

Rare Decays and Flavour Anomalies

Roger Forty (CERN)

Experimental review on behalf of the LHCb Collaboration also including results from ATLAS, BaBar, Belle and CMS

- 1. The LHCb experiment
- 2. Rare Decays
- 3. Flavour Anomalies

Corfu Summer Institute (3 September 2018)

Introduction

- The Standard Model has 3 generations of pairs of quarks and leptons, differing only in mass Their study is the topic of **Flavour Physics**
- Many of open questions of the Standard Model lie in the flavour sector:
 - Why are there 3 generations? Related to being minimum required for CP violation?
 - What determines the extreme hierarchy of fermion masses and the CKM quark-mixing matrix elements?
 - How can the observed matter/antimatter asymmetry of the Universe be explained (Standard Model CP violation insufficient)?
- The LHCb experiment is dedicated to flavour physics at the LHC, has the largest samples of beauty and charm hadrons ever produced

Standard Model of Elementary Particles

Rare decays

- The bulk of hadron decays proceed via tree diagrams **Rare decays** involve loop diagrams:
- New Physics (i.e. beyond the SM) involves new particles, which could also participate in such loops via virtual quantum fluctuations → noticeable effects on decays, in particular since they are suppressed in the SM

 Such "indirect" discovery of new physics via precision measurements has a long and illustrious history

N. Tuning, ICHEP2018

Particle	Indirect			Direct		
ν	β decay	Fermi	1932 🤗	Reactor v-CC	Cowan, Reines	1956 🤗
W	β decay	Fermi	1932	W→ev	UA1, UA2	1983 🤶
с	К⁰→µµ	GIM	1970	J/ψ	Richter, Ting	1974
b	СРV <i>К⁰ →пп</i>	CKM, 3 rd gen	1964/	Y	Ledermann	1977
Z	v-NC	Gargamelle	1973	Z→ e+e-	UA1	1983 🤗
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995
н	e+e-	EW fit, LEP	2000	H → 4µ/үү	CMS, ATLAS	2012

 Currently no clear signs of new physics from direct searches at the LHC, but there *are* a number of hints of non-SM behaviour in b-hadron decays —the so-called **Flavour Anomalies**

1. The LHCb experiment

CMS

Mont Blanc

СНСЬ

LHC (tunnel is ~100 m underground)

ATLA

ICE

Rare Decays and Flavour Anomalies

LHC 27 km

Spectrometer

- Forward-peaked production of b-hadrons at the LHC:
 → LHCb is a forward spectrometer (in collider mode)
- bb̄ cross-section = 154.3 ± 1.5 ± 14.3 μb at √s = 13 TeV → ~100,000 bb̄ pairs produced/second (10⁴ × B factories) and all species of b hadron: B⁺, B⁰, B_s⁰, B_c⁺, Λ_b⁰...

Quark content: bu, bd, bs, bc, bud

Detector components

Int. J. Mod. Phys. A 30 (2015) 1530022

 $\epsilon(\mu \rightarrow \mu) \sim 97\%$. $\epsilon(\pi \rightarrow \mu) \sim 1-3\%$

Roger Forty

Rare Decays and Flavour Anomalies

VELO

- Surrounds the interaction point for precision vertex detection
- Silicon microstrips that close around the beam, approaching to 8 mm
- 20 μ m spatial resolution, corresponds to 45 fs: sufficient to resolve B_s - \overline{B}_s oscillations

r-φ geometry:

RICH detectors

- Ring-imaging Cherenkov detectors for particle ID
- Separating charged hadrons (π, K, p) essential for flavour physics, to suppress background limited in ATLAS/CMS since lack RICH detectors

Magnetic

shielding

Aerogel

VELO exit window

Plane Mirror

100

RICH1

٥

Roger Forty

Reconstructed ring

image (single photons)

Rare Decays and Flavour Anomalies

200

C4F10

Photon

Detectors

250 mrad

Mirror

Beam pipe

Track

z (cm)

