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1. Introduction ® Motivation



1.1. Introduction

e AdSd4/CFTd-1: attractive examples of gauge/gravity duality

e -
- d=5: [Maldacena-1998]

i
i type IIB on AdS5xS5

N - e gios 0 o - " G e gias o

‘(=>" N=4SU(N)SYM in 4d.

- Intriguing: integrabile structures

A comprehensive review:
[Beisert et al-2010]

allows us to determine physical quantities exactly,
even at finite coupling, without relying on supersymmetries.
e.g. amplitudes, anomalous dimensions, spectrum of strings etc.

- Significant: integrable deformations

construct a variety of examples keeping the integrability

— Want to follow a systematic approach for such deformations.
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[Klimcik], [Delduc-Magro-Vicedo],

1 ° 2 ® Ya n g - BaXte r (YB ) d efo rm ati O ns [Hoare, Tseytlin], [Matsumoto-Yoshidal...

- labelled by classical r-matrix = a solution of classical YB equation (CYBE).

AN SR A S R I P O SO ST A I PG S I N NS o e

(712, T13] + [r12,723] 4 [r13,723] = 0

- a systematic way of performing integrable deformations:

e e o TR e

[Kyono-Yoshida]
[Arutyunov-Borsato-Frolov] etc...

00 27
S =— \Z)TC / dT/ do(y*® — €**)STr [Aa d o 1 : (Ab)]
— 00 0

1. Put classical r-matrix into the YB deformed sigma model action:

T const. deformation parameter

2. Rewrite the action to read off the deformed background data:
00 2m
\44)\76 / dT/ do [’yabGMNaaXMﬁbXN — e“bBMN(’)aXMﬁbXN]
— 00 0

VA
2

S =—

1O ha’bcsu — ea’baé‘]] eZLFme‘]K@K + O(6%)

1 1
With DgJ = 51‘](8a — ngmfmn) + gO'?I)JGZLHmonnp
€<I>
8

1
[eI TPE, + —0]{/TPI"F,,, +

1J t

2 - 5!
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[Klimcik], [Delduc-Magro-Vicedo],

1 ° 2 ® Ya n g - BaXte r (YB ) d efo rm ati O ns [Hoare, Tseytlin], [Matsumoto-Yoshidal...

[Borsato-Wulff]

o o« o o ) 1 ..
ﬁ classical r-matrix is unimodular: r*7[b;,b;] =0 for r=_r"b; Ab;

2

v¢ The deformed background is a solution of the standard SUGRA.

¢ The deformations can be related to “TsT"”-transformation.

[Matsumoto-Yoshida][Osten-van Tongeren]

T const. deformation parameter

2. Rewrite the action to read off the deformed background data:

o0 2
e \TC / dr / do lyabGMNaaXM(?bXN — e“bBMN(’)aXMabXN]
— 00 0
— V26, 47517 — etk e, DY KO + O(6")

1
with D!/ =670, — ~w™T,,,) + gagje?Hmonnp

1 1
Tal =€ rpqrstqumt] en' Lo




Y ® [Lunin-Maldacena]
1.3. What is a TsT-transformation? i
- Suppose that type IIB is compactified on the 2-torus.
 SL(2,Z) x SL(2,Z) symmetry (geometric and non-geometric)
T* T = Bis +1,/912)

! 2 isometry directions

TsT-transformation (u, v) ) consists of 3 steps:

deformation parameter

1. Tduality w— @ [
(U;U))\= 2. Shift U%’U—F)\a
3. [-duality o — u

-
1+ M7

' Indeed, Kihler structure transforms as 7 —



[Ganor-Ramgoolam-Taylor]
1.4. What is an M- theory TsT‘? M-theory TAuality: (s aharony]

. - Suppose that M-theory is compact|f|ed on the 3-torus.
 SL(3,Z) x SL(2,Z) symmetry (geometric and non-geometric)
T° T = Cias +i\/g(123)

. . . =T
! 3 isometry directions

M-theory TsT (U, v, w))\ consists of D steps:

1. reduction on W
. - deformation parameter
2. T-duality u — U (

— 3. shift v — v+ AU
4. T-duality U — U

5. oxidationon W

(U, v, w))\

M
M T

14 ATM

' Indeed, Kéhler structure transforms as 7



[Lunin-Maldacena]

1.3. What is a TsT-transformation? oou

- Suppose that type IIB is compactified on the 2-torus.
 SL(2,Z) x SL(2,Z) symmetry (geometric and non-geometric)

T* T = B2 +1,/9(12)

! 2 isometry directions

TsT-transformation (u, v) ) consists of 3 steps:

deformation parameter

1. Tduality w— @ [
2. Shift v =+ A
3. T-duality « —-u

[Hellerman-Orlando-Reffert] ;‘
[Lambert-Orlando-Reffert]
[Lambert-Orlando-Reffert-YS] ]

Nothing but string theory )
(deformation w/ less SUSYs)

of Q-deformation:
Known: how to preserve SUSYs explicitly
(=at the level of Killing spinors)



