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Introduction

The problem: we are interested in the hamiltonian
description and quantization of the electrically charged particle in
the field of the magnetic monopole distributions,

{x i , x j} = 0 , {x i , π̄j} = δi j and {π̄i , π̄j} = e εijk B
k(~x ) ,

{π̄i , π̄j , π̄k} := 1
3{π̄i , {π̄j , π̄k}}+ cyclic = e εijk ~∇ · ~B . (0.1)

What is wrong with the Dirac monopole? We consider the
situation, where the source of the non-associativity cannot be
removed by imposing the appropriate boundary condition.

Why now? This work was manly motivated by the locally
non-geometric backgrounds in closed string theory, like the
constant R-flux:

{x i , x j} = `3s
~2 R

ijk pk , {x i , pj} = δij {pi , pj} = 0 .

Analogous to a constant uniform distribution, ~Bspher(~x) = g~x/3.
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Symplectic realizations

Consider extended phase space, x I = (x i , x̃ i ) and pI = (pi , p̃i ), with

{x I , xJ} = {pI , pJ} = 0 and {x I , pJ} = δI J .

Covariant momenta are πI = (πi , π̃i ) = pI − e AI (x
I ) . Choose

~A(x I ) = −1
2
~̃x × ~B(~x ) and ~̃A(x I ) = ~0 ,

with the property ~̃∇× ~A = ~B .

Define ~̄π = ~π + ~̃π. The algebra of PB becomes:

{x i , π̄j} = {x̃ i , π̄j} = {x̃ i , π̃j} = δi j ,

{π̄i , π̄j} = e εijk B
k(~x ) + e

2

(
εijk ∂lB

k(~x )− εijl ∂kBk(~x )
)
x̃ l ,

{π̄i , π̃j} = {π̃i , π̄j} = e
2 εijk B

k(~x ) . (0.2)
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Symplectic realizations

The corresponding symplectic two-form is given by

Ω = e
2

[
εijk B

k(~x ) + 1
2

(
εijk ∂lB

k(~x )− εijl ∂kBk(~x )
)
x̃ l
]

dx i ∧ dx̃ j

+ e
2 εijk B

k(~x ) dx i ∧ dx j + dπ̄i ∧ dx i + dπ̄i ∧ dx̃ i + dπ̃i ∧ dx̃ i .

The projection to the constraint surface ~̃x = ~̃π = ~0 coincides
exactly with the almost symplectic structure

ω = e
2 εijk B

k(~x ) dx i ∧ dx j + dπ̄i ∧ dx i ,

corresponding to the monopole algebra (0.1).

For the exemple of ~Bspher(~x ) = ρ
3 ~x , one has

{x i , π̄j} = {x̃ i , π̄j} = {x̃ i , π̃j} = δi j ,

{π̄i , π̄j} = e ρ
3 εijk

(
xk − x̃k

)
,

{π̄i , π̃j} = {π̃i , π̄j} = e ρ
6 εijk x

k . (0.3)
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Lorentz force law from symplectic realizations.

Our aim now is to obtain the Lorentz force equation

m ~̈x = e ~̇x × ~B + e ~E ,

from (0.2) by choosing an appropriate Hamiltonian. Let,

H(x I , πI ) =
1
2
(
~π ~̃π

)
·
(
a b
b c

)(
~π
~̃π

)
+ V (x I ) .

Hamiltonian first order eqs lead to the following second order ODEs

ẍ i = {a πi + b π̃i , πj} ẋ j + {a πi + b π̃i , π̃j} ˙̃x j − a ∂iV − b ∂̃ iV ,

¨̃x i = {b πi + c π̃i , πj} ẋ j + {b πi + c π̃i , π̃j} ˙̃x j − b ∂ iV + c ∂̃ iV .

If a = 0, b = 2/m, {π̃i , π̃j} = 0 and {π̃i , πj} = (e/2) εijk B
k(~x ),

one obtains the contribution (e/m) ~̇x × ~B . Then, from

−b ~̃∇V = e
m
~E , one has

V (x I ) = − e
2

(
~̃x · ~E (~x ) + ν(~x )

)
.
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Lorentz force law from symplectic realizations.

If we redefine ~A by adding an arbitrary smooth vector field ~α(~x ),

~A(x I ) = ~α(~x )− 1
2
~̃x × ~B(~x ) ,

the Poisson bracket {π̃i , πj} is unchanged, so is the corresponding
eom. The resulting Hamiltonian is O(3, 3)× O(3, 3) symmetric,

H(x I , πI ) = 2
m ~π · ~̃π −

e
2

(
~̃x · ~E (~x ) + ν(~x )

)
.

