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Goal

small Goal: presentation of the theoretical background for the
following G.Bonneau (1980) and C.P.Martin and D. Sanchez-Ruiz
(1999) formulas:
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1. The BM renormalization of graph amplitudes

1.1 Some basic notions on the graphs

Ggraph G = {V6 = {Vi}, L€ = {tr},e = {en})

OM= #Vn L = 4Ly; hg = # loops

Qe ={1if Vi=Vg; —1if Vi =V}, 0otherw.} r(e) =M -1

{ G's: connected (con.), 1PI, 1PR, non-empty, nontrivial (n.t.), reduced
(G/H)(red.), tree, chord, two-tree, 1Pl-component of G, subgraph,
proper subgraph, non-overlapping subgraphs

O P =0: pe, ee, Ae, Ak k), A(ki: ki), (Ag)i = A(kis kj)/A(k; k)
¢ Symanzik polynomials: d(a) = A(k; k) [Iscp, = 27 [ogr 0

D,§ = A(ki; kj) HeecG = ZTZ Hengz Qy

& k-invariants: d(a), pL Az pe (A= eTae, Ap = el aer)




Labelled forest

k

Labelled forest: G con.; forest; maximal forest C; VH C G def.
M = {H'|H},; C H}, H= H/M; mapping o : C — Lg,
o(H) € H; labelled forest= (C, o); joining unique subset of a-space

(a=A{a1,...,ar})

D(C,0) = A{aay >0Vl ap < aypy for L € HeC} (3)

k
pe = (Pre-sPk—1 | Pks1--.pu—1) €= <

Properties:

1. G with n 1Pl components = C = @ _, C;

2. any maximal forest C may be labelled

3. VHe G thereis 1 —1 corresp. {C,0}6 + ((C1,01)6/H,(C2,02)H)
4. Any C has hg elements

5. G—o(C)isatreein G

6. Uc,) P(C, o) covers whole a~interaction region

7. if (C1,01) # (Ca, 02) overlap has Lebesgue measure zero.



1.2. Basic expressions for an amplitude

T

d(a)

(p) = (2m)"" / exp (ipx) To (x)dx
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Z; are spin structures of propagators; X; are vertex factors.



1.3. Dimensional covariants, normal form and regularization of the amplitude

Use tHVBM scheme :

1. D dim. objects p,, guv. Yu satisfy the same algebra as in 4
dimensions up to g, = D. Even g, €007 = €4p0r although €, )5~
is pure 4-dim. quantity (as well as v3),

2.D — 4 dim. objects introduced, leading to splitting the D dim.
objects to D — 4 dim. ones and 4 dim. ones e.g.

Euv = g,ul/ + (g;w - é}w)

Contraction of D object with D — 4 (4) object represents the
projection of D object to D — 4(4) space, while the contaction of
D — 4 object with 4 object gives zero result.

3. €uvpo and s are defined in 4 dim, space, and
(anti)commutation rules of 75 and ~-matrices as follows



CprpopzpaCrravavy = T § :SIgnﬂ-l I Bhiva(i gl“”ﬂ(f))

TES,
Tr(Vs Vi Vo Vs Via) - = €papopapa T 1
{70{7 75} - {;\\/aa 75} = 2:5/(175

4. Normal form (NF)

4.1 eliminate 75 using (6)

4.2 to eliminate Tr use {v,, 7} = 2gu, Try, =0, Tr1 =4
4.3 antisymetrize product of +'s

4.4 use (5) to remove e-tensors

4.5 eliminate g,,,,'s, 8.,'s performing contractions with them
4.6 use g, = D, gW—4 D, pug.=p-q,

Pruqy = Pubu = Pulu = p-q



5. Regularization

5.1. Interpreting all covariants in the described algebra, considering
the amplitude as formal power series, performing all the derivatives
over uy variables and putting uy = 0 and reducing the expressions
to their normal form one obtains explicit D-dependence of the
amplitude, which can be used to define the counterterms.

