Aspects of non-perturbative unitarity in Quantum Field Theory

Alessia Platania

Heidelberg University

Corfu Summer Institute 2019

18 September 2019 Corfu

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

- Einstein-Hilbert gravity: unitary, but *perturbatively non-renormalizable*
 - Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4x\sqrt{-g} \left\{ \gamma R+lpha R_{\mu
u}R^{\mu
u}-eta R^2
ight\}$$

-

Stelle, PRD 16 (1977) 953-969

- Einstein-Hilbert gravity: unitary, but *perturbatively non-renormalizable*
 - Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4x\sqrt{-g}~\{\gamma R+lpha R_{\mu
u}R^{\mu
u}-eta R^2\}~,$$

Stelle, PRD 16 (1977) 953-969

- Wilsonian renormalization group:

-

- \rightarrow Perturbative approaches could fail in the description of the UV behavior of a theory
- → **Asymptotically Safe Gravity**: gravity could be *non-perturbatively* renormalizable

Weinberg, 1976

- Einstein-Hilbert gravity: unitary, but *perturbatively non-renormalizable*
 - Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4x\sqrt{-g}\;\{\gamma R+lpha R_{\mu
u}R^{\mu
u}-eta R^2\}\;,$$

Stelle, PRD 16 (1977) 953-969

- Wilsonian renormalization group:

-

- → Perturbative approaches could fail in the description of the UV behavior of a theory
- → Asymptotically Safe Gravity: gravity could be *non-perturbatively* renormalizable Weinberg, 1976

 $\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

- Einstein-Hilbert gravity: unitary, but *perturbatively non-renormalizable*
 - Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4x\sqrt{-g}\;\{\gamma R+lpha R_{\mu
u}R^{\mu
u}-eta R^2\}\;,$$

Stelle, PRD 16 (1977) 953-969

- Wilsonian renormalization group:

-

- \rightarrow Perturbative approaches could fail in the description of the UV behavior of a theory
- → **Asymptotically Safe Gravity**: gravity could be *non-perturbatively* renormalizable

Weinberg, 1976

Non-perturbative effects could be important for the understanding of fundamental properties of quantum field theories, such as **renormalizability and unitarity**

- Einstein-Hilbert gravity: unitary, but *perturbatively non-renormalizable*
 - Quadratic gravity is a renormalizable theory, but has one massive spin-2 ghost

$$S=-\int d^4x\sqrt{-g} \left\{ \gamma R+lpha R_{\mu
u}R^{\mu
u}-eta R^2
ight\} \,,$$

Stelle, PRD 16 (1977) 953-969

- Wilsonian renormalization group:

-

- \rightarrow Perturbative approaches could fail in the description of the UV behavior of a theory
- → Asymptotically Safe Gravity: gravity could be *non-perturbatively* renormalizable

Weinberg, 1976

Non-perturbative effects could be important for the understanding of fundamental properties of quantum field theories, such as **renormalizability and unitarity**

Non-perturbative unitarity: Although quadratic gravity has a ghost, *quantum effects* could make the ghost unstable, thus restoring unitarity

Salam, Strathdee (1978) E. S. Fradkin, A. A. Tseytlin (1981)

- Unitarity condition

 $S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$

- Unitarity condition

$$S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$$

- Optical theorem

$$2{
m Im}\{T\}=T^{\dagger}T\geq 0$$
 .

- Unitarity condition

$$S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$$

- Optical theorem

$$2\,{
m Im}\{\langle f|T|i
angle\}=\langle f|T^{\dagger}T|i
angle$$

- Unitarity condition

$$S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$$

- Optical theorem $2 \operatorname{Im} \{ \langle f | T | i \rangle \} = \langle f | T^{\dagger} T | i \rangle \qquad \underset{\mathsf{T}^{\mathsf{Hooft, Veltman (1973)}}}{\operatorname{Cutting rules}} \\ -2Re \qquad \overbrace{iT} = \Sigma_n \qquad \overbrace{T^{\dagger} | n \rangle} \langle n | T \qquad [n \rangle \in \mathcal{F}$

- Unitarity condition

$$S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$$

- Optical theorem

$$2\,{
m Im}\{\langle f|T|i
angle\}=\langle f|T^{\dagger}T|i
angle$$

- Unitarity condition

$$S^{\dagger}S = \mathbb{I} \qquad S = \mathbb{I} + iT$$

- Optical theorem

$$2\,{
m Im}\{\langle f|T|i
angle\}=\langle f|T^{\dagger}T|i
angle$$

 $|n
angle\in \mathcal{F}$

If the space of asymptotic states contains ghosts

$$\langle m | n
angle = (-1)^{lpha_n} \delta_{mn}$$
 " \mathbb{I} " $= \sum_n (-1)^{lpha_n} | n
angle \langle n |$

