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Generalized Geometry

Idea: consider extensions of the tangent bundle (typically doubled);
unify symplectic, complex and Riemannian geometry; string symmetries

Courant algebroid
vector bundle E

π−→ M, anchor h ∈ Hom(E ,TM),
R-bilinear bracket [−,−] , and fiber-wise metric 〈−,−〉,
s.t. for e, e′, e′′ ∈ ΓE :

[e, [e′, e′′]] = [[e, e′], e′′] + [e′, [e, e′′]] (1)

2〈[e, e′], e′〉 (2a)
= h(e)〈e′, e′〉 (2b)

= 2〈[e′, e′], e〉 (2)

Consequences:

[e, fe′] = h(e).f e′ + f [e, e′] (3)

h([e, e′]) = [h(e), h(e′)]Lie (4)

Remarks: (2a+b) can be polarized
(1) and (3) are the axioms of a Leibniz algebroid



Generalized Geometry

Example: Standard Courant algebroid
Treat vector fields and forms on equal footing:

0→ T ∗M
j→ E

h→ TM → 0

with j the natural embedding and h the natural projection.

E = TM ⊕ T ∗M “generalized tangent bundle”

V = X + ξ = X i (x)∂i + ξi (x)dx i ∈ ΓE

With the Dorfman bracket

[X + ξ,Y + η]D = [X ,Y ] + LXη − ιY dξ (+twisting/flux terms) ,

the natural pairing 〈−,−〉 of TM and T ∗M and the projection
h : E → TM (anchor) we obtain a Courant algebroid.

Symmetries: diffeomorphisms, B-transform, θ-transform



Generalized Geometry

Generalized Metric

The pairing 〈−,−〉 has signature (n, n). An idempotent self-adjoint
homomorphism τ can turn it into a positive definite generalized metric

G(V ,W ) := 〈τ(V ),W 〉 (Gαβ) =

(
g − Bg−1B Bg−1

−g−1B g−1

)
The homomorphism τ can be defined in terms of its eigenbundles

E± = {(X , (±g + B)(X )) |X ∈ ΓTM} τ(E±) = ±E±

via θ-transform: closed-open string relations, NC gauge theory etc.

1

g + B
=

1

G + Φ
+ θ



Generalized Geometry

Generalized Geometry and (super)gravity

established approach: choose Courant algebroid and follow the scheme

Generalized metric → Bismut connection → set torsion zero (add further
conditions as needed) → curvature → equations of motion ↔ action

I the good: very advanced, available for all flavors of SUGRA

I the bad: problems with covariance, ambiguities

I the ugly: assumptions, fine-tuning, reverse-engineering

I the players: Coimbra, Minasian, Strickland-Constable, Triendl,
Waldram, Blumenhagen, Deser, Plauschinn, Rennecke,
Garcia-Fernandez, Grana, Jurco, Vysoky + many more

DFT approach: Hull, Hohm, Zwiebach + many more

new alternative approach: graded geometry, deformation (this talk)



Interaction via deformation

Electrodynamics as deformed quantum mechanics
~B = ∇× ~A implies ∇ · B = 0, hence we cannot work with canonical momenta

and covariant derivatives in the presence of magnetic sources.

alternative: deformed canonical commutation relations

[x i , x j ]′ = 0 , [pi , x
j ]′ = ~

i δ
i
j , [pi , pj ]

′ = i~eFij (where Fij = εijkBk)

Let p = σipi and H =
p2

2m
⇒ Pauli Hamiltonian:

H =
1

2m

(
1

4
[σi , σj ]+[pi , pj ]

′
+ +

1

4
[σi , σj ][pi , pj ]

′
)

=
~p 2

2m
− ~e

2m
~σ · ~B

Lorentz-Heisenberg equations of motion:

d~r

dt
=

i

~
[H,~r ] ′ =

~p

m
,

d~p

dt
=

i

~
[H, ~p ] ′ =

e

2m

(
~p × ~B − ~B × ~p

)
this formalism allows ∇ · B 6= 0: magnetic sources, non-associativity



Interaction via deformation

. . . relativistically (with appropriate mass shell constraint implementation)

[pµ, x
ν ] = ~

i δ
ν
µ [pµ, pν ] = i~eFµν(x) [γµ, γν ]+ = 2ηµν .

