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— GRis based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matter.
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— GR is based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matter.

— On the other hand, string theory suggests to put a two-form gauge potential, B,,,,, and a
scalar dilaton, ¢, on an equal footing along with the metric:

e They form the closed string massless sector, being ubiquitous in all string theories,

/de “ge ¢ (Hg +40,00" ¢ — %HAWH*'“’) where H=dB.

This action hides O(D, D) symmetry of T-duality which transforms g, B, ¢ into one another. Buscher 1987

— T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to ‘pure’ gravity.

Double Field Theory (DFT), initiated by Siegel 1993 & Hull, Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.
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— GR is based on Riemannian geometry, where the only geometric and gravitational field is the
Riemannian metric, g,.... Other fields are meant to be extra matter.

— On the other hand, string theory suggests to put a two-form gauge potential, B,,.,, and a
scalar dilaton, ¢, on an equal footing along with the metric:

e They form the closed string massless sector, being ubiquitous in all string theories,

/de “ge ¢ (Hg +40,00" ¢ — %ZHMWHM") where H=dB.

This action hides O(D, D) symmetry of T-duality which transforms g, B, ¢ into one another. Buscher 1987

— T-duality hints at a natural augmentation to General Relativity, in which the entire closed string
massless sector constitutes the fundamental gravitational multiplet and the above action
corresponds to ‘pure’ gravity.

Double Field Theory (DFT), initiated by Siegel 1993 & Hull, Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D, D) T-duality.

e Plan of this talk
I. Review DFT as Stringy Gravity, as formulated on ‘doubled-yet-gauged’ spacetime.

Il. Derive the Einstein Double Field Equations, Gag = 87 GTag, as the unifying single expression for the

closed-string massless sector, as well as for Newton-Cartan, Carroll and Gomis-Ooguri gravities.

lll. Moduli-free Kalaza—Klein reduction of DFT on non-Riemannian internal space.
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DFT as Stringy Gravity
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Notation for O(D, D) and Spin(1,D—1), x Spin(D—1,1) 5 local Lorentz symmetries

Index Representation Metric (raising/lowering indices)
AB,--- M,N,.-- O(D, D) vector Tag = L
1 0
P, g Spin(1, D—1), vector Npg = diag(— ++---+)
a, B, Spin (1, D—1), spinor Cop, (7P)T = CyPC!
p,q, Spin(D—1,1) , vector fipg = diag(+ — — -+ —)
a, B, Spin(D—1,1) ; spinor Cagr (3P)7 = CHPT

— Each symmetry rotates its own indices exclusively : spinors are O(D, D) singlet.
— The constant O(D, D) metric, Jag, decomposes the doubled coordinates into two parts,
= (Xu, x¥), 9 = (6",0v),
where pu, v are D-dimensional curved indices.

— The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the
left-moving and the right-moving closed string sectors separately = Unification of IIA and IIB.

The spin group can generalize to Spin(t, s); x Spin(f,8)g with t + 7= s+ 35 = D = Heterotic.
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o Closed string massless sector as ‘Stringy Graviton Fields’

The stringy graviton fields consist of the DFT dilaton, d, and DFT metric, Hyy :
Hun = Hnm Hi"HuN Tin = Tim -
Combining Jynv and Hyn, we get a pair of symmetric projection matrices,

Pun = Pnv = 5(Tun + Hun) » PMPyN = PN,

Nl= =

Pun = Pnm =
which are orthogonal and complete,
PMPyN =0, PyN + PyN = syN.
Further, taking the “square roots" of the projectors,
Pun = VP Vn9npq Pun = VP Vg .

we get a pair of DFT vielbeins satisfying their own defining properties,

Vi VMg = npq , Vip VM5 = 7lpg , Vip VMg =0,

or equivalently )
ViuP Vo + VP Vivg = T -
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hyn = Haw, Hi-HuNTin = Tkus is
characterized by two non-negative integers, (n,n), 0 < n+n<D:

Hag = i —HEI By + Y,“Xi\ - Viﬂ)_(;
B.oHPY + X VP = Xt Vg’ Kiex — BkpHP? By + 2X("HB)\),, Y/’ - 2)_((7;8,\)0 V{’
i) Symmetric and skew-symmetric fields: H*Y = H"#, K, = Koy, Buw = —Buy;
i) Two kinds of eigenvectors having zero eigenvalue, with i,j =1,2,--- .n & 7,7=1,2,--- ,n,
Hrv X =0, HH X =0, KwY’ =0, Kuv \7]1’ =

iii) Completeness relation: H1P Ky + YEX] + YEXT = 6.
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, Hyn = Haw, Hi-HuNTin = Tkus is
characterized by two non-negative integers, (n,n), 0 < n+n<D:

Hag = af# —H!'Box + Yi‘”Xi\ - VEM)_(;
B, HPY + XI VP = Xt Vg’ Kiex — BkpHP? By + 2X("HB)\),, YP — ZXFHBMP V{’
i) Symmetric and skew-symmetric fields: H*Y = H"#, K, = Koy, Buw = —Buy;
i) Two kinds of eigenvectors having zero eigenvalue, with i,j =1,2,--- .n & 7,7=1,2,--- ,n,
Hrv X =0, HH X =0, Kuv Yj" =0, Kuv V]F =0;

iii) Completeness relation: H1P Ky + YEX] + YEXT = 6.

— Orthonormality follows: ~ Y¥X!, =&/, YIX] =67, Y'X)=V'X, =o0.

— O(D, D) invariant trace:  Ha* =2(n—n).
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

B-field contributes through O(D, D)-conjugation:

1 0 H Yi(XDT — Vo(X")T 1 —-B

B 1 X(Y)T = X7 (¥o)T K 0 1

Hag =
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

B-field contributes through O(D, D)-conjugation:

10 H Yi(XHT — Ye(XH)T 1 -B

B 1 X(Y)T = X7 (¥o)T K 0 1

Hag =

I. (n,n) = (0,0) corresponds to the Riemannian case or Generalized Geometry a la Hitchin:

1 1

— B ,

Hun = g 2 , e 29=,/[gle"®® Giveon, Rabinovici, Veneziano '89, Duff ‘90
Bg~'" g-Bg'B
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

B-field contributes through O(D, D)-conjugation:

10 H Yi(XHT — Ye(XH)T 1 -B
B 1 X(Y)T = X7 (¥o)T K 0 1

Hag =

I. (n,n) = (0,0) corresponds to the Riemannian case or Generalized Geometry a la Hitchin :

g -g7'B
Hun = , e 29=,/[gle"®® Giveon, Rabinovici, Veneziano '89, Duff ‘90
Bg=' g-Bg~'B

Il. Generically, string becomes chiral and anti-chiral over the n and n dimensions:

X;,z Oy xH(1,0) =0, )_(EL O_xH(1,0)=0.
— Such non-Riemannian examples include
e (1,0) Newton-Cartan gravity (ds? = —cdf? + dx?, Jim g~ ' is finite & degenerate)
e (1,1) Gomis-Ooguri non-relativistic string Melby-Thompson, Meyer, Ko, JHP 2015

e (D—1,0) ultra-relativistic Carroll gravity

e (D, 0) Siegel’s chiral string: maximally non-Riemannian, rigidly H = J
— Singular geometry in GR can be smooth in DFT (check your favorite SUGRA solutions).
— Their dynamics will be all governed by the Einstein Double Field Equations.
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o Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": ~ Siegel 1993

n
LeTayn, = EP0BTa.n, +wrOBEPTa o, + O (08 — OBEA) Ty Ay PA 1o s
i=1

where wr is the weight, e.g. 66729 = 9g(¢Be29), §Vp, = £BOBVap + (9aés — BEA) VEp.
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o Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": ~ Siegel 1993

n
ﬁg TayAy = 53537—41...A,7 + wr 85§BTA1..4AH + Z(@A,&g — 6B§A,)TA1--.AF1BA,v+1-4-A,, ,
=

where wr is the weight, e.g. 66729 = 9g(¢Be29), §Vp, = £BOBVap + (9aés — BEA) VEp.

e For consistency, the so-called ‘section condition’ should be imposed: 8y,0™ = 0.
From ayoM = 20,,,5“, the section condition can be easily solved by letting * = 0.

The general solutions are then generated by the O(D, D) rotation of it.

e The section condition is mathematically equivalent to a certain translational invariance:
i(x) = Pi(x + A), AM = oMo,

where ®;, ;&) € {d,HMN JEM and 0 Huw, - - - } arbitrary functions appearing in DFT,

and AM is said to be derivative-index-valued. JHP 2013
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e Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative":  Siegel 1993

n
EAg TayAy = 58837'/\1...An + wr 8B§BTA1..4AH + Z(aA,fB — 8B§A,)TA1--»A,,1BA,+1-4-A,7 ]
i=

where wr is the weight, e.g. 66729 = 9g(¢Be29), §Vp, = £BOBVap + (9aés — BEA) VEp.

e For consistency, the so-called ‘section condition’ should be imposed: 8y,0™ = 0.
From ayoM = 20,,,5“, the section condition can be easily solved by letting 9* = 0.