Spherical

8

Data taking

- LHCb luminosity levelled at 4 × 10³² cm⁻²s⁻¹
- Chosen to maximize trigger yield, gives pile-up ~ 1 and limits radiation damage
- 8.5 fb⁻¹ of integrated luminosity to date Results shown mostly from Run1 (3 fb⁻¹)

Upgrade next year → Fully software trigger Run at 5× higher lumi

Physics programme

In addition to Rare Decays presented here, LHCb has broad physics programme

Events / (10 MeV/c²)

• **CP violation:** differences in decay rates between particles and antiparticles, a key ingredient to make the Universe we see (Baryon Asymmetry)

• Spectroscopy:

- test-bed for QCD: e.g. first observation of doubly-charmed (and doubly-charged) baryon $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- Most hadrons mesons (qq
) or baryons (qqq) are there more exotic structures, tetraquarks (qq
 qq
) or pentaquarks (qq
 qqq)?
- And much more: Heavy Ion, Fixed Target, Electroweak physics...
 - \rightarrow LHCb is a general-purpose experiment covering forward region (2 < η < 5)

LHCb-PAPER-2017-018

See talk of Neville Harnew (next)

Detector in the cavern

Muon chambers

Collaboration 1260 members from 78 institutes in 18 countries

VELO 🔡

are Decay and Havour Anomalies

2. Rare Decays

• Rarest fully-hadronic b decay observed so far $\mathcal{B}(B^0 \to p\overline{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$

However, such decays are difficult to predict
→ interesting for understanding QCD, but not for discovering New Physics

- We want to study decays which are suppressed in the Standard Model, but can be precisely calculated, sensitive to New Physics
- Flavour Changing Neutral Currents (FCNC) are suitable: Since quark flavour is only changed via exchange of W[±] (in the SM, at least) forbidden at tree level → these decays involve loops:

① Fully leptonic decays

- $\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-}$ is the archetypical rare decay:
- Highly suppressed in Standard Model by loop, CKM coupling ($|V_{ts}|^2$) and helicity $(m_{\mu}/m_B)^2$
- *Precise* SM prediction: $B(B_s \to \mu^+\mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ (~6% error) B⁰ even more suppressed: $B(B^0 \to \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ Bobeth et al.

Bobeth et al. PRL 112 (2014) 101801

• Challenge: huge rate of events with 2 muons: $B(B \rightarrow \mu X) \approx 10\%$ Use topological and muon ID information in a multivariate analysis (BDT) Mass resolution interpolated between J/ ψ and $\Upsilon \rightarrow \mu^+\mu^-$

- Search for this decay has been an historical endeavour over 30 years
- Evidence eventually seen by both LHCb and CMS \rightarrow joint paper Hint that $B^0 \rightarrow \mu^+ \mu^-$ rate was high, but not seen in ATLAS data

$B_s \rightarrow \mu^+ \mu^-$ observation

PRL 118 (2017) 191801

- Finally observed in a single experiment by LHCb—a milestone of flavour physics
- Used Run1 + part of Run2 (3+1.4 fb⁻¹)
 7.8 σ significance

 $\begin{aligned} \mathcal{B}(B_{\rm s}^0 \to \mu^+ \mu^-) &= (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \quad (\textbf{~20\%}) \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 3.4 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{aligned}$

• Even made a first lifetime measurement $au_{
m eff}(B_{
m s}(t) \rightarrow \mu^+\mu^-) = (2.04 \pm 0.44 \pm 0.05) \, ps$

NP could affect this due to large $\Delta\Gamma_s$ (needs more data to be sensitive)

