Exotics and BSM in ATLAS and CMS (non DM searches)

Piotr Zalewski on behalf of the CMS and the ATLAS Collaborations

National Centre for Nuclear Research (NCBJ), Warsaw supported in part by NCN grant 2014/15/B/ST2/03998

CORFU2018

Corfu Summer Institute 2018: Workshop on the Standard Model and Beyond Corfu, Mon Repos, 7/09/2018

OUTLINE

- What is exotic @ LHC (introduction)
- Some examples of recent exotica searches
 - \rightarrow prompt
 - \rightarrow long lived
- Conclusions

CMS – Compact Muon Solenoid

C.

1.2. 4.12

Topological searches: Resonances (dijets, dileptons, diphotons) \rightarrow Z', RS gravitons, compositness ... The 5th Wave By Rich Tennant Single lepton + MET → leptonic decays of W' SPACHTENNANT.com • Leptons and jets \rightarrow leptoquarks Multiobject topologies → microscopic black holes • Mono - "something visible" \rightarrow dark matter (\leftarrow also resonances) At the SUSY – Exotica border • RPV SUSY (more on the SUSY side) Long-Lived Particles (LLP) Many topologies with jets and leptons are 4 (voc) common for SUSY and Exotica In short: • we search for everything, maybe except EXOTICA par excellence 'doesn't matter'.

5

"After the discovery of 'antimatter' and 'dark matter', we have just confirmed the existence of 'doesn't matter', which does not have any influence on the Universe whatsoever."

6

$Z' \rightarrow q \ q bar \ summary$

Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in p-p coll. at sqrt(s) = 13 TeV with the ATLAS detector (arXiv:1804.10823, Apr 2018) Search for resonant tr production in p-p collisions at sqrt(s) = 13 TeV (CMS PAS B2G-17-017, Jun 2018)

Model independent search for a resonant excess in $t\bar{t}$ system mass. The main background is non resonant $t\bar{t}$ production.

Combination of searches for heavy resonances decaying into bosonic and leptonic final state using 36 fb-1 of pp collision data at sqrt(s) 13 TeV with the ATLAS detector (arXiv:1808.02380, Aug 2018)

10 ATLAS analyses combined.

Channels taken into account: WZ \rightarrow qqqq, ℓ vqq, ℓ v ℓ l; WW \rightarrow qqqq, ℓ vqq, ℓ v ℓ v; ZZ \rightarrow qqqq, ℓ lqq, vvqq, ℓ lvv, ℓ ll; WH \rightarrow qqbb, ℓ vbb; ZH \rightarrow qqbb, vvbb, ℓ lbb, and the lepton–antilepton channels: ℓ l, ℓ v.

Results interpreted (among others) in the heavy vector triplet (HVT) model. Several **one dimensional limits on x-sections** and **two dimensional limits on coupling strenghts** presented.

Combination of the searches for pair-produced vector-like partners (VLPs) of the third generation quarks at sqrt(s) 13 TeV with the ATLAS detector (ATLAS-CONF-2018-032, Jul 2018)

11

Search for a heavy resonance decaying to a top quark and a vector-like top quark (VLQ) in the lepton+jets final state (CMS PAS B2G-17-015)

Search for a W' boson decaying to a vector-like quark (VLQ) and a top or bottom quark in the all-jets final state (CMS PAS B2G-18-001)

B.T

m_{thb} (GeV)

Top and Higgs boosted.

Trigger: $H_{T} > 800, 900 \text{ GeV}$ or wide (AK8) jet $p_{T} > 400 \text{ GeV}$

The search variable is \mathbf{m}_{Hb} mass.

The primary background: QCD multijet production is derived from data using control regions CR1-CR3.

Applicability and versatility of the background estimate is tested using **validation regions** CR4-CR7.

· • • •		t jet	H jet	b jet	
selection	SR >>>>>	tag	tag	tag	
	est. CR1	antitag	antitag	tag	
	est. CR2	antitag	tag	tag	
	<mark>est</mark> . CR3	tag	antitag	tag	
	val. CR4	tag	tag	antitag	
backg.	val. CR5	antitag	antitag	antitag	
validation /	val. CR6	antitag	tag	antitag	
/ .	val. CR7	tag	antitag	antitag	

Piotr Zalewski, NCBJ Warsaw, Exotics and BSM at A

Excited guarks 8 TeV t* → tg S=3/2 80 fb t* → tg S=1/2 500 fb $b^* \rightarrow tW (K_1=1)$ 70 fb $b^* \rightarrow tW (K_R=1)$ 60 fb $b^* \rightarrow tW (K_R=1)$ 70 fb 70 fb $t^* \rightarrow tg (K_U K_{R=1})$