Gravitational interaction via deformation of the γ-algebra

[γµ, γν ]+ = 2gµν(x)

gives an algebraic approach to the geodesic equation, connections,
curvature, etc. Properties like metricity follow from associativity. Local
inertial coordinates are reinterpreted as Darboux charts.

classical ↔ quantum correspondence:

θµ ↔ γµ

2θµθν ↔ [γµ, γν ]−

{θµ, θν} ↔ [γµ, γν ]+



Interaction via deformation

Graded Poisson algebra

{θ
a

µ, θ
a

ν} = 2gµν

0
(x) {p

c
µ, x

0

ν} = δ
0

ν
µ {pµ, f (x)} = ∂µf (x)

Since gµν(x) has degree 0, the Poisson bracket must have degree
b = −2a for θµ of degree a, i.e. it is an even bracket.

Since gµν(x) is symmetric, we must have −(−1)b+a2 !
= +1, i.e. a is odd.

wlog: {, } is of degree b = −2, θµ are Grassmann variables of degree 1,
θµθν = −θνθµ, and the momenta pµ have degree c = −b = 2

⇔ a metric structur on TM and natural symplectic structure on T ∗M,
shifted in degree and combined into a graded Poisson structure on

T ∗[2]
pµ

⊕ T [1]
θµ

M
xµ



Interaction via deformation

Graded Poisson algebra on T ∗[2]⊕ T [1]M

{θ
1

µ, θ
1

ν} = 2g
0

µν(x) {p
2
µ, x

0

ν} = δ
0

ν
µ {pµ, f (x)} = ∂µf (x)

associativity/Jacobi identity ⇔ metric connection

{pµ, {θα, θβ}} = 2∂µg
αβ = {{pµ, θα}, θβ}+ {θα, {pµ, θβ}}

{p
2
µ, θ

1

α} = ∇µθ
α = Γα

µβθ
1

β

and curvature

{{pµ, pν}, θα} = [∇µ,∇ν ]θα = θβRβ
α
µν

⇒ {p
2
µ, p

2
ν} = 1

4θ1
βθ

1

αRβαµν



Interaction via deformation

Equations of motion

dxµ

dτ
= { 1

2g
αβpαpβ , x

µ} = gµνpν

dpν
dτ

= { 1
2g

αβpαpβ , pν} = 1
2 (∂µg

αβ)pαpβ = gΓµ
αβpαpβ

with any metric-compatible connection gΓ.

Geodesic equation:

d2xµ

dτ 2
= { 1

2g
αβpαpβ , g

µνpν} = −dxα

dτ
LCΓαβ

µ dx
β

dτ



Geometric ladder to generalized geometry { , }θ

. . . climbing up the geometric ladder

Step 0: Poisson manifold T ∗M

I degree 0: x i “coordinates”, pi “momenta”

symplectic 2-form: ω = dpi ∧ dx i

even (degree 0) Poisson bracket

{x i , x j} = 0, {pi , x j} = δji , {pi , pj} = 0

generalization, deformation, quantization

{f , g}θ = θij(x)∂i f ∂jg  f ? g = fg +
~
2
{f , g}+ . . .



Geometric ladder to generalized geometry [ , ]S

Step 1: Super Poisson manifold T ∗[1]M
(M itself is assumed to be Poisson here)

I degree 0: x i “coordinates”

I degree 1: ξi “momenta”, ξiξj = −ξjξi
symplectic 2-form: ω = dξi ∧ dx i

odd (degree -1) Poisson bracket defined on functions f (x , ξ)

{x i , x j} = 0, {ξi , x j} = δji , {ξi , ξj} = 0

= Schouten bracket [ , ]S of vector fields v = v i (x)ξi : {v ,w} = [v ,w ]Lie

degree 2 “Hamiltonian” (Poisson bi-vector): θ = 1
2θ

ij(x)ξiξj {θ, θ} = 0

derived bracket: {{f , θ}, g} = θij(x)∂i f ∂jg

i.e. we recover the previous bracket (with a few more bells and whistles)