 \rightarrow in agreement with Standard Model

Implications

 B(B_s → μ⁺μ⁻) result consistent with Standard Model expectation Implications depend on the model of New Physics (with scale Λ)

$$BR_{exp}/BR_{SM} \equiv \mu_{B_s \to \mu^+ \mu^-} \simeq 1 \pm \frac{4\pi}{g^2 |V_{tb}^* V_{ts}|^2} \frac{v^2}{\Lambda^2} \xrightarrow{s}_{b} \xrightarrow{\mu^-}_{z'} \xrightarrow{\mu^+}_{\mu^+} Haisch, arXiv:1510.03341$$

$$\Lambda \gtrsim \frac{v}{\sqrt{0.2}} \times \begin{cases} \frac{\sqrt{4\pi}}{g |V_{tb}^* V_{ts}|} \\ 1 \end{cases} \simeq \begin{cases} 50 \text{ TeV} & \text{for Z' with generic tree-level coupling modification} \\ 0.6 \text{ TeV} & \text{One-loop modification of Z penguin assuming MFV} \end{cases}$$
Straub, arXiv:1107.0266

- Minimal Flavour Violation: new physics has similar flavour structure to SM
- Branching ratios could have been strongly modified by new physics
- Large regions of parameter space ruled out, e.g. for SUSY

Other fully-leptonic modes

• Helicity suppression for electron mode $B_{(s)} \rightarrow e^+e^-$ is even stronger $(m_e/m_B)^2 \rightarrow SM$ BF is currently out of reach, $O(10^{-13})$ —but interesting for new physics

Fleischer et al. arXiv:1703.10160v2

• By same token, SM rate for the $\tau^+\tau^-$ mode is larger due to τ mass

 $\mathcal{B}(B_{\rm s}^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$ $\mathcal{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$

Bobeth et al. PRL 112 (2014) 101801

- Challenging due to undetected neutrinos Searched for using decay $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$
- B_s-B⁰ mass difference cannot be resolved for this channel. Limits set (at 95% CL):

 $\mathcal{B}(B_{\rm s} \to \tau^+ \tau^-) < 6.8 \times 10^{-3}$ $\mathcal{B}(B_{\rm d} \to \tau^+ \tau^-) < 2.1 \times 10^{-3}$

• Also search in the **strange** and **charm** sectors:

$$\begin{split} \mathcal{B}(K^0_{\rm s} \to \mu^+ \mu^-) &< 0.8 \; (1.0) \times 10^{-9} \; \text{at 90\% (95\%) CL}. \\ \mathcal{B}(D^0 \to \mu^+ \mu^-) &< 6.2 \; (7.6) \times 10^{-9} \; \text{at 90\% (95\%) CL}. \end{split}$$

② Semileptonic rare decays

- **b** → **sℓℓ** has similar loop diagrams to $B_s \rightarrow \mu \mu$, but instead of annihilation the s quark leg is rotated to the final state
- More observables: *m*(μμ), angular information from decay products
- Contributions from many experiments: ATLAS, CMS, LHCb and the B factories **LHCb:** best mass resolution at the LHC highest statistics, lowest background

Events / (0.003 GeV/c²)

100

80

60

20

5.22

5.24

Belle

Add a spectator d quark: $B^0 \rightarrow K^{*0} \mu \mu$

Rare Decays and Flavour Anomalies

5.26

18

Roger Forty

$b \rightarrow s \ell \ell$

- b-hadron mass is reconstructed from final hadron decays (e.g. $K^{*0} \rightarrow K^-\pi^+$) and two energetic leptons
- Background events suppressed by requiring displaced vertices
- The decay width is expressed in terms of q^2 = invariant mass² of dileptons
- Tree level decays involving J/ ψ and ψ (2S) resonances used as control samples and the q^2 regions removed from the analyses of b \rightarrow s $\ell\ell$ decays

Decay rates

1 (potential anomaly)

- Study same process with different spectator quark(s)
- In general, data tend to be *lower* than SM predictions Hadronic uncertainties limit precision of the predictions