0.4

0

1.2

1.6

2

Resonances to dibosons

0.8

Resonances to heavy quarks Z'(1.2%) → tt 8 fb 8 TeV Z'(10%) → tt 15 fb 13 TeV qKK → tt 40 fb W' → tb 40 fb $W' \rightarrow tb (M_v < M_W)$ 50 fb $W' \rightarrow tb (M_{v>}M_{W'})$ 50 fb Z'(1%) → tt 4.2 fb Z'(10%) → tt 10 fb Z'(30%) → tt 22 fb qKK → tt 19 fb $W' \rightarrow tb (M_v < M_{W'})$ 18 fb 15 fb → tb (M_{v>}M_{w'}) Z'→ Tt 2.4 fb

W'

→ tZt (50%)

Observed limit 95%CL (TeV)

+tHt (50%) 1 1.5 2 2.5 3 3.5 4 4.5 5

B₂G

new physics searches with heavy SM particles

Observed limit 95%CL (TeV)

Vector-like quark pair production

Vector-like quark single production

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

ATLAS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$

 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$

М	lodel	<i>ℓ</i> ,γ	Jets†	E ^{miss}	∫£ dt[fb	⁻¹] Limit		Reference
ADD ADD ADD ADD ADD Bulk Bulk 2UED	$\begin{array}{l} G_{KK} + g/q \\ \text{non-resonant } \gamma\gamma \\ \text{QBH} \\ \text{BH high } \sum p_T \\ \text{BH multijet} \\ G_{KK} \rightarrow \gamma\gamma \\ \text{RS } G_{KK} \rightarrow WW/ZZ \\ \text{RS } g_{KK} \rightarrow tt \\ \text{D}/ \text{RPP} \end{array}$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ 1 \ e, \mu \\ \hline \\ 2 \ \gamma \\ \hline \\ multi-channe \\ 1 \ e, \mu \\ \hline \\ 1 \ e, \mu \end{array}$	$1 - 4 j$ $- 2 j$ $\geq 2 j$ $\geq 3 j$ $- 3 j$ $\geq 1 b, \geq 1 J/2$ $\geq 2 b, \geq 3 j$	Yes 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 36.1 36.1	Mp 7.7 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV GKK mass 3.8 TeV KK mass 3.8 TeV KK mass 1.8 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ n &= 6, M_D = 3 \text{ TeV, rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ \Gamma/m &= 15\%\\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 CERN-EP-2018-179 1804.10823 1803.09678
Banda	$\begin{array}{l} Z' \rightarrow \ell \ell \\ Z' \rightarrow \tau \tau \\ \text{ophobic } Z' \rightarrow bb \\ \text{ophobic } Z' \rightarrow tt \\ W' \rightarrow \ell \nu \\ W' \rightarrow \tau \nu \\ V' \rightarrow WV \rightarrow qqqq \text{ model B} \\ V' \rightarrow WH/ZH \text{ model B} \\ W'_R \rightarrow tb \end{array}$	2 e, μ 2 τ - 1 e, μ 1 τ 3 0 e, μ multi-channe multi-channe	_ 2 b ≥ 1 b, ≥ 1J/3 _ _ 2 J	– – 2j Yes Yes Yes –	36.1 36.1 36.1 79.8 36.1 79.8 36.1 36.1 36.1	Z' mass 4.5 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 5.6 TeV W' mass 3.7 TeV V' mass 4.15 TeV V' mass 2.93 TeV W' mass 3.25 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$	1707.02424 1709.07242 1805.09299 1804.10823 ATLAS-CONF-2018-017 1801.06992 ATLAS-CONF-2018-016 1712.06518 CERN-EP-2018-142
Cl qq Cl l q Cl l l l Cl tt	qqq qq tt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ	21.8 TeV η_{LL}^{-} 40.0 TeV η_{LL}^{-} $ C_{4t} = 4\pi$	1703.09127 1707.02424 CERN-EP-2018-174
Axial Color VV _X	-vector mediator (Dirac DM) red scalar mediator (Dirac DM χ EFT (Dirac DM)	0 e,μ Μ) 0 e,μ 0 e,μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} 1.55 TeV m _{med} 1.67 TeV M _* 700 GeV	$\begin{array}{l} g_q{=}0.25,g_\chi{=}1.0,m(\chi) = 1~{\rm GeV} \\ g{=}1.0,m(\chi) = 1~{\rm GeV} \\ m(\chi) < 150~{\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372
O Scala Scala Scala	ar LQ 1 st gen ar LQ 2 nd gen ar LQ 3 rd gen	2 e 2 μ 1 e, μ	$ \begin{array}{l} \geq 2 \ j \\ \geq 2 \ j \\ \geq 1 \ b, \geq 3 \ j \end{array} $	– – Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	$\begin{aligned} \beta &= 1\\ \beta &= 1\\ \beta &= 0 \end{aligned}$	1605.06035 1605.06035 1508.04735
Areavy quarks DTA DTA DTA DTA DTA	$\begin{array}{l} TT \rightarrow Ht/Zt/Wb + X\\ BB \rightarrow Wt/Zb + X\\ T_{5/3} T_{5/3} T_{5/3} \rightarrow Wt + X\\ Y \rightarrow Wb + X\\ B \rightarrow Hb + X\\ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe $2(SS)/\geq 3 e,\mu$ 1 e,μ 0 $e,\mu, 2 \gamma$ 1 e,μ	$ \begin{array}{l} \iota \\ \iota \\ \geq 1 \\ \iota \geq 1 \\ b, \geq 1 \\ j \\ \geq 1 \\ b, \geq 1 \\ j \\ \geq 1 \\ b, \geq 1 \\ j \\ \geq 4 \\ j \end{array} $	Yes Yes Yes Yes	36.1 36.1 36.1 3.2 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.44 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c(YWb) = 1/\sqrt{2}$ $\kappa_B = 0.5$	ATLAS-CONF-2018-032 ATLAS-CONF-2018-032 CERN-EP-2018-171 ATLAS-CONF-2016-072 ATLAS-CONF-2018-024 1509.04261
Excit Excit Excit Excit Excit Excit	ed quark $q^* \rightarrow qg$ ed quark $q^* \rightarrow q\gamma$ ed quark $b^* \rightarrow bg$ ed lepton ℓ^* ed lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	37.0 36.7 36.1 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.6 TeV /* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 1709.10440 1805.09299 1411.2921 1411.2921
Type LRSN Higgs Mono Multi- Magr	III Seesaw M Majorana v s triplet $H^{\pm\pm} \rightarrow \ell \ell$ 22 s triplet $H^{\pm\pm} \rightarrow \ell \tau$ otop (non-res prod) -charged particles netic monopoles	1 e, μ 2 e, μ 2,3,4 e, μ (SS 3 e, μ, τ 1 e, μ - - -	≥ 2 j 2 j 1 b √s = 13	Yes - Yes - TeV	79.8 20.3 36.1 20.3 20.3 20.3 7.0	Nº mass 560 GeV Nº mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2 Mass scale [TeV]	ATLAS-CONF-2018-020 1506.06020 1710.09748 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment (arXiv:1807.07447, Jul 2018)