The equations of motion are

ẍi = e
m εijk ẋ

j Bk(~x ) + e
m Ei (~x ) ,

¨̃xi = e
m

[
∂iαj(~x )− ∂jαi (~x ) +

(
εijk ∂lB

k(~x )− εijl ∂kBk(~x )
)
x̃ l
]
ẋ j

+ e
m εijk

˙̃x j Bk(~x ) + e
m

(
x̃ j ∂iEj(~x ) + ∂iν(~x )

)
.

The price to pay for the inclusion of generic magnetic ~B(~x ) and
electric ~E (~x ) fields here is the presence of the auxiliary variables x̃ i .
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Relation to dissipative systems

The motion of a charged particle in the field ~Bspher(~x ) = ρ
3 ~x , is

analogous to the motion in in the Dirac monopole field with an
additional time-dependent friction in eom [Bakas, Lüst’ 13].

Damped harmonic oscillator,

m ẍ + λ ẋ + ω2 x = 0 .

The Lagrangian is: Ldho = x̃
(
m ẍ + λ ẋ + ω2 x

)
, with x̃ being the

Lagrange multiplier, physically representing the reservoir,

m ¨̃x − λ ˙̃x + ω2 x̃ = 0.

The Hamiltonian is

Hdho = 1
m p p̃ − λ(xp − x̃ p̃) + ω2 x x̃ .

The auxiliary degrees of freedom are needed to conserve the total
energy.
Quantization [Feshbach’ 77].
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Hamiltonian reduction

Here we investigate whether it is possible to eliminate the auxiliary
degrees of freedom preserving the Lorentz force equation.

It is easy to see that ~φ = ~̃x ≈ ~0, eliminates all propagating degrees
of freedom. Indeed, φ̇i = {φi ,H} = 2

m π
i ≈ 0, thus results in

~ψ = ~π ≈ ~0. All ΦI = (φi , ψi ) are of first class, {ΦI ,ΦJ} ≈ 0.

Starting from the symplectic realisation of the magnetic monopole
algebra, can we find ~φ(~x , ~̃x ) ≈ ~0 and H, s.t. the reduced
Hamiltonian dynamics reproduces the Lorentz force equation. Let
us start with a generic form of AI (x

I ) = (~A, ~̃A).
~φ = ~̃x − ζ ~x ≈ ~0 .

Its conservation results in
dφi

dt
= {φi ,H} = (ζ a− b)πi + (ζ b − c) π̃i ≈ 0 .

If ζ = b
a = c

b , one obtains the free motion, ẍ i = ¨̃x i = 0.
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Hamiltonian reduction

Assuming that ζ 6= c
b , we obtain the secondary constraint

~ψ = ~̃π − γ ~π ≈ ~0 , γ = −ζ a− b

ζ b − c
.

Writing Htot = H + ~u · ~φ+ ~v · ~ψ, we may find ui and v i . Since
{ψi , φ

j} = −(1 + ζ γ) δi
j , from {φi ,Htot} ≈ 0 one finds ~v = ~0.

Then from {ψi ,Htot} ≈ 0, one has

ui = 1
1+ζ γ

(
(a + γ b) {π̃i − γ πi , πj + ζ π̃j}ζ πj + (1

ζ − γ) ∂iVζ
)
.

The constraint eom are

ẋ i ≈ {x i ,Htot} = (a + γ b)πi ,

π̇i ≈ {πi ,Htot} = 1
1+ζ γ

(
(a + γ b) {πi + ζ π̃i , πj + ζ π̃j}ζ πj − (2− ζ γ) ∂iVζ

)
,

implying,

ẍ i = a+γ b
1+ζ γ

(
{πi + ζ π̃i , πj + ζ π̃j}ζ ẋ j − (2− ζ γ) ∂ iVζ

)
.
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Hamiltonian reduction

This is exactly the Lorentz force equation corresponding to the
effective magnetic field

B i
eff = m

e
a+γ b
1+ζ γ ε

ijk
(
{πj + ζ π̃j , πk + ζ π̃k}ζ

)
= m (ζ+1) (a+γ b)

1+ζ γ
~∇×

(
~Aζ + ζ2 ~̃Aζ

)
,

where ~Aζ(~x ) := ~A(~x , ζ ~x ), and the effective electric field

~Eeff = −m
e

(a+γ b) (2−ζ γ)
1+ζ γ

~∇Vζ .