5.2 With determined counterterms, one can interpret the
amplitude as a 4-dimensional setting all "hatted" objects to zero.
The Feynman integrand /.(p, u, o) becomes a distribution in M — 1
4-momenta and amplitude, 7 (p, D) a distribution in M
4-momenta, which corresponds to a meromorphic function in the
D-dimensional complex plane having the singularities lying on the
manifolds which correspond to subdiagrams H of the graph G

(re (vi)is degree of Zy (V;) : wy = is degree of divergence)

wH(D) = Dhy—2Ly+ Z rg(—|— Z V,') (8)
¢ i



1.4. Renormalized amplitude in terms of labelled forests

Using 6-th property of the labelled forest the amplitude becomes
Te = limTg. = Iim/dozIGE(p,a)
e—0 ’ e—0 =

— im Y /D(CU) dalc.(p, ) 9)

e—0

(Co)

Using the forest formula, assuming the action of Cy on Ig is
known, and defining Cy so that, for the forest F,
fD(C o) da[lyer(—Ch)lG.c(p,a) = 0 unless F C C, renormalized

amplitude reads (F = {F} is set of all forests of G).

R¢ = limR®, = lim / da —Ch)lg,(p: )
e—0 ’ E%O(;) D(C,O’) Z H

FEF HeF

- m(cz)/; do [[(1 - Cu)l.c(p.a) (10)

(C.0) HeC



1.5. The amplitude using the variables in terms of which the divergent part can be

clearly expressed.

Variables oy are inapropriate for extracting the amplitude
singulaties. New variables appropriate for this purpose
{(t,B) = (th, He C),L € Lz = L5\o(C)} and auxiliary variables
(H and &y are introduced
HHCH’EC tIQ-I’ = tl'2-l€f2-l = CIQ—/ if{=0(H), HeC
Qy = (11)
BeC3 ifeely, HeC
and taking By = 1 for £ € o(H). In terms of new variables the
image of the D(C, o) reads
D(C,o) = (12)
{(£,B)0<tc<o0;0<ty < for H# G; 0< By < for 0 € L}



1.6. Regularized amplitude in terms of (¢, 3) variables

Substituting ay's in terms of (¢, 3) one obtains D(C, o)
contributon to T¢ .

2dt
/ dalGe P, H / dﬁf = VhH WH
( Hec

D(C.7) tecy
0
XZ(_,i)g(B7ﬂ7zaé7V) (13)

g(p,u, t,3,v) beeing an analytic function.

Set of all mappings the H — H/M(H) = H intoduces linear
tranformation of p momenta to the momenta g = Rp associated
with vertices of H. With accompanied decomposition of

u= (uy,? € L, H € C), and transformed incidence matrix eR"
one can express V(p, u, ) in terms of the H momenta g:
Introducing scaled dimensionless quantities §= (gH, quCH, H € C),
i = (i = un/Cy H € C), & = &y = enpCr/Crur, H, H' € C one
obtains V(p, u, ) in terms of dimensionless quantities



=2 |Qe

)

i = (5 T ) = = aduec) ()

Properties of R, eRT, d(a),

1. R is up to permutations triangular, with diagonal values 1, and
detR = +1

2. eRT has the block diagonal structure with: ey = 0 for H if
H 2 H'; ey = incidence matrix eg if H=H'; it H D H', ey
indicates how H' is contamed in H.