Piotr Zalewski, NCBJ Warsaw, Exotics and BSM at ATLAS & CMS (non DM), CORFU2018, Sep 7

A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment (arXiv:1807.07447, Jul 2018)

Search for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark in proton-proton collisions at sqrt(s) = 13 TeV (CMS → doi:10.1007/JHEP07(2018)115, Jul 2018)

LQ

LO

- $\mathrm{e}\tau_{\mathrm{h}},\mu\tau_{\mathrm{h}},\tau_{\mathrm{h}}\tau_{\mathrm{h}}$ channels
- At lest one hard b-tagged jet required.

Dominant background in all channels is tt production. $b = \tau - b$ Additional backgrounds are W+jets, Z+jets, diboson, single top and QCD multijet events.

Aren't long lived creatures interesting?

Motivation for LLP • various SUSY scenarios: gravitino DM RPV Split SUSY [...] • "hidden valley" • [...] BSM with new symmetry, weak coupling,

kinematic constraint,

potential barrier

9

Mary River Turtle with algae on its head © Chris Van Wyk

LLP with displaced vertices (DV)

ATLAS: Phys. Rev. D 97,052012 (Mar 2018)

CMS-EXO-17-018 (arXiv:1808.03078, Aug 2018)

These analyses are similar in using displaced vertices, but focused on different signals.

The ATLAS search is motivated by Split SUSY.

Large MET is expected and used for trigger and selection.