1.4. Relation to non-commutativity (skipped)

e Another interesting point for YB deformation

Via field redefinition, one obtains the relations:
| (open = closed)

Gun = (9— Bg 'B)un

o det(g + B) t/2
=95\~ deta

OMY =—((9+B)"'Blg—B)"")

M N

Tbi-vector: measures the non-commutativity

10



1.4. Relation to non-commutativity (skipped)

e Another interesting point for YB deformation

Via field redefinition, one obtains the relations:

(open = closed)
[Araujo-Bakhmatov-Colgain-Sakamoto-Jabbari-Yoshida] §

Gun = (g — Bg_lB)MN — undeformed AdS5xS5 metric

1/2
Gs = gs (det(g T B)> —>» constant
detg

_ _1\MN
MY = —((g + B) 13(9 — B) 1) . ——p only relevant parameter. |

Tbi-vector: measures the non-commutativity
In summary,

OMN _ MN 4 Cl. r-matrix measures

the non-commutativity
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1.3. Motivations

¢ Interplay between TsT, NC, and supersymmetry (= Killing spinor).

e We want to revisit the TsT deformation
 from the view point of Killing spinors.

e We present a concise recipe for reconstructing Killing spinors
~ for TsT-deformed backgrounds.

 Through the case by case study, we expect to find (empirically)
~ some general formula of Killing spinors applicable for other
YB deformations.



The rest of my talk

2. T-duality versus SUSY

3. Recipe for Killing spinors via TsT and examples

4. Comments

13



2. T-duality versus supersymmetry

Prerequisites:
Buscher rules, SUSY variations in type [l SUGRA



2. A wonderful reference
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We study the interplay between T" duality, compactification, and supersymmetry. We prove that
when the original configuration has unbroken space-time supersymmetries, the dual configuration

also does if a special condition is met: the Killing spinors of the original configuration have to be

independent of the coordinate which corresponds to the isometry direction of the bosonic fields used

for duality. Examples of “losers” (T duals are not supersymmetric) and “winners” (T duals are

supersymmetric) are given.

PACS number(s): 11.30.Pb, 04.65.+€, 04.70.Dy, 04.30.—w

I. INTRODUCTION

Target-space duality (7' duality) is a powerful tool for
generating new classical solutions of string theory. It can
be used in the o model context to generate new exact
solutions but also in the context of the leading order in
o' effective action to generate new solutions to the low-
energy equations of motion. Some of these solutions have
unbroken supersymmetries. The purpose of this paper is
to study the generic relation between the supersymmetric
properties of the original configuration and the dual one
in the context of the low-energy effective action.

It has been observed that in some cases T duality pre-

N Nro aha Avs ASRAAY " Nell«-KNNONXXIMN_A ATNNIA

condition that guarantees the preservation of unbroken
supersymmetries that it is not satisfied by these coun-
terexamples. We will perform this analysis in the con-
text of N = 1, d = 10 supergravity without vector fields.
More general results involving Abelian and non-Abelian
vector fields and higher order o’ corrections will be re-
ported elsewhere [8]. Some of the results presented in
this paper were announced in [9].

The first counterexample known to us appears in a

‘very simple case. We have found some time ago! that

if one starts with ten-dimensional flat space (which has
all supersymmetries unbroken) in polar coordinates and
performs a T-duality transformation with respect to the
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2. Example. Ioser S and WiNnNer’s Cases  «isershoctKalioshonin

Loser' take a flat space in type IIA

ds® = —dt* + dp® + p*dp* + Z dotdz!
1=3

T-dualizel
| 9

ds® = —dt* + dp® + p2d@ + Y _da'da’
®=—Inp =3

. Winner: use two polar coodinates

ds? = —dt® + dp? + p?d¢? + dp? + p2de2 + defdx

</5_

€0

" Consider T-duality in quri

(p+ = d1 = ¢p2)

[ Y¢ Non-zero solution is found if 05, € =0,

1 ) g, St
€4 = F¢+H¢+ o

To be more precise, \/g¢+ bt 1/2 SUSY preserved!

e =TII7te_ @ié
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2. Example° Ioser S and WiNnNer’s Cases  «isershoctKalioshonin

Loser' take a flat space in type IIA

ds® = —dt* + dp® + p*dp* + Z dotdz!
1=3

T-dualizel
| 9

ds® = —dt* + dp® + p2d@ + Y _da'da’
®=—Inp =3

L Winner: use two polar coodinates

9
ds® = —dt® + dp} + pide? + dpj + p3de; + > da'da’
I1=5

€E—= ¢ 2 (Fp1¢1+rpz¢2)e 2 (F91¢1 FP2¢2)

€0

" Consider T-duality in gb+i

I < Non-zero solution is found if 04, ¢ =0. (@2 = 61 % 92)

1

- - b
To be more precise, €+ \/g¢+ -, F¢+ ey

e =TII%e_

1%+ :a projector orthogonal to



[Kosmann, 1971] 1 7
[Kelekci-Lozano

2. Remark on Dérivées de Lie des spineurs wmoncogm

[Sfetsos-Thompson]

Indeed, the condition to remove the dependence of isometry directions
. from the Killing spinor can be written using Kosmann Lie spinorial derivative: !