3. d(a) = dMpee G, d = K/ (—4) Ve € Lo

4. M as M(t, ) are independent of tg, and polynomials in
remaining variables

5. if for C hy < 1VH € C then d>1sod!and M1 are C®in
(t,B). (e.g. for 1PI G, and (C,0))



Using result (14) one obtains the expression for the D(C, o)
contribution to the regularized amplitude 7¢ , from Eq. (13)

/ dag Jc.(p,u)
D(C,0)

1 On 2dty D —con o
U Lo e a G enin

LeLly HecC
5 0
— V—WH i
- H{/d:uHCH ZH( la[j)}ge(gag7£7§7 ]/)
HeC
V:D74;wH:w,:,7 Z wH/;QG:OO,aH:].,H#G
H' e M(H)
0 2dty >
/d,uH:/ t”/ IT 48 (15)
o CH Jooyer,

Zy are polynomials in t, g.(q,u,t,3,v) is C* in (t, 3), analytic in
v, and exponentially decreasing as tc — oo. Therefore all
divergences are contained in factors t,l;h”_w*’_l.



1.7. Treatment of /=¥~ factors

t}, may be understood as a distribution (generalized function) with
a property it corresponds to a meromorphic function of A\ with
poles at all nonnegative numbers (w):

trh—e=l = ()95 () /(wlvh) + regularat v =0, (16)
@(t)/w! = 0 for w<0

Using it the ty integral is splitted into divergent and regular part

7
/dth;hHinilg(...tH“.)
JO

_ (leth)*l(d%y” tH:0+/0°°(.,.),eg‘dtH (17)
/Om(...),eg,dtH - /Ooo dth:,hH—“H—l[g(...tH...) (18)

wy—1 Wy

D =0, 00— ) (B g0t =0..)))
3= g0 5 oty =0...



1.8. Definition of the counterterm, and definition of the renormalized amplitude
1. Algebra Ag of covariants {p; . }icve, {ue,u}ecce.
2. Def. C(A € Ag) =sing. part at n =4 of NF(A|,=0)
3. Definition of domain for the Cy: Dy:
3.1. Go = {X ={X,Fx,(C,0)x}}, HC G, Fx € F' = {forests of 1PI
proper subgraphs of X}, (C, o) a labelled forest for X/Fx.
32. &6 ={f:Gc — Ac}, f(X) = f(X)(p,u), (p,u) € X/Fx
33. Dy={feé; A‘v’)A( of the form X =
(H,0,(C,0)n), C(f(X)) is a polynomial in p}
4. Definition of counterterm Cy:
4.1. Some defs.: H = (H,0,(C,0)n), X : H=(X,Fx U{H},(C,o)nx);
((C,0),(C,0)H:x) pair of labelled forests for H resp.
H: X = X/Fx U{H} corresponding to (C,0)x,
Ux:q,,—4q, — ely0/oul
G G/H




42. On Dy the operator Cy is defined by

f(X) if either XN H =) or H C H' for some H' € Fx
(f( 7)) if H =X and Fx =0

Un(C(f(Ho))f (X.H)lngfFX,FXU{H}E]—")'(
0 else

(Cuf)(X) = (19)

5. The definition of the renormalized amplitude Rg:
The renormalized amplitude (10) is to be interpreted as

= lim (CZ / dtdp

x [H(l—CH)/G,e(B»Q)}(Ga@»{Cvff})b:o (20)

HeC



1.9. Theorem on renormalizability

1. The singular parts of the subdiagrams H:

1.1. The singular part of the H integral is defined as the divergence
of H integral after removal of singular parts of all its subdiagrams.

1.2. The singular part of G (tg integral)

* dtc uhe

| e tdealt . (21)
0o te

follows from the assumption that all spin polynomials Z; are

homogeneous in g, my and /e so the only dependence on those

variables in g.(t, 8, q) comes in combinations tgq, tcmy, tgy/e.

While for wg < 0 there is no singularity, for wg > 0 the singularity

is proportional to [(wgl)_l(d/dt)“Gge]tGZO which is homogeneous

polynomial of order w¢ in mentioned three variables.

1.3. In similar way one can treat the reduced diagrams G/H

leading to the homogeneous polynomials of order wg — wy

(he = hG/H + hy, Lg = LG/H + Ly).