$b \rightarrow s \mu \mu$ angular analysis

- Study the rate as a function of the decay angles: θ_{κ} , θ_{e} , ϕ
- Complicated expression:

$$\begin{aligned} \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\vec{\Omega}} &= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos \theta_K \right] \\ &- F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi \\ &+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi \\ &+ \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ &+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \right] \end{aligned}$$

- F_L = fraction of longitudinal polarization of the K*
- Can define "optimized observables", with form-factor cancellations, e.g:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

Descotes-Genon et al, JHEP 05 (2013) 137

(other bins, other observables)

Roger Forty

Theoretical uncertainties

- Discrepancies of rates and angular distributions for
 b → sℓℓ decays comprise the first flavour anomalies
- Ongoing debate about the reliability of the theoretical predictions, possible contamination from "charm loops"
- Modelling has been studied in detail using B⁺ decays, fitting the full q² range allowing contribution from short- and long-distance effects to be constrained
- Including latest results and alternative calculations, anomaly is less striking

 $B_s \rightarrow K^{*0} \mu^+ \mu^-$

• \mathbf{B}_{s} counterpart of the $\mathbf{B}^{0} \rightarrow \mathbf{K}^{*0} \mu\mu$ decay

- Heavily suppressed **b** \rightarrow **d** $\ell\ell$ transition SM prediction for BR $O(10^{-8})$ due to $|V_{td}|/|V_{ts}|$
- Normalize to decays with m(μμ) at J/ψ then search in regions of q² away from J/ψ and other resonances
- First evidence seen: 38±12 signal events (3.4σ significance) BR consistent with SM
- Sets ground work for detailed analysis of this channel in the LHCb upgrade

Rare charm decays

- Unique laboratory to probe FCNCs in the up-type quark sector
- Rare charm decays sensitive to new physics contributions, but need to separate *short*and *long-distance* contributions
- $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ rarest charm decays ever seen:

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7},$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}.$

• Now studying asymmetries, none significant seen so far:

arXiv:1806.10793 Run1+2, 5 fb⁻¹

Rare hyperon decays

- LHCb can also contribute in the **strange quark** sector such as hyperons (baryons carrying s-quark)
- Interest since HyperCP (E871) saw 3 events in the $\Sigma^+ \rightarrow p\mu\mu$ channel that clustered in $m_{\mu\mu}$
- LHCb sees evidence for the decay with 4.1 σ significance, but no evidence for clustering in $m_{\mu\mu}$

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$$
$$\mathcal{B}(\Sigma^+ \to nX^0 (\to \mu^+\mu^-)) < 1.4 \times 10^{-8}$$

Weighted candidates / (2 MeV/ c^2

3

2

③ Radiative decays

- Radiative decays (b → sγ) measured by B factory experiments BaBar and Belle, in agreement with Standard Model expectation
- LHCb has made first measurement of photon polarization in radiative B_s decays (dominantly left-handed in SM)
- Time-dependent analysis of ratio of $B_s \rightarrow \varphi \gamma$ and $B^0 \rightarrow K^* \gamma$ to measure parameter A^{Δ} (related to ratio of right- and left-handed polarizations)

$$\mathcal{A}^{\Delta} = \sin(2\psi)$$
, where $\tan\psi \equiv |A(\overline{B}^0_s \to \phi\gamma_{\rm R})|/|A(\overline{B}^0_s \to \phi\gamma_{\rm L})$

$$\mathcal{A}_{\rm SM}^{\Delta} = 0.047 \, {}^{+\, 0.029}_{-\, 0.025}$$

Result:

$$\mathcal{A}^{\Delta} = -0.98 \,{}^{+0.46}_{-0.52} \,{}^{+0.23}_{-0.20}$$

Consistent with SM value within 2σ

Phys. Rev. Lett. 118, 021801 (2017)