Since, ~∇ · ~Beff = 0, it cannot be sourced by monopoles;
~∇× ~Eeff = ~0 and hence cannot be sourced by magnetic currents.
Writing ~Bmag = ~B − ~Beff , we can decompose the original ~B as

~B = ~Bmag + m (ζ+1) (a+γ b)
1+ζ γ

~∇×
(
~Aζ + ζ2 ~̃Aζ

)
,

where ~Bmag with ~∇ · ~Bmag = ~∇ · ~B , accounts for magnetic charge
distributions, while ~Beff is created by electric currents and
time-varying electric fields.
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Hamiltonian reduction

For specific choice of ~A = ~α(~x )− 1
2
~̃x × ~B(~x ) and H, we find

(ζ = 1),

~Beff(~x ) = ~∇×
(
~α(~x )− 1

2 ~x × ~B(~x )
)
,

~Eeff(~x ) = 1
2
~∇
(
~x · ~E (~x ) + ν(~x )

)
.

We can now ask for which original ~B and ~E do the constrained eom
coincide with given Lorentz force eq., i.e., ~Beff = ~B and ~Eeff = ~E?

To answer we need to fix the ambiguity ~α(~x ) and ν(~x ).

~A(x I ) = ~a(~x )− 1
2 ~x × ~Bmag(~x )− 1

2

(
~̃x − ~x

)
× ~B(~x ) ,

where here ~∇× ~a = ~Beff , and

V (x I ) = e φ(~x )− e
2 ~x · ~Emag(~x )− e

2

(
~̃x − ~x

)
· ~E (~x ) ,

where ~∇φ = ~Eeff , and ~Emag = ~E − ~Eeff .
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Hamiltonian reduction

Independently of the choice of AI (x
I ) and H(x I , πI ),

Hamiltonian constraints ~φ = ~̃x − ζ ~x ≈ ~0, lead to the Lorentz
force with the source-free magnetic ~Beff and electric ~Eeff fields.
If original ~B and ~E are source-free, the appropriate choice of
AI (x

I ) and V (x I ) ensures that the constrained eom coincide
with the original Lorentz force law.
Only in this case the auxiliary variables can be eliminated in
the consistent way.

Examples: For ~Bspher = ρm
3 ~x , ~Beff = 0, and ~Bmag = ~B , the vector

potencial ~A(x I ) = −ρm
6
~̃x × ~x , ~̃A = 0, and

H(x I , pI ) =
2
m
~π · ~̃π =

2
m
~p · ~̃p +

eρm
3m

(
~̃x × ~x

)
· ~̃p .

For Dirac monopole

H(x I , pI ) =
2
m
~p · ~̃p +

eg

m |~x |3
(
~̃x × ~x

)
· ~̃p .
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Integrability

For ~Bspher = ρm
3 ~x , and ~E = ~0 the Hamiltonian flow eqs. are:

~̇x = 2
m
~̃π , ~̇̃x = 2

m ~π, ~̇π = e ρ
3m

(
~π × ~x − 2 ~̃π × ~̃x

)
and ~̇̃π = e ρ

3m
~̃π × ~x .

The known integrals of motion are:

I1 = H = 2
m ~π · ~̃π, I2 = 2

m
~̃π 2, I3 = −~L 2 = 4 (~x · ~̃π )2 − 4 ~x 2 ~̃π 2.

For the Dirac monopole one has I1, I2 and also the Poincre vector,

~K =
2
m
~x × ~̃p − eg

m

~x

|~x |
,

in particular, by quantisation of angular momentum one finds the
Dirac charge quantisation condition e g = ~

2 n with n ∈ Z . The
conservation of ~K ensures that the charged particle never reaches
the location of the monopole.
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Motion of the charged particle in the axial field, ~B = (0, 0, ρz),

˙̃πx = ω z π̃y , ˙̃πy = −ω z π̃x and ˙̃πz = 0 ,

where ω = e ρ/m and we assume here that e ρ > 0.
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Quantization

We represent x̂ I as multiplication,
(
x̂ IΨ

)
(x) = x I Ψ(x) with

x I = (x i , x̃ i ), and p̂I as differentiation,
(
p̂IΨ

)
(x) = − i ~ ∂IΨ(x)

with ∂I = (∂i , ∂̃i ). Then,

Ĥ= 1
m

(
π̂i ̂̃πi + ̂̃πi π̂i) = 2

m

(
− i ~ ~∇− e ~A

)
·
(
− i ~ ~̃∇− e ~̃A

)
.