Final selection (SR): MET > 250 GeV at least one good DV with mass **m**_{DV} > **10 GeV** and number of assoicated tracks **n**_w ≥ **5**

An additional *large radius tracking* (LRT) in use.

Only instrumental background is expected:

- A) hadronic interactions
- B) merged vertices
- C) accidental crossing of vertices & tracks

Background estimated using

CRs with lower m_{DV}, n_{trk}.

The CMS search is motivated by RPV SUSY.

No MET but large number of hard jets is expected.

For trigger (selection) $H_{T} > 800, 900 (1000) \text{ GeV}$ $(H_{T} \text{ is the scalar sum of hard})$ jets transverse momenta)

Only **DV** vertices **inside beam pipe** are considered. In the search two such vertices are required in each event. **In the signal region not less than 5 tracks** per vertex are required. Vertices with fewer number of tracks form CRs. Background templates are constructed using events with single vertex.

20

Piotr Zalewski, NCBJ Warsaw, Exotics and BSM at ATLAS & CMS (non DM), CORFU2018, Sep 7

Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector (arXiv:1808.03057, Aug 2018) 10^{2} ATLAS p $\sqrt{s} = 13 \text{ TeV}$ 32.9 fb⁻¹ 10 m.₀ = 1000 GeV H-^{^1} Observed $Z_{\rm D}$ ----- Expected ±1σ

Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at sqrt(s) = 13 TeV (CMS: doi:10.1007/JHEP05(2018)127, Aug 2018)

Two searches for stopped LLPs that decay out of time:

→ hadronic decays detected in the calorimeters

→ decays to muon pairs detected in the muon system

LLP decays during empty BXs, dedicated triggers select events at least 2 BXs away from any proton bunches.

Search for decays of stopped exotic long-lived particles produced in proton-proton collisions at sqrt(s) = 13 TeV (CMS: doi:10.1007/JHEP05(2018)127, Aug 2018)

Search for heavy charged long-lived particles in proton–proton collisions at sqrt(s) = 13 TeV using an ionisation measurement with the ATLAS detector (arXiv:1808.04095, Aug 2018)

βγ

The search for gluinos (R-hadrons) is performed in two separate signal regions: **stable and metastable**. The main difference is that **metastable candidates are required to not be seen in the muon system**. Heavy gluinos are to be recognized by their

higher specific ionisation in (four) pixel layers of the tracker.

The MET trigger with threshold varied from 70 to 110 GeV is used.

Events are selected by requiring (offline) MET > 170 GeV. Candidates must have p_{T} > 50 GeV, p > 150 GeV, $|\eta|$ < 2 and MPV_{dE/dx}> 1.8 MeV cm²/g (which is roughly equivalent to $\beta\gamma$ < 0.9)

After suppression of several types of background (not to be described here) what rest is background due to

- multiple sampling from Landau tail of specific ionisation,

- overlapping particles etc.

The background is fully estimated from data.

A template for momentum distribution in SR is obtained from *p*-CR with inverted MPV_{dE/dx} cut. The d*E*/dx distribution (in several *p* bins) is obtained from d*E*/dx-CR with inverted MET cut. Finally, a validation (VR) region is constructed by requiring 50 GeV.

The search variable is the mass $m=p/(\beta \gamma)$ where $\beta \gamma$ is obtained using the equation shown in the figure.

The background estimate is normalized to data in the region m < 160 GeV before the high ionisation cut is applied.

26

Search for heavy charged long-lived particles in proton–proton collisions at sqrt(s) = 13 TeV using an ionisation measurement with the ATLAS detector (arXiv:1808.04095, Aug 2018)

Table 1: Summary of the different selection requirements applied to the signal region (SR), the validation region (VR), and the control regions (CR).

	SD	VD	<i>p</i> -	CR	dE/dx-CR	
	эк	٧K	for SR	for VR	for SR	for VR
Track Momentum [GeV]	>150	50-150	>150	50-150	>150	50-150
$E_{\rm T}^{\rm miss}$ [GeV]	>	170	>	170	<170	
Ionisation [MeV g^{-1} cm ²]	>	1.8	<	1.8	_	

Search for new particles decaying to a jet and an emerging jet (CMS PAS EXO-18-001, June 2018)

Trigger: $H_{T} > 900 \text{ GeV}$

Emerging jet candidates: |n| < 2 tracks of good quality with n > 1C

 $|\eta| < 2$, tracks of good quality with $p_{T} > 1$ GeV and within R=0.4

Signature: multiple tracks with large impact parameter (IP).

