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Magne&c monopoles: symmetrising Maxwell
• As no magne&c monopole had ever been seen Maxwell cut isolated magne&c 

charges from his equa&ons – making them asymmetric
• A magne&c monopole restores the symmetry to Maxwell’s equa&ons 

• Symmetrised Maxwell’s equa&ons invariant under rota&ons in (E, B) plane of the 
electric and magne&c field

• Duality ➤ dis&nc&on between electric and magne&c charge becomes one of 
mere defini&on
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Dirac’s Monopole
• Paul Dirac in 1931 hypothesised that the 

magne:c monopole exists
• In his concep:on the monopole was the end of 

an infinitely long and infinitely thin solenoid
• Dirac’s quan:sa:on condi:on:

▫ where g is the “magne:c charge” and α is the fine 
structure constant 1/137

• This means that g = 68.5e (when n=1)! 
• If magne:c monopole exists then 

charge is quan:sed:
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• Single magne*c charge (Dirac charge): gD = 68.5e 
▫ if carries electric charge as well, is called Dyon

• Large coupling constant:  g/Ћc ~ 34
• Monopoles would accelerate along field lines and not curve as electrical 

charges in a magne*c field - according to the Lorentz equa*on 

• Energy acquired in a magne*c field: 2.06 MeV/gauss.m
▫ monopoles accelerated to ~2 TeV with a 10 m × 10 T magnet!

• Dirac monopole is a point-like par*cle; GUT monopoles are extended 
objects 
• Monopole spin is not determined by theory
• Monopole mass not predicted within Dirac’s theory; other theories 

predict masses from O(TeV) (electroweak) to ≳ 1017 GeV (GUT)

Magne*c monopole proper*es in a nutshell
V.A. Mitsou
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Monopole produc,on at colliders

So far, only Drell-Yan (DY) has been considered 
▫ CDF, D0, ATLAS & MoEDAL
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Drell Yan mechanism Photon fusion

Produc1on 
mechanisms 
in colliders

Box diagram
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Monopole field theory
• Electric-magne5c duality: The monopole enters the field 

as a ma:er field in a U(1) gauge theory

• In a nutshell:
▫ S = 0 : Scalar Quantum Electrodynamics
▫ S = ½ : Dirac Quantum Electrodynamics
▫ S = 1: Lee-Yang Field Theory
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β-dependent coupling
• Rutherford (classical) sca7ering

• It suggests some effec;ve coupling, when 
monopoles interact with SM ma7er fields

• Monopole boost expressed by  ! = 1 − %&'

(
• Calcula;ons hold in both the β-dependent (gβ) and 

β-independent (g) cases
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Νew magne(c-moment parameter !
• Spin ½: In SM, such a term appears through spin interac(ons 

in minimally e±-γ QED coupling
▫ SM case: !̃ = 0 (!̃ dimensionless parameter)

� unitary
� renormalisable

• Spin 1: In SM, such a term appears naturally through the 
coupling of physical W± bosons in rotated SU(2)×UY(1)/Uem(1)
▫ SM case: ! = 1

� unitary
� renormalisable
� no ghosts or gauge fixing

• Impact on observables
▫ total cross sec(ons increases with κ
▫ kinema(c distribu(ons change with κ (at γγ or qq̅ scaIering) 
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Scalar monopole
• S = 0: Scalar Quantum Electrodynamics
▫ monopole as a scalar field obeying a 

U(1)-gauged Klein Gordon equa7on
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Spinor mopopole
• S = ½ : Dirac Quantum Electrodynamics
▫ monopole as a spinor field obeying a U(1)-gauged Dirac equa5on
▫ magne:c-moment κ

� κ = 0 ➜ SM case
� κ̃ dimensionless
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Spin ½ – total cross sec0on

SM case κ̃ = 0 gives the 
lower σ, finite at β→0
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Spin ½ – differen,al cross sec,on
• Distribu,ons quite dis,nct from the ones for scalar 

monopoles
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Vector monopole
• S = 1: Lee-Yang Field Theory
▫ monopole as a vector field obeying a U(1)-

gauged Klein Gordon equa7on with a gauge 
fixing parameter and ghosts
▫ magne@c-moment κ