1.4. Relating the expressions for integrals /g and /g,y intregrals
(proof not shown) one obtains the relation between the expression
for the generalized vertex obtained contracting H to the point

£ P(gn) and integrals /g and I/

Unléiy' Plaglle/m = [(wn!)"H(d/dt) 6], 5o (22)

from which follows that the degree of divergence of Iy is wy.

2. Alternative expression for the renormalized amplitude

Let Xp € F¢ be any Xy C C. Define
X = {H e€C:H C H forsome H e Xp}

After performance of all subtractions corresponding to subgraphs
H € X, the contribution of the (C,0) to Rg ¢ is a sum of the terms
of the form



(RE)c.ore = /d”H(l_ Ch)Ch wHZH(E? >}

X

1

HGC\X

H {f w”'gH'(ﬁH,V)}gX/(%U t,B,v)|a=0

H eXop

I fowt- el )

Hec\x

I (& gm (€ v))ex (@, b, t. B, v)| a0

H' e M(H)

H /d,uH (1- CH)}IG/Hl ORM

HeC\H;

H /d/J,H 1 - CH IG/H O( 56)(C£702)H,-

HEC’
G/H; H; .
(Ru,e/ )(C{,o’l)c/H’_ O (Ru,e)(Cz’,O'z)Hi



(t, B) are scaling variables, i are scaled u's for G /Xy (uy = 0 for
H € X), § are scaled momenta for C\X, gy € JK (set of analytic
functions)7f0r some K, gx is element of abstract algebra of
covariants analytic at v = 0 and exponentially decreasing.
{Hi,....Hyn hH,-} (n in number of 1Pl components of G) is a set
of ordered subgraphs (smaller come first). Hi is the first of them
(smallest for 1P1 G). ((C{,01)G/m;> (C, 04)H,) is the pair of
labelled forests associated with labelled forest (C,0)¢.

3. Theorem on Renormalizability

The singular part of the dimensionally regularized amplitude for
any subgraph H of a graph G consists of poles of order < hy, and
is a polynomial of degree wy in the external momenta of the
graph. Singular part vanishes if H is superficially convergent. The
amplitudes Rg ((p, D) remaining after performing subtractions
corresponding to all 1P| subgraphs are analytic at D = 4 at any
order of pertubation theory. The limit lim._,o R ( exists in the
space of external momenta and is analytic at D = 4, and it
represents the renormalized amplitude Rg p.



2. The basic Bonneau identity; Trace anomaly

2.1. Definition of R®. and inclusion of regularization scale

V,€

1. Definition of K’lfe

RS = [due{ ] [un(-cn)}iSers) @9)

H,eC\G
RS, = (1—CG)R>§;‘e

G

where I7.(p, t, B) is Ife(B, ) expressed in terms of variables (t, 3).

2. inclusion of the regularization scale p

2.1. The regularization scale i can be included only through the
momentum measure, not through the Lagrangian terms
(parameters).

2.2. Renormalization theorem remains the same.

2.3. In MS scheme singular part is independent of .



2.2. Two Lemmas

1. Lemma 1.
For any meromorphic function of v, f(v) with poles at v =0

[=p-p-(WF(W))] = [v x (-pp-(F(W))] = rsp.(f(v)), (29)
[p-p.(Wf(W))] = [vx (p-p.(F(W))] — rs.p.(f(v))  (30)

where p.p.f(v) is singular part of the Laurent series for f(v) near

v =0 and r.s.p. is the residue of the simple pole (coefficient of
1/v) of f(v) at v = 0.

2. Lemma 2.

2.1. Let G be a 1PI graph and Rfé its renormalized amplitude.
2.2. Consider the same graph with v attached to a "special" vertex
V of G, G”, with amplitude and let Rf; be its amplitude. Let
Os(x) be the monomial of fields and its derivatives corresponding
to the "special" vertex V' and ¢ its canonical dimension. The goal

it to evaluate renormalized amplitude of RVG: and show lemma 2:



Lemma 2.