⇒ Loss of physical unitarity

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a **Dirac delta**

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a **Dirac delta**

- Dressed propagator

$$\Delta(q^2) = i \left\{ \sum_n rac{R_n}{q^2 - m_n^2} + \sum_n \left(rac{ ilde{R}_n}{q^2 - (ilde{m}_n^2)} + rac{ ilde{R}_n^*}{q^2 - (ilde{m}_n^2)^*}
ight) + \int_{m_{th}^2}^\infty rac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2
ight\}$$

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a **Dirac delta**

- Dressed propagator $\Delta(q^2) = i \left\{ \sum_n \frac{R_n}{q^2 - m_n^2} + \sum_n \left(\frac{\tilde{R}_n}{q^2 - (\tilde{m}_n^2)} + \frac{\tilde{R}_n^*}{q^2 - (\tilde{m}_n^2)^*} \right) + \int_{m_{th}^2}^{\infty} \frac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2 \right\}$ Real poles (stable particles)
Complex poles
Heatable metiodes

Unstable particles

Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

For a **stable particle**, the spectral density is a Dirac delta

Dressed propagator $\Delta(q^2) = i \left\{ \sum_n \frac{R_n}{q^2 - m_n^2} + \sum_n \left(\frac{\tilde{R}_n}{q^2 - (\tilde{m}_n^2)} + \frac{\tilde{R}_n^*}{q^2 - (\tilde{m}_n^2)^*} \right) + \int_{m_{th}^2}^{\infty} \frac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2 \right\}$

Real poles (stable particles)

Complex poles

Unstable particles

$$ho = \sum_n R_n \delta(q^2 - m_n^2) \quad R_n \ge 0$$
 $-2Re \quad iT \quad = \Sigma_n \quad T^{\dagger} \ln T$

Salam, Strathdee (1978), Fradkin, Tseytlin (1981) Donoghue, Menezes (2019)

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

Donoghue, Menezes (2019)

For a **stable particle**, the spectral density is a **Dirac delta**

Dressed propagator $\Delta(q^2) = i \left\{ \sum_n \frac{R_n}{q^2 - m_n^2} + \sum_n \left(\frac{\tilde{R}_n}{q^2 - (\tilde{m}_n^2)} + \frac{\tilde{R}_n^*}{q^2 - (\tilde{m}_n^2)^*} \right) + \int_{m_{th}^2}^{\infty} \frac{\sigma(\mu^2)}{q^2 - \mu^2} d\mu^2 \right\}$ **Complex poles** Real poles (stable particles) Unstable particles $ho = \sum_n R_n \delta(q^2 - m_n^2) \quad R_n \geq 0$ $\Delta(q^2)=rac{\imath}{q^2-m_a^2}$ $-2Re \quad iT = \sum_{n} \quad T^{\dagger}(n) \quad in$ Bare propagator Salam, Strathdee (1978), Fradkin, Tseytlin (1981)

- Spectral representation

$$\Delta(q^2)=i\int_0^\infty d\mu^2 rac{
ho(\mu^2)}{q^2-\mu^2+iarepsilon} \qquad
ho(q^2)=rac{1}{\pi}{
m Im}\{i\Delta(q^2)\}$$

Donoghue, Menezes (2019)

For a **stable particle**, the spectral density is a **Dirac delta**

- Dressed propagator

$$\Delta(q^{2}) = i \left\{ \sum_{n} \frac{R_{n}}{q^{2} - m_{n}^{2}} + \sum_{n} \left(\frac{\tilde{R}_{n}}{q^{2} - (\tilde{m}_{n}^{2})} + \frac{\tilde{R}_{n}^{*}}{q^{2} - (\tilde{m}_{n}^{2})^{*}} \right) + \int_{m_{th}^{2}}^{\infty} \frac{\sigma(\mu^{2})}{q^{2} - \mu^{2}} d\mu^{2} \right\}$$
Real poles (stable particles)

$$\rho = \sum_{n} R_{n} \delta(q^{2} - m_{n}^{2}) \quad R_{n} \ge 0$$
Unstable particles

$$\rho = \sum_{n} R_{n} \delta(q^{2} - m_{n}^{2}) \quad R_{n} \ge 0$$

$$\Delta(q^{2}) = \frac{i}{q^{2} - m_{0}^{2}} \longrightarrow \Delta(q^{2}) = \frac{i}{q^{2} - m_{0}^{2} - \Sigma(q^{2})}$$
Bare propagator

$$Propagator$$
Dressed propagator

Solving the **quantum theory** is equivalent to solve the functional **renormalization group equation**

$$k\partial_k\Gamma_k=rac{1}{2}{
m STr}\left\{\left(\Gamma_k^{(2)}+{\cal R}_k
ight)^{-1}\,k\partial_k{\cal R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