Geometric ladder to generalized geometry θ(x) ?

n = 1 (open string)

Poisson sigma model
2-dimensional topological field theory, E = T ∗M

S
(1)
AKSZ =

∫
Σ2

(
ξi ∧ dX i +

1

2
θij(X ) ξi ∧ ξj

)
,

with θ = 1
2 θ

ij(x) ∂i ∧ ∂j , ξ = (ξi ) ∈ Ω1(Σ2,X
∗T ∗M)

perturbative expansion ⇒ star product ?, Kontsevich formality

(valid on-shell ([θ, θ]S = 0) as well as off-shell, e.g. twisted Poisson)

Kontsevich (1997), Cattaneo, Felder (2000)

AKSZ construction: action functionals in BV formalism of sigma model
QFT’s in n + 1 dimensions for symplectic Lie n-algebroids E

Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)



Geometric ladder to generalized geometry

Step 2: Graded Poisson manifold T ∗[2]T [1]M

I degree 0: x i “coordinates”

I degree 1: ξα = (θi , χi )

I degree 2: pi “momenta”

symplectic 2-form

ω = dpi ∧ dx i +
1

2
Gαβdξ

α ∧ dξβ = dpi ∧ dx i + dχi ∧ dθi

even (degree -2) Poisson bracket on functions f (x , ξ, p)

{x i , x j} = 0, {pi , x j} = δji , {ξα, ξβ} = Gαβ

metric Gαβ : natural pairing of TM, T ∗M:

{χi , θ
j} = δji , {χi , χj} = 0 , {θi , θj} = 0



Geometric ladder to generalized geometry

Generalized geometry as a derived structure
degree 3 “Hamiltonian”:

Θ = ξαhiα(x)pi (+twisting/flux terms)

For e = eα(x)ξα (degree 1, odd):

I pairing: 〈e, e′〉 = {e, e′}
I anchor: h(e)f = {{e,Θ}, f }
I bracket: [e, e′]D = {{e,Θ}, e′}
{Θ,Θ} = 0 ⇔ Courant algebroid axioms



Geometric ladder to generalized geometry

n = 2 (open membrane)

Courant sigma model
standard Courant algebroid C = TM ⊕ T ∗M
TFT with 3-dimensional membrane world volume Σ3

S
(2)
AKSZ =

∫
Σ3

(
φi ∧ dX i + 1

2 GIJ α
I ∧ dαJ − hI

i (X )φi ∧ αI

+ 1
6 CIJK (X )αI ∧ αJ ∧ αK

)
embedding maps X : Σ3 → M, 1-form α, aux. 2-form φ, fiber metric G ,
anchor h, 3-form C (e.g. H-flux, f -flux, Q-flux, R-flux).



Geometric ladder

hierarchie of actions, brackets, extended objects and algebras

AKSZ-model: Poisson-sigma Courant-sigma . . .
(open string) (open membrane)

T ∗[1]M T ∗[2]T [1]M

derived bracket: Poisson Dorfman . . .
T ∗M TM ⊕ T ∗M

•

object: point particle closed string . . .

algebraic structure: non-commutative non-associative . . .



Generalized Geometry and Gravity

setup: T ∗[2]T [1]M (“step 2”) even bracket with odd variables
deformation by a non-symmetric metric G = j ◦ (g + B) ◦ h

{χi , χj} = 0 → {χi , χj}′ = 2gij(x)

⇒ for X = X i (x)χi and v = v i (x)pi , the Poisson structure implies

{v ,X}′ = ∇Gv X , {v , v ′}′ = [v , v ′]Lie+R(v , v ′)

{Θ,Θ} = 0 ⇔ R(v , v ′) = 0 (no curvature!) Weitzenböck connection

∇Gi χj = −(∂iGjl) θl

the derived bracket involves the Levi-Civita connection ∇LC (no torsion!)