RS — VRS, = Z Uy (rs.p RYRSL (31)

Z Z H(l - CH)U’Yi(r's'p'(’égjs))luc,;e/w (32)

Vi (C’U)G/"/i HeC

) T T . G/vi
Here U,, g, 4, — eG-,0/0ug, is an operator acting on /¢
Proof:

1. divide a labelled forest (C, o) into three forests Fy/, Fa and Fg:

Fv:vieFpevieCand VeV
Fr: d €eFpea el Vdaanda C Vv
FBZbiEFsﬁbiGCandbigF\/,FA




2. Perform all subtractions associated with the forest F4, unaware
of v joined to the special vertex V

v P

(RS coy = (le:/ap)(cho'l)c/apO(Rﬁ,s)(CZ,G’Z)ap (33)

where aP is largest element of the forest Fp

3. The elements of v; € are strictly ordered

vicwc---C vqg = G. Perform the subtraction —C,, first,
according to that ordering, and using (30)

V1 1 _
(Ruc,e/v ) O (Rl‘//e) + UVl (r's'p'(RV,e))(Cz,Uz)vl (legw)(chlfl)g/vl (34)

4. Perform subtractions associated with elements of Fg, which do
not depend on the factor v associated with special vertex V.

5. Repeat the procedure 3. and 4. for all remaining v;-s, each
giving one additional summand corresponding to the second term
in (34).



6. Final result for the (C, o) contribution to (RVG;) - (Rfe)

v

(lee )(C,U) - V(RIJG,E)(C,U)

= Z Uvi(r's'p'(ég,’e))(cbcfz)v,-(RVG,e/Vl)(ChUl)c/V,. (35)
vielC
Vevi

Here one-to-one correspondence between (C, o) and

((C27 U2)V,')7 (Cla Ul)) iS Used'

7. Summing over all labeled forests (each +; is in one of (C,0))
the result can be written as

(RS)—v(RS) = Y Uf(r's'p' > (@;))(czm)

~v:1PI CG (C2,02)
Veyi
x RE/Y ) 36
> (RE) (36)

(C1,01)

Note: Through (35) all information on renormalization of (Rf;) is
contained in renormalization of (leé) and the expression (36).



2.3. Basic Bonneau identity(ies)

1. From renormalization theorem follows that singular part of the
amplitude for 7; subtracted for all its 1Pl subgraphs is a
polynomial in the masses and the external momenta of degree w.,.
w., depends on the canonical dimension § of the special vertex V
field monomial Os. So, one can reexpress r.s.p.R)c as (p; are
external momenta of the subgraph ; with n; external lines)

W, (nj,0) '
Ri= Y Y oo mrspRl] PPl (3D)
e tLop,*...0p; pi=
{i,.. ,Ir}
1<i<n;

2. Rearranging the sum over subgraph ~; according to the number
n of external lines of subgraphs I'; of G containing the special
vertex V one obtains



N=Nmax wl—i(ni’(s)

G” G \_
RED-vRII=D. > > X
n=nmin [:VEr,CG r=0 {ila--w"’}
n ext. lines 1<ii<n;

oo (etp )RS (a0)

Here npmin > 2 to have 1Pl graph; nmax = Nmax (9, theory) =
maximal number of external lines for a graphh with insertion Os(x)
assuring the divergence of the considered term.