Roger Forty

Rare Decays and Flavour Anomalies

JHEP 02 (2015) 121

3. Flavour Anomalies

- Other anomalies seen concern hints for Lepton Flavour non-Universality
- Distinction between Lepton Flavour Violation (LFV) and Universality (LFU)
 - In the SM Charged LFV is forbidden (and has not yet been seen) e.g. $\tau \rightarrow 3\mu$, or $B \rightarrow e\mu$
 - On other hand, LFU is assumed in SM: Gauge couplings are equal for the 3 generations, which are distinguished only by their different mass

Z DECAY MODES	Fraction (Γi/Γ)
e+e-	(3.3632±0.0042)%
μ ⁺ μ ⁻	(3.3662±0.0066)%
τ+τ-	(3.3696±0.0083)%

• Testing LFU probes the validity of SM

Limit

Testing LFU in rare decays

• Compare rates of $b \to s \mu \mu$ and $b \to see$ processes, e.g.

$$R_{K} = rac{\mathcal{B}(B^{+} o K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} o K^{+} e^{+} e^{-})} = 1.000 + O(m_{\mu}^{2}/m_{b}^{2}) \text{ (SM)}$$

- First example of a family of ratios *R_h* between hadronic b decays b → *h*ℓX to final states which differ just by lepton flavour Ratios labelled using the hadron *h* in the final state as a subscript
- Precise theory prediction due to cancellation of hadronic uncertainties
- On other hand, experimental effects are tricky: particle ID performance far from universal, triggering and reconstruction of muons is much easier than electrons (or τ) in LHCb
- Mass resolution affected by electron bremsstrahlung → need to recover energy using clusters in the calorimeter
- Trigger thresholds higher for e than $\mu \rightarrow$ also use signal triggered by rest of event

R_{K^*}

• Illustrate analysis for neutral mode $B^0 \rightarrow K^* \ell \ell$

• Experimentally, use $B^0 \rightarrow K^* J/\psi (\rightarrow \mu^+\mu^-)$ and $B^0 \rightarrow K^* J/\psi (\rightarrow e^+e^-)$ to perform a *double ratio* to help cancel systematics

$$R_{K^{*0}} = \frac{\frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))}}{\frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}}$$

- e.g. lower efficiency for electron mode would cancel in the double ratio
- Computed in two bins of q^2 :

[0.045, 1.1] GeV² avoiding photon pole [1.1, 6.0] GeV² avoiding radiative tail

• Many checks made, e.g. $B(B \rightarrow K^* J/\psi_{\mu\mu})/B(B \rightarrow K^* J/\psi_{ee}) = 1.04 \pm 0.05$

 R_{K^*}

Rare Decays and Flavour Anomalies

Results

Central q^2 : [1.1-6 GeV²]: SM = 1.000(6) $R_{K^{*0}} = 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 (\text{syst})$ Low q^2 [0.045-1.1 GeV²]: SM = 0.922(22) $R_{K^{*0}} = 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 (\text{syst})$

Charged mode: $B^+ \rightarrow K^+ \ell \ell$

$$R_K = 0.745^{+0.090}_{-0.074} (\text{stat}) \pm 0.036 (\text{syst})$$

Tree-level anomaly?

Hints for deviation from the SM also seen in

$$R_{D^*} \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})} \stackrel{\text{SM}}{=} 0.252 \pm 0.003$$

• This is a *tree-level* semileptonic $\mathbf{b} \rightarrow \mathbf{c} \mathbf{e} \mathbf{v}$ decay, far from being rare!