 \rightarrow $\langle \textit{IP}_{_{\rm 2D}}\rangle$, the median of unsigned transverse IP

$$\rightarrow PU_{dz} = |z_{PV} - z_{trk}|$$

 $\rightarrow D_{\rm N} = \text{sqrt}\{(PU_{\rm dz}/0.01\text{ cm})^2 + IP_{\rm sig}^2\},$

where IP_{sig} is transverse IP significance

 $\rightarrow \alpha_{_{3D}}$, a fraction of a scalar sum of $p_{_{T}}$ corresponding to tracks passing $D_{_{N}}$ selection

Optimized sets of requiremnts for emerging jets

\sim					
	Set number	$PU_{dz}(<)$	$D_{\rm N}~(<)$	$\langle IP_{\rm 2D} \rangle$ (>) [cm]	α _{3D} (<)
)	EMJ-1	2.5	4	0.05	0.25
	EMJ-2	4.0	4	0.10	0.25
)	EMJ-3	4.0	20	0.25	0.25
	EMJ-4	2.5	4	0.10	0.25
	EMJ-5	2.5	20	0.05	0.25
	EMJ-6	2.5	10	0.05	0.25
	EMJ-7	2.5	4	0.05	0.40
	EMJ-8	4.0	20	0.10	0.50

Search for new particles decaying to a jet and an emerging jet (CMS PAS EXO-18-001, June 2018)

Optimized selection sets

Set number	$H_{\rm T}$	<i>р</i> _{Т,1}	р _{Т,2}	<i>р</i> т,з	<i>р</i> _{Т,4}	$p_{\rm T}^{\rm miss}$	$n_{\rm em}(\geq)$	EMJ set	no. models
1	900	225	100	100	100	0	2	1	12
2	900	225	100	100	100	0	2	2	2
3	900	225	100	100	100	200	1	3	96
4	1100	275	250	150	150	0	2	1	49
5	1000	250	150	100	100	0	2	4	41
6	1000	250	150	100	100	0	2	5	33
7	1200	300	250	200	150	0	2	6	103
8	900	225	100	100	100	0	2	7	OCD onhanced
9	900	225	100	100	100	200	1	8	QCD-ennanced

Probability of misidentification of jet as an emerging one depends on the flavor (b-jets are mach more vulnerable) and track multiplicity.

The misid rate is measured as a function of multiplicity using events triggered by p_{T} > 165 GeV photon.

Two subsamples: b-enriched and b-suppressed. The b quark fraction of 16.1 fb⁻¹ (13 TeV) **CMS** Preliminary each is detrmined by **Misidentification** rate 🗕 b jet EMJ 1 a fit of simulated + light jet 10 templates. Finally: 10⁻² ≡ $\begin{pmatrix} \epsilon_{fb} \\ \epsilon_{fl} \end{pmatrix} = \begin{pmatrix} \frac{1-f_{b2}}{f_{b1}-f_{b2}} & \frac{-(1-f_{b1})}{f_{b1}-f_{b2}} \\ \frac{-f_{b2}}{f_{b1}-f_{b2}} & \frac{f_{b1}}{f_{b1}-f_{b2}} \end{pmatrix} \begin{pmatrix} \epsilon_{f1} \\ \epsilon_{f2} \end{pmatrix}$ 10 10^{-5} 0 10 20 30 40 Track multiplicity

Set number	Expected	Observed
1	$168 \pm 15 (syst_1) \pm 5 (syst_2)$	131
2	$31.8 \pm 5.0 (\text{syst}_1) \pm 1.4 (\text{syst}_2)$	47
3	$19.4 \pm 7.0 (\text{syst}_1) \pm 5.5 (\text{syst}_2)$	20
4	$22.5 \pm 2.5 (syst_1) \pm 1.5 (syst_2)$	16
5	$13.9 \pm 1.9 (syst_1) \pm 0.6 (syst_2)$	14
6	$9.4 \pm 2.0 (\text{syst}_1) \pm 0.3 (\text{syst}_2)$	11
7	$4.40 \pm 0.84~(syst_1) \pm 0.28~(syst_2)$	2

Background estimate verified by simulation, and validated in QCD enhanced samples (selection set 8 is shown above)

30

K

Conclusions

- A detailed search for almost every imaginable symptom of BSM physics is being performed on 13 TeV data by ATLAS and CMS.
 Only small subsample shown in this talk.
- No signal of BSM phenomenon of any kind has been found yet.
- More data to come, new ideas under development.
- We will keep searching!

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G/index.html