3. The insertion of %pgl ...p;" leads to the insertion of the

normal product

r .
Sri

rsp———R
{ papfl“...ap,-,' e

k=1

CO T [( 1 2.9 (39)



4. Summing over all graphs G contributing to the general Green
function containing v Os(x), (0| T(N[rOs(x)]X)|0)P™Pe", in the
limit v, e — 0 one obtains

(0] T (N[ O5(x)]X)[0)P"P<
Nmax(8) wo(n,d
- Z) %:) > { “18’ fir
n>2 r=0 {11 ’r} r! 8p’l 8p’r
1<ii<n;

r.5.p.{0] T(N[Og(O)CB(pl) . é(pn)]X)|o>”'°”e'\,,,.:0}
<o (W[ ] [(H%H )iy (4o)

The factor 1/n! is introduced to cancels n! combinations appearing
in evaluation of the matrix element; ® is Fourier transform of ®;

bar on the Green function denotes that the overall subtraction has
not been done.




5. Since (40) is valid for any X, it is valid on the operator level

N[vOs(x)]
Nmax(8) wo(n,d)

(_I)I’ 8”
DI { i oplt.. . opl"

n>2 r=0  {i,...,ir}

(.5.0.(0 T(N[O5(0)(p1) .- (P X)I0)" " [0 }

A T[T o)) (@)

k=1 ia=k

which is Bonneau identity.



2.4 The trace anomaly

1. Trace anomaly

Normal product N used in Bonneau identity is not Wick normal
product, but normal product in sense of Collins, the operation
which makes the matrix elements of products of normal ordered
sets of fields finite (it includes renormalization and D — 4 limit).
For that reason the contraction with the metric tensor does not
commute with operator N. As a consequence one obtains nonzero
values for

8 (O T(Nlgu P(¢, 09)(x)1X)[0) — (O] T (N[gpu, P(¢, 99)(x)1X)[0) (42)

Let’s consider this relation on the operator level in more details

8w N[guw P(, 00)(x)] — Nlgyuu P (¢, 0¢)(x)]
= N[P(¢,00)(x)] = N[-guuP(¢,09)(x)]  (43)

This equation represents special form of trace anomaly.



Generalization of this relation is
8w N[Ouvp... P(¢,00)(x)] — N[guw Opwp... (¢, 09)(x)]
= N[-8uwOpvp..(, 00)(x)] (44)

and represent general form of trace anomaly.

2. Bonneu identity for a trace anomaly

2.1 The general form of the regularized Feynman integrand for any
graph H containingspecial vertex V(0,,)(x) is (p; are external
momenta for the graph H)

O
=N pielMY + g M (45)
iJEVH
2.2 The corresponding matrix element for the contracted special

vertex with A = —g,,,0,,, is

I;’f = - Zp pJMH—i—l/MH (46)

IJEVH



Using the same methods as for the finding the basic Bonneau
identites, one finds the following relation for the cgntribution of
the labelled forest (C, o) to the RVG: — (—8uw)RE""

A

N Ouv
(Rucfe )(C,U) - (_guV)(Rucfe )(C,a)

_,Onr )
— Z U\,,.(r.s.p.Ml‘,/jE )(sz)v,(Rfe/v’)(cl,al)v, (47)
v, €0,VEy;

The only difference in the results for
(Rff)(cp) - (—gu,,)(RffW)(cva) in Egs. (35) (47) is the presence

Opv Ouv
V- . ~V-
of r.s.p.(Myc ) in place of the complete one r.s.p.(R/e ). To
. . . . —vOm
characterize the operator whose insertion gives M,.c  one

introduces a new symmetric metric tensor g, with properties



gu,u = 1, guugup = g;wézxp = gup (4’8)
The insertion N[A] = N[g,,0,.] = &, N[O,] is well defined and
gives
_,A _ ,Ouv _ Ouv
AN SN R T
ivjevvl
Comparing with (47) one obtains

Ouv

_ _~A
rs.p. M) = rs.p. R)e|g=o (50)
Therefore, as in the case of simple Bonneau identity
GA o GOuv
(RV,E ) - (_g,u‘V)(Rl/,Eu )
_ A
= > Uy (rspRIg=o ) (RE) (51)
vi, Ve

The remaining steps are the same as for the basic Bonneau identity
and lead to the the G graph contribution



