionally
regularized the generating functional for the Green functions ZDReg

and

δZDReg [J,K ] ≡
〈
δ(Sfree + SINT )exp

{ i

~
SINT [φ, J,K , λ]

}〉
0

= 0 (54)

where (φ, λ, J and K represent �elds, couplings, sources for the
�elds and sources for their BRST tranformations)



Sfree [φ;λ] = S0 free [φ;λ]

Sint [φ,K , λ] = S0 int [φ,K , λ] + S
(n)
sct [φ,K , λ] + S

(n)
fct [φ,K , λ]

SINT [φ, J,K , λ] = Sint [φ,K , λ] +

∫
dDxJi (x)φi (x) (55)

S
(n)
DReg = Sfree [φ, λ] + Sint [φ,K , λ] (56)

ZDReg [J,K , λ] =

∫
Dφ exp

{ i

~

(
S

(n)
DReg +

∫
Jiφi

)}
(57)

2. Variations of external �elds E (x) ≡ (K (x), J(x)) give〈 δSINT
δE (x)

exp
{
SINT [φ, J,K , λ]}

〉
0

= −i~δZDReg [J,K , λ]

δE (x)
(58)

3. Variation of parameters give〈δ(Sfree + SINT )

δλ
exp

{
SINT [φ, J,K , λ]}

〉
0

= −i~δZDReg [J,K , λ]

δλ
(59)



3.2. Slavnov Taylor identities and anomalous insertions

Although Quantum action principle assures that the action of the
Slavnov operator (SS) on the renormalized e�ective action Γren

(which lives in 4 dimensions) gives zero result up to the anomalies
(or (here BRST) symmetry breaking terms) it is more convenient
to use the regularized action principle to compute the action of the
Slavnov operator (SSD) on theregularized action (ΓDReg ) in D
dimensions and use this result to �nd the corresponding result for
renormalized action de�ned as

LIMD→4ΓDReg [φ,Φ;K ;µ] = Γren[φ,Φ;K ;µ] (60)

Action of the Slavnov operator on the regularized e�ective action
gives (proof not shown)

SSD(ΓDReg ) ≡
∫

dDx(sDφ)
δΓDReg

δφ
+
δΓDReg

δKΦ

δΓDReg

δΦ

= ∆ · ΓDReg + ∆ct · ΓDReg +

∫
dDx

[ δS
(n)
ct

δKΦ(x)
· ΓDReg

]δΓDReg

δΦ(x)
(61)



3.3. Bonneau identities for anomalous insertions in the renormalized action

The three insertion operators ∆, ∆ct and δS
(n)
ct /δKΦ(x) are

sources of spurious and essential anomalies. If they exist in the
theory essential anomalies cannot be removed and in principle the
theory cannot be renormalized. The spurious anomalies can always
be removed by the renormalization procedure. Here we will deal
with the spurious anomalies. If the theory does not have the
essential anomalies the Slavnov operator in 4 dimensions gives zero
result. This situation is similar to the one with the trace anomaly

we studied before. The operators ∆, ∆ct and δS
(n)
ct /δKΦ(x) may

be considered as an e�ect of dimensional regularization, that is as
evanescent operators. The same procedure as done for the trace
anomaly can be performed and it leads to the Bonneau identites
given in the expression for Bonneau identities (2) what is our
second goal:



N[∆̂](x) · Γren

= −
4∑

n=2

∑
{j1...jn}

[ δ(J)∑
r=0

∑
i1...ir

1≤ij≤n

{
(−i)r

r !

∂r

∂pµ1

i1
. . . ∂pµr

ir

(−i~)r.s.p.

×〈φ̃j1(p1) . . . φ̃jn(pn)N[∆̌](q = −
∑

pi )
1PI

K=0

∣∣∣∣
pi=0,ǧ=0

}

×N
[
1

n!

1∏
k=n

{( ∏
{α/iα=k}

∂µα

)
φjk

}]
(x) · Γren

+ext. source part

]
(62)

The more speci�c details on this last topic both from the
theoretical and evaluation point of view will be given in the next
talk by Hèrmes Bélusca.



thank you very much

ευχαριστω πoλυ