I :
h
|

1 .
Lie=K"V,, e+ Z(dK)mnane =0

(K is a Killing vector of the isometry direction to be T-dualized.) |

‘ In general, fOI" type lHA < type 1IB via T-duality See [Kelekci-Lozano-Macpherson-Colgain]

A=0060=0 if A=0,00=0, and Ly e =0

and

M
_I_
|
|
=]
Q
M
_I_

(indep. of isometry directions)

used for IST! = ——



3. Recipe for Killing spinors
via TsT



3.1. Recipe for the Killing spinor

' Take the TsT transformation denoted by (u, U) ) .
| In summary,

v¢ Killing spinors <*) after TsT:

G(ﬁn) — 1 f(ﬁn) 1 fw(in) HTSTE(in) < initial, undeformed
N (fin) (in) " '
guu guu

((B) _ [yTsT G

‘f v¢ The insertion of projector(s) I1'*! gets rid of u/v-dependence.

; ¢ The projector can be understood the vanishing Kosmann Lie deriv. Lz ¢ = ( ::_,

19



3.2 Case by Case study (skipped)

. ¢ Since TsT needs two compact directions (u, U))\ ,

" we can have a couple of possibilities for the action of U(1):

| For flat space: susy:
(i) U(1)'s act freely on both u and v. completely preserved
(ii) U(1)'s act freely on u, but not on v. Mixing needed

(iii) U(1)'s do not act freelyonu orvatall.  Mixing needed

:? For AdS5xS5, (ii) and (iii), of course.
- 3¢ (ii) and (iii) differ from the types of NC parameters.

20



3.2 Example: Lunin-Maldacena like
[Lunin-Maldacena]

3

ds? = —(dz®) + (da")* +  _(dp} + pide}) + (d®)?

1=1

Take a 10d flat space:

Aftermtroducmg br=v—¢1, dr=vt+ei+ter, ¢3=1v— 2,

dO the TsT ' (8017 902)>\ (2 7= (ni2 4+ n3a) A (N34 + n56) ).

Using the recipe,

E(ﬁn) _ 1—|—>\(,01,02F¢1¢2 —|—,02,03F¢2¢3—|—,03,01F¢3¢1) (1n)
T \/1_|_>‘2 (p1p2—|—p2p3—|—p3p1) _|_
((fin) __(in)

: Y
with E(m) = 65(F91¢1+F02¢2 +FP3¢3)H901H90260

1/4 SUSY!

. Note! The associated non-commutative parameter is given by

© = —A(0p, N Op, + Op, N Opy + 0ps N Og,) .

21



3.2 Example: Lunin-Maldacena like

[Lunin-Maldacena]
’ Using the NC parameter and open string frame,
(fin) _ 14+X(p1p2lq 90 +p2P3l ¢0p5+p3p1 0050, ) (in)

€ = €
+ V 1+X2(p2 p2+p32p2+p32p7 T
€(ﬁlﬂ) _ E(in)

with €™ = 2 Toror tT0205HTps0s) [T21 [TP2¢,

i Find some general formula

1+ 2OMNTyy (in)
+

\/1 - %@MN@MN

arctan(z ©OMN@E 1 A in
— €XP (2 MN) . —@MNFMN GEI- ) .

\/%@MN@MN 2

with © = —A(Opy N Opy + Opy N Opy + Ops N Oy, ) - |

¢ This formula applies in the examples for flat space and AdS in the paper! :

3

22



3.3 Trial: M-theory TsT

Never mmd mtegrablllty" in M-theory
Con5|der the AdS7xS4 background

2
ds® = dr® + ¢" (—dw% +dat + ) (dp + p?ék@?))

i=1
+ d@g + sin? Hg(dé’% + cos” 91d¢% + sin’ Hldqb%)

(3 = —Z cos 20 sin® O5dfs A dpr N\ dos .

e

' Introducing ¢, = % ;@ L= ; *2 , do the M-theory TsTﬁ (P4, 2", 1)

The deformed Killing spinor preserves 4 supercharges and takes the form

r/2\2 &3 2 2 :
() _ a1/6|p L Ale /2)?sin 2/ p1 + PZ(COS 01T 41 + sin 91F¢2x1)r+] (in)

with A= \/1 + \2¢27 sin? 02(p3 + p3)

¢ This suggests a notion for non-commutativity in M-theory?

23



4. Comments
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4. Conclusions and Outlook

¥« We reconstructed the Killing spinor in the TsT deformed background
. using the open string metric and NC parameter O .

% The exponential factor written by © is expected to apply
in more complicated YB deformations |
(higher-rank’ non-Abelian...). [Orlando-Reffert-Sakamoto-Yoshida], [Borsato-Wulff] |

¥r Kosmann Lie derivative condition in generalized supergravity? |
: not changed to my best knowledge.

w Q-deformation has been linked to the YB deformation. Its gravity dual?

. % We tried the M-theory TsT.
Is the result related to non-commutativity in M-theory? 3-Lie bracket?



Thank you!
EuxapioTtm!