A N orv
(RE) = (C&u)(RES )= > > >
Nmin=2 [;:VErCG r=0 {i,....i}
n ext. lines 1<ij<n

r

([ (Gt ool )R {rsp o R

Finally, summing over all graphs G contributing to
(0] T(N[—8uv O] (x)X)|0)P™P in the limit v, e — 0 one obtains

}(52)

pi=0,§=0

Nmax=4 r=4—n

<0‘ T(N[fgu,u O/u/]( ‘O prop - Z Z Z |:I' S. o (

dpad<0| T(N[g2 0l ©(p1) - 3(pn)) 071550 )

<07 (W[5 TT (I )e]0ox) 0 (53

k=1 i,=k

Which is another form of Eq. (2).



3. Bonnau identities and Slavnov Taylor identities

3.1. Regularized action principle

Regularized action principle states the following three equations
hold in dimensionally regularized theories:

1. Arbitrary polynomial variations of the quantized fields ¢,

do(x) = d0(x)P(¢p(x)) leave dimensionally invariant dimensionally
regularized the generating functional for the Green functions Zpgreg
and

6 ZoreglJ, K1 = (3(Saee + Swr)exp{ 7 Swrlo. J. KAl }) = 0 (54)

where (¢, A, J and K represent fields, couplings, sources for the
fields and sources for their BRST tranformations)



5free [¢v >\] = SO free[¢; )\]

Sl KAl = Soineld, K, A + S0, KA + S, K, A
SN, J, Kol = Sine[, K, A + / dPxJi(x)pi(x) (55)
Sihes = Steeldn Nl + Sinel6, K, ] (56)
Zoregl )i KAl = / Do exp {1 (S5s + / sior) b (57)

2. Variations of external fields E(x) = (K(x), J(x)) give
-h5ZDReg[J7 K, A

OSinT B
<6E(x) P {S’NTW’ S K, )\]}>0 T TTSE) (58)
3. Variation of parameters give
O(Stree + SinT) ., 0ZpRegld; K, M]
(22 exp { Sirlo, J. KAL) = —in=PRE = (50)



3.2. Slavnov Taylor identities and anomalous insertions

Although Quantum action principle assures that the action of the
Slavnov operator (SS) on the renormalized effective action I,
(which lives in 4 dimensions) gives zero result up to the anomalies
(or (here BRST) symmetry breaking terms) it is more convenient
to use the regularized action principle to compute the action of the
Slavnov operator (SSp) on theregularized action (Ipgreg) in D
dimensions and use this result to find the corresponding result for
renormalized action defined as

L/MD%4FDReg [¢, d; K; ,U] = rren[(ba o; K; M] (60)

Action of the Slavnov operator on the regularized effective action
gives (proof not shown)

O preg . 0T pReg 0T DRe
e R

655‘?) . 6rDReg
5Ko(x) PRl 50(x)

= A Tpreg + Act - TReg +/de[ (61)



3.3. Bonneau identities for anomalous insertions in the renormalized action

The three insertion operators A, A and 555.:)/5K¢(x) are
sources of spurious and essential anomalies. If they exist in the
theory essential anomalies cannot be removed and in principle the
theory cannot be renormalized. The spurious anomalies can always
be removed by the renormalization procedure. Here we will deal
with the spurious anomalies. If the theory does not have the
essential anomalies the Slavnov operator in 4 dimensions gives zero
result. This situation is similar to the one with the trace anomaly
we studied before. The operators A, A and 55§,’_])/5K¢(x) may
be considered as an effect of dimensional regularization, that is as
evanescent operators. The same procedure as done for the trace
anomaly can be performed and it leads to the Bonneau identites
given in the expression for Bonneau identities (2) what is our
second goal:



TSRS TP o
(L)oo
~+ext. source part} (62)

The more specific details on this last topic both from the
theoretical and evaluation point of view will be given in the next
talk by Hérmes Bélusca.



thank you very much
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