We may impose the constraints,

φ̂ iΨphys =
( ̂̃x i − x̂ i

)
Ψphys = 0; ψ̂iΨphys =

( ̂̃πi − π̂i)Ψphys = 0 .

If ~B = ~∇× ~a everywhere, then AI (x
I ) can be defined as

~A(x I ) = 1
2

(
~a(~x )− (~x · ~∇)~a(~x )− ~̃x × ~B(~x )

)
and ~̃A(x I ) = ~0 .

Solving the constraints we come to the effective theory,

Ĥeff = 1
2m π̂i π̂

i ,
[
π̂i , π̂j

]
= i ~ e εijk Bk

eff = i ~ (∂iaj − ∂jai ) .
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Ĥ= 1
m

(
π̂i ̂̃πi + ̂̃πi π̂i) = 2

m

(
− i ~ ~∇− e ~A

)
·
(
− i ~ ~̃∇− e ~̃A

)
.

We may impose the constraints,

φ̂ iΨphys =
( ̂̃x i − x̂ i

)
Ψphys = 0; ψ̂iΨphys =

( ̂̃πi − π̂i)Ψphys = 0 .

If ~B = ~∇× ~a everywhere, then AI (x
I ) can be defined as

~A(x I ) = 1
2

(
~a(~x )− (~x · ~∇)~a(~x )− ~̃x × ~B(~x )

)
and ~̃A(x I ) = ~0 .

Solving the constraints we come to the effective theory,
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Landau levels

It is convenient to represent

Ĥ = Ĥ+ − Ĥ− := 1
m π̂i + π̂

i
+ − 1

m π̂i − π̂
i
− ,

where, π̂i ± = 1√
2

(
π̂i ± ̂̃πi).

For ~B = (0, 0,B), we have, ~A(x I ) = B
2 (−ỹ , x̃ , 0), and ~̃A(x I ) = ~0 .

Consequently,
[
π̂x ±, π̂y ±

]
= ± i ~ e B . We introduce,

â± = 1√
2 ~ e B

(
π̂x ± + i π̂y ±

)
and â†± = 1√

2 ~ e B

(
π̂x ± − i π̂y ±

)
,

satisfying,
[
â±, â

†
±
]

= 1 . Then the Hamiltonian becomes

Ĥ = Ĥ+ − Ĥ− := ~ωcyc
(
â†+ â+ − â†− â− − 1

)
,

where ωcyc = e B
m . The eigenvalues are

En+,n− = ~ωcyc (n+ − n− − 1) with corresponding eigenstates
|n+, n−〉. To recover the standard results, the â−-oscillator must be
kept in its ground state for which â−|n+, 0〉 = 0.
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kept in its ground state for which â−|n+, 0〉 = 0.
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Axial magnetic fields

For the magnetic field, ~B = (0, 0, ρz), the corresponding vector
potential reads,

~Aaxial(x
I ) = ρ

4 z (y − 2ỹ , 2x̃ − x , 0) and ~̃Aaxial(x
I ) = ~0 ,

and the Hamiltonian is

Ĥ = 1
m

(
π̂2
x + + π̂2

y +

)
− 1

m

(
π̂2
x − + π̂2

y −
)

+ 2
m p̂z ̂̃pz ,

with [
π̂x ±, π̂y ±

]
= ± i ~

4 e ρ ẑ ,[
π̂x ±, p̂z

]
= ± i ~

4
√

2
e ρ
(
ŷ − 2 ̂̃y ) ,[

π̂y ±, p̂z
]

= ± i ~
4
√

2
e ρ
(
2 ̂̃x − x̂

)
.

The energy spectrum is continuous.
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Discussion

By introducing the auxiliary degrees of freedom we construct a
symplectic realization of the monopole algebra,
[πi , πj ] = i eεijkBk(x).
The letter is used to construct the Hamiltonian description of
a charged particle interacting with distribution of magnetic
monopoles, reproducing the Lorentz force law for x .
If ∇ · B = 0, one can eliminate the auxiliary variables x̃ by
imposing the Hamiltonian constraint φ = x̃ − x = 0, and thus
obtain the standard Hamiltonian formulation.
In the presence of the magnetic monopoles, i.e., ∇ ·B 6= 0, the
auxiliary degrees of freedom are necessary for the consistent
Hamiltonian description.
This is analogous to the locally “non-geometric” backgrounds
in string theory, wherein there are no local expressions for the
geometry and the background fields require the extended space
of double field theory for their proper definition.
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