But not previously studied in detail due to difficulty of tau reconstruction SM expectation differs from 1 due to the effect of the tau mass

- Reconstructing decay to tau is difficult because of missing neutrinos from tau decay → no clear peak in invariant mass
- LHCb has performed two independent measurements using
 - Leptonic mode $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$
 - Hadronic mode $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$
- B flight direction determined using vertexing from vector between primary and secondary vertices

R_{D^*} leptonic mode

- Tau decay reconstructed as $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$ Signal and normalization channels have same visible final state
- Separate according to kinematic differences from tau mass and additional neutrinos using $E_{\mu}^{*} = muon energy in the B rest frame,$ $m_{miss}^{2} = (p_{B} - p_{D} - p_{\mu})^{2}$, and $q^{2} = (p_{B} - p_{D})^{2}$
- Yield extracted from 3D template fit

 $R_{D^*} = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$

Normalisation D D* Signal m_{miss}^2 $q^2 = (p_{\ell} + p_{\nu})^2$ $q^2 = (p_{B^0} - p_{D^{*+}})^2$ E_{μ} $B \rightarrow D^* \tau v$ $\rightarrow D^*H_c(\rightarrow lvX')X$ $\rightarrow D^{**}h$ $\rightarrow D^*\mu\nu$ Combinatorial Misidentified µ PRL 115 (2015) 111803

 2σ above SM prediction

$R_{D^{(*)}}$ combination

- Measurements all consistent, and all lie above Standard Model prediction
- B Factory experiments also measure equivalent ratio with D rather than D* in the final state, that also tend to be above the Standard Model
- Combined fit gives a discrepancy of 3.8σ significance from SM (but note that significance of discrepancy for individual results each < 3σ)

Rare Decays and Flavour Anomalies

$R_{J/\psi} \equiv \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \stackrel{\text{SM}}{\in} [0.25, 0.28]$

- Tau reconstructed as $\ au^- o \mu^-
 u_ au ar
 u_\mu$
- Identifical visible final states for the two modes: $(\mu^+\mu^-) \mu^+$

i.e. with a different spectator quark (c)

- Separate according to kinematic differences from tau mass and additional neutrinos, adding also the decay time
- First evidence (3 σ) of $B_c \rightarrow J/\psi \tau v$

$$R_{J/\psi} = 0.71 \pm 0.17 ({
m stat}) \pm 0.18 ({
m syst})$$

• Similar analysis made for equivalent decay in **B**_c sector

• Result lies above SM prediction, but within 2σ

Effective Field Theory

 $O_{10} = (s_{\mu} r_R o)(c_{\gamma} \gamma_5 c),$

- Effective Field Theory can be used to compare and combine the various hints of non-Standard Model behaviour in $b \rightarrow s \ell \ell$ decays This is an approximation that is valid below the scale of any New Physics (c.f. Fermi theory of beta decay, valid at low energy compare to $m_{\rm W}$)
- Amplitude of decay process described by expanding over series of operators:

$$\begin{split} A(M \to F) &= \langle F | \mathcal{H}_{eff} | M \rangle = \frac{G_F}{\sqrt{2}} \sum_i V_{CKM}^i C_i(\mu) \langle F | O_i(\mu) | M \rangle \qquad \begin{array}{c} \text{Hadronic Matrix} \\ \text{Elements} \\ \end{array} \\ \hline \\ \text{Effective Hamiltonian} \qquad \begin{array}{c} \text{CKM couplings} & \text{Wilson coefficients } (\mu = \text{scale}) \\ \hline \\ \text{Operators describe effective vertices:} \qquad \begin{array}{c} o_7 & \underbrace{\varsigma^\gamma}{e} & \underbrace{\ell' & e_{g,\sigma}}{e} & \underbrace{\varrho^g o_s}{e} & o_{\ell,\sigma} & \underbrace{\varphi^q & e_{g,\sigma}}{e} \\ \hline \\ \text{Left-handed} & \text{Right-handed (suppressed in SM)} \\ \hline \\ \text{Coupling to photon} \\ \text{Vector coupling} \\ \text{Axial coupling} & O_7 &= \frac{m_b}{e} (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu}, \\ O_9 &= (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell), \\ O_{10} &= (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \gamma_5 \ell), \\ \hline \end{array} \\ \end{split}$$

• SM can be considered as a specific example, with $C_7 = -0.33$, $C_9 = 4.27$, $C_{10} = -4.17$ $(at \mu = m_b)$ —allows to fit for new physics in a model-independent way