Solving the **quantum theory** is equivalent to solve the functional **renormalization group equation**

$$k\partial_k\Gamma_k=rac{1}{2}{
m STr}\left\{\left(\Gamma_k^{(2)}+{\cal R}_k
ight)^{-1}\,k\partial_k{\cal R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

Solving the **quantum theory** is equivalent to solve the functional **renormalization group equation**

$$k\partial_k\Gamma_k=rac{1}{2}{
m STr}\left\{\left(\Gamma_k^{(2)}+{\cal R}_k
ight)^{-1}\,k\partial_k{\cal R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

Solving the **quantum theory** is equivalent to solve the functional **renormalization group equation**

$$k\partial_k\Gamma_k=rac{1}{2}{
m STr}\left\{\left(\Gamma_k^{(2)}+{\cal R}_k
ight)^{-1}\,k\partial_k{\cal R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

Solving the **quantum theory** is equivalent to solve the functional **renormalization group equation**

$$k\partial_k\Gamma_k=rac{1}{2}{
m STr}\left\{\left(\Gamma_k^{(2)}+{\cal R}_k
ight)^{-1}\,k\partial_k{\cal R}_k
ight\}$$

C. Wetterich. *Phys. Lett. B* 301:90 (1993) M. Reuter. *Phys. Rev.* D. **57** (2): 971 (1998)

Solving the quantum theory is equivalent to solve the functional renormalization group equation

$$k\partial_k\Gamma_k=rac{1}{2}\mathrm{STr}\left\{\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}\;k\partial_k\mathcal{R}_k
ight\}$$

Problem: Need to work within truncation \Rightarrow higher-derivatives \Rightarrow Poles

Questions:

- What is the nature of these poles?
- Are these poles removed by quantum effects?
- Connection between poles in finite truncation and poles in the effective action?
- How do we understand, within truncation, if these poles are dangerous for unitarity?

All terms compatible with symmetry and field content of the theory are generated

All quantum fluctuations are integrated out \rightarrow non-locality Incorporates all quantum effects \rightarrow fully-dressed quantities This is the object to use to check **unitarity**!

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^2 - q^2}{m_{th}^2}\right) - \frac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^2 - q^2}{m_{th}^2}\right) - \frac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2 - rac{lpha}{3\pi}q^2 \log \left|rac{-k^2 + m_{th}^2}{m_{th}^2}
ight| - rac{q^4}{M^2} + q^2 rac{ilpha}{3} heta(k^2 - m_{th}^2)}
ight\}}igg\{\eta_{lphaeta} - rac{q_lpha q_eta}{q^2}igg\}$$

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^2 - q^2}{m_{th}^2}\right) - \frac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2 - rac{lpha}{3\pi}q^2 \log \left|rac{-k^2 + m_{th}^2}{m_{th}^2}
ight| - rac{q^4}{M^2} + q^2 rac{ilpha}{3} heta(k^2 - m_{th}^2)} iggl\{\eta_{lphaeta} - rac{q_lpha q_eta}{q^2}iggr\}$$

Absorptive part of the propagator

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^2 - q^2}{m_{th}^2}\right) - \frac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2 - rac{lpha}{3\pi}q^2 \log \left|rac{-k^2 + m_{th}^2}{m_{th}^2}
ight| - rac{q^4}{M^2} + q^2 rac{ilpha}{3} heta(k^2 - m_{th}^2)} iggl\{\eta_{lphaeta} - rac{q_lpha q_eta}{q^2}iggr\}$$

Absorptive part of the propagator

Take the one-loop effective action as a toy model for the full effective action

$$\Gamma_{QED} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} P(\Box) F^{\mu\nu} \right\} \qquad P(q^2) = 1 - \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^2 - q^2}{m_{th}^2}\right) - \frac{q^2}{M^2} \qquad m_{th} = 2m_f$$

Boulware, Gross (1984)