[X ,Y ]′ = [X ,Y ]D + 2g(∇LCX ,Y ) + H(−,X ,Y )

plus skew symmetric torsion H = dB.
Khoo, Boffo; PS



Generalized Geometry and Gravity

generalized Koszul formula for nonsymmetric G = g + B

2g(∇ZX ,Y ) = 〈Z , [X ,Y ]′〉′

= XG(Y ,Z )− YG(X ,Z ) + ZG(X ,Y )

−G(Y , [X ,Z ]Lie)− G([X ,Y ]Lie,Z ) + G(X , [Y ,Z ]Lie)

= 2g(∇LC
X Y ,Z ) + H(X ,Y ,Z )

⇒ non-symmetric Ricci tensor

Rjl = RLC
jl −

1

2
∇LC

i H i
jl −

1

4
H i

lm H m
ij R = Gijg ikg jlRkl

⇒ gravity action (closed string effective action) after partial integration:

SG =
1

16πGN

∫
ddx
√
−g
(
RLC − 1

12
HijkH

ijk

)
Khoo, Vysoky, Jurco, Boffo; PS



Generalized Geometry and Gravity

This formulation consistently combines all approaches of Einstein:
Non-symmetric metric, Weitzenböck and Levi-Civita connections,
without any of the usual drawbacks.

The dilaton φ(x) rescales the generalized tangent bundle. The
deformation can be formulated in terms of vielbeins

E = e−
φ
3

(
1 0

g + B 1

)
E−1∂iE =

(
− 1

3∂iφ 0
∂i (g + B) − 1

3∂iφ

)
Going through the same steps as before we find in d = 10

S =
1

2κ

∫
d10x e−2φ√−g

(
RLC − 1

12H
2 + 4(∇φ)2

)
Boffo, PS



Generalized Geometry and Gravity

Quantization and the dilaton

x i , pi , θ
i , χi  differential ops on ψ(x , θ) ∈ Λ•T ∗M (spinors):

p  ∂x χ ∂θ = iχ x  x · θ  θ∧

θ, χ: finite dimensional representation by γ-matrices:

V  γV = V α(x)γα , [γV , γW ]+ = G (V ,W ) etc.

Symmetry Lie algebra generators: Mα
βξαξ̃

β

M i
j picks up trM “anomaly” after quantization

Λ•T ∗M  Λ•T ∗M ⊗ det
1
2 TM

requiring the introduction of the dilaton field φ for covariance.



Generalized Geometry and Gravity

Fully deformed Poisson structure on T ∗[2]T [1]M

{v , f } = v .f

{V ,W } = G (V ,W ) ≡ 〈V ,W 〉
{v ,V } = ∇vV ← connection metric wrt. G

{v ,w} = [v .w ]Lie + R(v ,w) ← curvature of ∇

with

I degree 0: f (x)

I degree 1: V = V α(x)ξα “generalized vectors” ∈ Γ(TM ⊕ T ∗M)

I degree 2: v = v i (x)pi “vector fields” ∈ Γ(TM)

general Hamiltonian

Θ = ξ̃αh(ξα) +
1

6
Cαβγ ξ̃

αξ̃β ξ̃γ ← general flux (H,f,Q,R)



Generalized Geometry and Gravity

derived bracket

{{{V ,Θ},W },X} = 〈∇VW ,X 〉−〈∇WV ,X 〉+〈∇XV ,W 〉+C (V ,W ,X )

{{{ξα,Θ}, ξβ}, ξγ} = Γαβγ − Γβαγ︸ ︷︷ ︸
torsion

+Γγαβ + Cαβγ =: Γnew
γαβ

“mother of all brackets”

[V ,W ] = ∇VW −∇WV + 〈∇V ,W 〉+ C (V ,W ,−)

= [V ,W ]Lie + T (V ,W ) + 〈∇V ,W 〉+ C (V ,W ,−)

In order to obtain a regular Courant algebroid, impose

{Θ,Θ} = 0 ⇔ ∇C +
1

2
{C ,C} = 0 , G−1|h = 0 , . . .



Summary + Discussion

I generalized geometry provides a perfect setting for the formulation
of theories of gravity

I our approach is based on the deformation of a Poisson structure . . .

I . . . other more traditional approaches focus on the generalized metric
and Bismut connection (→ covariance and uniqueness problems)

I string effective action without string theory; target space approach.

 

 

 

 