� κ = 1 ➜ SM case
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Spin 1 – total cross sec0on
V.A. MitsouCorfu2018
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Dis0nct cross-sec0on 
evolu0on
• γγ: SM case κ = 1
• DY: κ = 0

Drell-Yan

γ fusion



Spin 1 – differen,al cross sec,on
V.A. MitsouCorfu2018
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SM case κ = 1 gives a dis,nct angular distribu,on w.r.t. 
non-SM cases
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Perturba(vity issues
• Both photon fusion and Drell-Yan processes 

suffer from a large photon-monopole coupling 
that makes perturba(ve calcula(ons problema(c
• This situa(on may be resolved if 
▫ very slow monopoles, β → 0
▫ parameter κ becomes very large, κ → ∞
▫ condi(on for perturba(ve coupling: 

• Cross sec(on remains finite at this limit for photon fusion while it 
vanishes for DY

V.A. MitsouCorfu2018
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• UFO models
• Valida.on

V.A. MitsouCorfu2018
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Photon fusion (& DY) in MG5 
• Drell-Yan was implemented in MA D GR A P H 5 (MG5) using 

FO R T R A N -code setup
▫ only three-parFcle vertex
▫ used in ATLAS & MoEDAL analyses
• We implemented at modeling photon fusion process in MG5
• HOW?
• Fortran models inadequate to describe four-parFcle vertex as 

required in bosonic monopole producFon through photon fusion
• Future MG5 models will be usable only through P Y T H O N , hence 

old models need to be transferred to P Y T H O N

• SoluFon: implement photon fusion as a UFO 
model wriSen in P Y T H O N

• Bonus: also transfer old FO R T R A N models for DY to new scheme 

V.A. MitsouCorfu2018
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UFO models
• UFO: Universal FE Y N RU L E S Output 
▫ FE Y N RU LES: MAT H E M AT IC A package for describing 

Feynman rules.
▫ Based on P Y T H O N objects
▫ Requires the model Lagrangian as an input in 

MAT H E M AT IC A format
▫ Model parameters (mass, spin, coupling, magneNc charge) 

are kept in a text file
• For β-dependent coupling, β is introduced as a FO R T R A N

form factor

▫ definiNon: ! = 1 − %&'

)̂ with *̂ = 2,- . ,/ where Pi are 
the 4-momenta of colliding parNcles

V.A. MitsouCorfu2018
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MadGraph valida+on
• Total cross sec+on: For all considered spins, processes and range of masses, 

very good agreement between MG5 simula+ons and theore+cal calcula+ons

V.A. MitsouCorfu2018

22

• Kinema+c distribu+ons: Good agreement also observed with MG5-simulated 
events without PDF (no-PDF op+on), i.e. direct γγ and qq̅ scaNering

Drell-Yan

γ fusion
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Simula'on setup
• Proton-to-proton collisions at √s = 13 TeV
• Monopole mass M=1.5 TeV
• All three spin cases considered
• Magne'c charge set to minimum: 1 gD
• Parton distribu'on func'ons (PDFs)
▫ NNPDF23 at LO for qq̅ (Drell Yan)
▫ LUXqed for γγ

V.A. MitsouCorfu2018
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Only for spin-0 and 
spin-1 monopoles
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Spin 0: kinema,c distribu,ons
V.A. MitsouCorfu2018

25

• DY events are characterised be a slightly “harder” 
spectrum and are more centrally produced than PF
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Spin ½: kinema,c distribu,ons
V.A. MitsouCorfu2018
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• DY events have a significantly “soIer” spectrum than PF
• Angular distribu,ons are similar
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Spin 1: kinema,c distribu,ons
V.A. MitsouCorfu2018
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• DY events are characterised be a slightly “harder” spectrum and are 
more centrally produced than PF
• PF-DY comparison similar to scalar monopoles
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Cross sec(on comparison 
• Photon fusion most abundant than DY for almost the 

whole mass range at LHC energies
▫ important to be included in future interpreta(ons of 

searches at colliders 

V.A. MitsouCorfu2018
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Tes$ng perturba$vity criterion – spin ½ 
• Cross sec$ons for γγ direct sca9ering
• For spin ½ indeed al small monopole veloci$es and large 