In this case the propagator has one massless pole and one massive ghost pole

$$\Delta_{lphaeta}(q^2) = -rac{i}{q^2 - rac{lpha}{3\pi}q^2 \log \left|rac{-k^2 + m_{th}^2}{m_{th}^2}
ight| - rac{q^4}{M^2} + q^2 rac{ilpha}{3} heta(k^2 - m_{th}^2)}
ight\}}igg\{\eta_{lphaeta} - rac{q_lpha q_eta}{q^2}igg\}$$

Absorptive part of the propagator

Truncation of the action N (derivative expansion of the action)

$$P^N(z)=1-z+rac{lpha}{3\pi}\sum_{n=1}^Nrac{z^n}{n}$$

$$P^N(z) = 1 - z + rac{lpha}{3\pi} \sum_{n=1}^N rac{z^n}{n} \qquad z = q^2/m_{th}^2 \qquad lpha = 1 \qquad \Delta(q^2) \sim rac{i}{q^2 P^N(q^2)}$$

The apparent ghost pole is generated by the convergence properties of the function P(z)

Persistent ghost pole at

$$q^2 \sim -m_{th}^2$$

It is a pole for N odd

$$P^{N}(z) = 1 - z + \frac{\alpha}{3\pi} \sum_{n=1}^{N} \frac{z^{n}}{n} \qquad z = q^{2}/m_{th}^{2} \qquad \alpha = 1 \qquad \Delta(q^{2}) \sim \frac{i}{q^{2}P^{N}(q^{2})}$$
The apparent ghost pole is generated by the convergence properties of the function P(z)
$$\prod_{n=1}^{m} \frac{m_{th}^{2}}{m_{th}^{2}} \qquad \prod_{n=1}^{n} \frac{Re q^{2}}{q^{2}} \qquad \prod_{n=1}^{q} \frac{q^{2}}{q^{2}} \prod_{n=1}^{q} \frac{q^{2}}{q} \prod_{n=1}^{q} \frac{q^{$$

Fake ghost living in the principal branch of the Log (not appearing in the full theory)

the branch cut (cannot be seen in any perturbative expansion)

100

Ν

$$P^{N}(z) = 1 - z + \frac{\alpha}{3\pi} \sum_{n=1}^{N} \frac{z^{n}}{n} \qquad z = q^{2}/m_{th}^{2} \qquad \alpha = 1 \qquad \boxed{\Delta(q^{2}) \sim \frac{i}{q^{2}P^{N}(q^{2})}}$$
How to determine whether a pole appearing in truncation is a genuine degree of freedom of the full theory?
The apparent ghost pole is generated by the convergence properties of the function P(z)
$$\frac{1}{q^{2}} = \frac{1}{m_{th}^{2}} + \frac{1}{m_{th}^{2}} +$$

What happens if the full theory has a stable ghost?

$$P(q^2) = 1 + rac{lpha}{3\pi} {
m log}\left(rac{m_{th}^2-q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \quad \longrightarrow$$

Flipping the sign of the log generates a **stable ghost**, living in the principal branch of the Log

What happens if the full theory has a stable ghost?

$$P(q^{2}) = 1 + \frac{\alpha}{3\pi} \log\left(\frac{m_{th}^{2} - q^{2}}{m_{th}^{2}}\right) - \frac{q^{2}}{M^{2}} \longrightarrow$$
Flipping the sign of the log generates a **stable ghost**, living in the principal branch of the Log

$$\int_{0}^{2} \int_{0}^{\frac{1}{2}} \int_{0}^{\frac{$$

37

What happens if the full theory has a stable ghost?

$$P(q^2) = 1 + rac{lpha}{3\pi} {
m log}\left(rac{m_{th}^2-q^2}{m_{th}^2}
ight) - rac{q^2}{M^2} \quad \longrightarrow$$

Flipping the sign of the log generates a **stable ghost**, living in the principal branch of the Log

Ghost of the full theory \rightarrow persistent **negative residue**

Fake ghost (generated by convergence properties of P(z)) \rightarrow residue approaches zero

Summary

- We discussed **unitarity** from the point of view of the Functional Renormalization Group
- Including *all quantum fluctuations* is crucial for unitarity: it determines what states appear in the sum over states in the **optical theorem**
- **Truncations** / derivative expansion of the action \Rightarrow **fictitious poles**
- The fictitious pole is however a fake ghost: its **residue approaches zero** when a sufficiently large number of terms in the action are included.
- Stable ghosts in the full theory are instead characterized by a persistent negative residue.
- Most reliable instrument to check *unitarity in full glory*: fully-quantum effective action