Roger Forty

Effective couplings

- High interest because pattern of deviations is consistent with a shift of Wilson coefficients C_9 and C_{10} , which deviate from SM value by around 5σ
- All input measurements (175) agree with the simple shift...
- Independent fits made by many groups, favour: $\Delta C_9 = -1$ or $\Delta C_9 = -\Delta C_{10}$

Possible explanations

- **1. Statistical fluctuations:** unlikely given the number and pattern of effects?
- 2. Experimental artefacts: these are difficult measurements (e and τ) have the systematic errors been correctly estimated? However, seen by different experiments at LHC and B factories
- **3.** Theoretical uncertainties: may effect P_5' , but LFU tests should be robust?
- 4. Some combination of the above?
- 5. New Physics: once all the above have been excluded...

Many **models** proposed: leptoquarks, Z'... coupling to 3rd generation preferentially?

See for example: *B-physics anomalies: a guide to combined explanations*

D. Buttazzo et al., JHEP 1711 (2017) 044, arXiv:1706.07808

"The case of an SU(2)_L-singlet vector leptoquark emerges as a particularly simple and successful framework"

Roger Forty

Rare Decays and Flavour Anomalies

Interplay with direct searches

- If the lepton flavour anomalies *are* due to the exchange of a new particle, then it should be possible to detect it in direct searches at high p_{T}
- No such signs seen yet 1609.07138 3.0 IHEP 1711 (2017) 044 AS 8 TeV 20 fb **Example:** searches for LQ pairs and $\tau^+\tau^-$ 2.5 at ATLAS and CMS 2.0 CMS 1 Do 1.5 \mathbf{m} 01560] $l\sigma$ 2σ LQ _O 1.0 Region compatible 0.5 with anomalies Vector LO 0.0 May require high luminosity (HL-LHC) 1.0 1.5 2.0 0.5 to be seen, if it is there... M_U (TeV)
- "It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]
 - Further experimental input is now required to clarify the situation

Outlook

 Most LHCb results presented are from Run1 data

- Updates from Run2 "soon" Effects are (surprisingly?) large O(20%) so should be straightforward to verify
- The experiment will be upgraded during the next LHC shutdown (LS2) to 40 MHz readout, a fully software trigger and 5 × higher luminosity

	LHC	Period of	Maximum \mathcal{L}	Cumulative
	Run	data taking	$[{ m cm^{-2}s^{-1}}]$	$\int {\cal L} dt \; [{ m fb}^{-1}]$
Current detector	1 & 2	2010-2012, 2015-2018	4×10^{32}	8
Phase-I Upgrade	3 & 4	2021-2023, 2026-2029	$2 imes 10^{33}$	50
Phase-II Upgrade	$5 \rightarrow$	2031–2033, 2035 \rightarrow	2×10^{34}	300

- Further upgrade of LHCb proposed for the HL-LHC era, to handle 10× more luminosity
- Looking forward to competition from Belle II: Super B factory has complementary strengths for neutral modes, full event reconstruction, etc.

Conclusions

- The LHCb experiment is dedicated to flavour physics at the LHC
 - Running successfully, many world-best results (444 papers to date)
- **Rare Decays** can be studied with unprecedented precision using the enormous statistics available of beauty and charm decays
 - First observation of $B_s \rightarrow \mu^+ \mu^-$ in a single experiment
 - Detailed analysis of $b \rightarrow s \ell \ell$ decays
- Flavour Anomalies: interesting hints of non-Standard Model behaviour seen when combining results from different experiments and channels
 - Mostly concern Lepton Flavour non-Universality in b decays
 - Before claiming new physics, want clear observation in single experiment
 - More data already available, but the measurements are complicated...
- Longer term: Belle II start up + LHCb has comprehensive upgrade programme
 - \rightarrow can expect definitive answers in the coming years
 - It is an exciting time for flavour physics!