κ̃ the cross sec$on remains finite

V.A. MitsouCorfu2018
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Perturba(vity limit – spin ½ 

• Kinema(c distribu(ons different between SM case (κ̃ = 0) and large κ̃

• Similar distribu(ons for large κ̃ makes “perturba(vely friendly” case easy to test 

at colliders

• Slow-monopole condi(on may be sa(sfied if experiment is sensi(ve to such 

monopoles

▫ MoEDAL nuclear track detectors can inherently detect highly-ionising 

par(cles, such as magne(c monopoles, only if the are slow moving

V.A. MitsouCorfu2018
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Tes$ng perturba$vity criterion – spin 1
• For spin 1 at small monopole veloci$es and large κ cross sec$on 

remains finite
• Just as for spin ½ monopoles

V.A. MitsouCorfu2018
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Perturba(vity limit – spin 1 
• Kinema(c distribu(ons same between SM case (κ = 0) and large κ (unlike spin ½)
• Similar distribu(ons for large κ makes again “perturba(vely friendly” case easy 

to test at colliders
• Slow-monopole condi(on may be sa(sfied if experiment is sensi(ve to such 

monopoles
▫ MoEDAL nuclear track detectors can inherently detect highly-ionising 

par(cles, such as magne(c monopoles, only if the are slow moving
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• Cross-sec(on calcula(ons for colliders have been performed
▫ photon fusion and Drell-Yan processes

� γ fusion least studied and used in searches
� γ fusion more abundant at LHC than DY

▫ novel features
� boost-dependent photon-monopole coupling
� magne(c-monopole parameter κ

• MadGraph implementa(on performed for the first (me for photon 
fusion
• Perturba(vity: the photon-fusion cross sec(on remains finite and the 

coupling is perturba(ve at the formal limits β -> 0 and κ -> ∞
• Possibility to interpret the cross-sec(on bounds set in collider 

experiments in a proper way, thus yielding sensible monopole-mass 
limits

Conclusions & outlook
V.A. Mitsou
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More info at:  arXiv:1808.08942 [hep-ph]

http://arxiv.org/abs/arXiv:1808.08942
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MoEDAL detector

MoEDAL is unlike any other LHC experiment:
▫ mostly passive detectors; no trigger; no readout
▫ the largest deployment of passive Nuclear Track Detectors  (NTDs)  

at an accelerator
▫ the 1st Ame trapping detectors are deployed as a detector

DETECTOR SYSTEMS
� Low-threshold NTD 

(LT-NTD) array 
• z/β > ~5 – 10 

� Very High Charge 
Catcher NTD 
(HCC-NTD) array 
• z/β > ~50

� TimePix radiaAon 
background 
monitor

� Monopole Trapping 
detector (MMT)

MoEDALLHCb
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velocity: β = v/c

Physics program

charge

High ionisa6on (HI) possible when:
▫ mul6ple electric charge (H++, Q-balls, etc.)
▫ very low velocity & electric charge, i.e. 

Stable Massive Charged Par6cles (SMCPs) 
▫ magne6c charge (monopoles, dyons) = 

ngD = n � 68.5 � e  
� a singly charged rela6vis6c monopole has 

ionisa6on  ~4700 &mes MIP!

= z/β

Par&cles must be massive, long-lived & highly ionising to be detected at MoEDAL

V.A. Mitsou
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Bethe-Bloch formula
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MoEDAL detectors have a threshold of z/b ~ 5 – 10 

Highly 
ionising
par6cles

Magne6c 
monopole
s & dyons KK extra 

dimension
models

D-ma[er

Quirks

Q-balls

Black-hole 
remnants

Doubly 
charged 

Higgs

SUSY
R-hadrons  
sleptons

MoEDAL physics program
Int. J. Mod. Phys. A29 (2014) 1430050 
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