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GFP

NGFP

M. Reuter, F. Saueressig 
Phys. Rev. D65, 065016

Functional (non-perturbative) RG

→  Fixed points of the RG flow:

• GFP  →  saddle point
• NGFP  →  UV-attractor

→  Extended truncations:

• 3 relevant directions
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Non-perturbative effects could be important for the understanding of fundamental 
properties of quantum field theories, such as renormalizability and unitarity

Non-perturbative unitarity: Although quadratic gravity has a ghost, quantum effects could make the 
ghost unstable, thus restoring unitarity

Salam, Strathdee (1978)
E. S. Fradkin, A. A. Tseytlin (1981)
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Cutting rules
T’Hooft, Veltman (1973)
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- Unitarity condition 

- Optical theorem

Unitarity

If the space of asymptotic states contains ghosts

⇒ Loss of physical unitarity
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- Spectral representation
For a stable particle, the 

spectral density is a 

Dirac delta 

Complex poles
Unstable particlesReal poles (stable particles)

Spectral representation and unitarity

Bare 
propagator

self-energyDressed 
propagator

Salam, Strathdee (1978), Fradkin, Tseytlin (1981) 
Donoghue, Menezes (2019)
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Functional Renormalization Group

C. Wetterich. Phys. Lett. B 301:90 (1993)
M. Reuter. Phys. Rev. D. 57 (2): 971 (1998)

Solving the quantum theory is equivalent to solve the functional renormalization group equation
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Problem: Need to work within truncation ⇒ 
higher-derivatives ⇒ Poles

Questions:
- What is the nature of these poles?
- Are these poles removed by quantum effects? 
- Connection between poles in finite truncation and 

poles in the effective action?
- How do we understand, within truncation, if these 

poles are dangerous for unitarity?

Solving the quantum theory is equivalent to solve the functional renormalization group equation
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Boulware, Gross (1984)
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What happens within truncations?

If all terms are 

included

Truncation of the action N (derivative expansion of the action)
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● Complex poles
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It is a pole for N odd 
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What happens within truncations?

Persistent ghost pole at

It is a pole for N odd 

The apparent ghost pole is 

generated by the convergence 

properties of the function P(z)

The answer lies in the residue!



36

What happens if the full theory has a stable ghost?

Flipping the sign of the log generates a stable 

ghost, living in the principal branch of the Log



37

Flipping the sign of the log generates a stable 

ghost, living in the principal branch of the Log

● Real poles
● Complex poles

Two persistent ghost poles!

What happens if the full theory has a stable ghost?
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Flipping the sign of the log generates a stable 

ghost, living in the principal branch of the Log

Ghost of the full theory 
→ persistent negative residue

Fake ghost (generated by convergence 
properties of P(z))
→ residue approaches zero

What happens if the full theory has a stable ghost?
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Summary

● We discussed unitarity from the point of view of the Functional Renormalization Group

● Including all quantum fluctuations is crucial for unitarity: it determines what states appear in the 
sum over states in the optical theorem

● Truncations / derivative expansion of the action ⇒ fictitious poles

● The fictitious pole is however a fake ghost: its residue approaches zero when a sufficiently large 
number of terms in the action are included. 

● Stable ghosts in the full theory are instead characterized by a persistent negative residue.

● Most reliable instrument to check unitarity in full glory: fully-quantum effective action
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