The general solutions are then generated by the O(D, D) rotation of it.

e The section condition is mathematically equivalent to a certain translational invariance:
‘D,‘(X) = ¢,‘(X + A), AM = <I>,-6M<I>k,

where ®;, ;&) € {d,HMN JEM ond O Huw, - - - }, arbitrary functions appearing in DFT,

and AM is said to be derivative-index-valued. JHP 2013

» ‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,,, x”), are gauged through an equivalence relation,
Mo~ XM AM(X) s

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°*°, corresponds to a single physical point in R°.
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,,, x”), are gauged through an equivalence relation,
Mo~ XM AM(X) s

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°*°, corresponds to a single physical point in R°.

o |f we solve the section condition by letting H* = 0, and further choose AV = cuaMx“, we note

(%, x") ~ (X% +cu,x”) : X.'s are gauged and x"’s form a section.

e Then, O(D, D) rotates the gauged directions and hence the section.
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Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x"), are gauged through an equivalence relation,

M o~ XM+AM(X),

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°+7, corresponds to a single physical point in R.

WITH STEPHEN ANGUS, KY:! s KEVIN MORAND ARXIV: 00964 1808.10



Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x"), are gauged through an equivalence relation,

M o~ XM+AM(X),

where A is derivative-index-valued.

Each equivalence class, or gauge orbit in R°+7, corresponds to a single physical point in R.

— In DFT, the usual infinitesimal one-form, dx", is not covariant:

neither diffeomorphic covariant,

SxM = ¢M | 5(dxM)y = dxNoyeM £ dxN(aneM — oMey) ,

nor invariant under the coordinate gauge symmetry,
XM d(xM 4+ aM) # dxM.

— The naive contraction, dxMdxN?#y, is not an invariant scalar, and thus cannot lead to

any sensible definition of the ‘proper length’ in DFT or doubled-yet-gauged spacetime.
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Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x”), are gauged through an equivalence relation,
Mo~ XM +AM(X),

where AM is derivative-index-valued.

RD}D

Each equivalence class, or gauge orbit in , corresponds to a single physical point in RP.
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Doubled-yet-gauged spacetime

Doubled coordinates, x" = (X, x”), are gauged through an equivalence relation,
Mo~ XM +AM(X),

where AM is derivative-index-valued.

RD}D

Each equivalence class, or gauge orbit in , corresponds to a single physical point in RP.

— These problems can be all cured by gauging the infinitesimal one-form explicitly,
DxM .= dxM — AM | AMdy = 0 (derivative-index-valued) .

DxM is then covariant :

oM =AM 5AM = 4AM = §(DxM) =0;
M =M 5 AM = gMen(dxN — AN) = §(DxM) = DxN(aneM — oMey) .

- E.g.ifwe set 9* = 0, we have AM = A\oMx* = (A, , 0), DxM = (d%, — A, , dx¥).
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,, x”), are gauged through an equivalence relation,

s
M~ XM+AM(X),

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in R°+7, corresponds to a single physical point in R.

WITH STEPHEN ANGUS, KY:! s KEVIN MORAND ARXIV: 00964 1808.10



Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,, x”), are gauged through an equivalence relation,

73]

M~ XM+AM(X),

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in R°+7, corresponds to a single physical point in R.

o With DxM = dx™ — AM it is possible to define the ‘proper length’ through a path integral,

Proper Length := —In {/D.A exp (7 /\/DXMDXN’HMN>:| .
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Doubled-yet-gauged spacetime

Doubled coordinates, x = (%,,, x”), are gauged through an equivalence relation,
Mo~ XM +AM(X),

where AM is derivative-index-valued.

Each equivalence class, or gauge orbit in R°+7, corresponds to a single physical point in R.

o With DxM = dx™ — AM it is possible to define the ‘proper length’ through a path integral,
Proper Length := —In {/D.A exp (7 /\/DXMDXN’HMN>:| .

— For the (0, 0) Riemannian DF T-metric, with * = 0, AM = (A, 0), and from
DX"DxNHyy = dx"dx" g + (A%, — A, + dxB,,) (d% — A, + dx7 B,.) 9"
after integrating out A,,, the proper length reduces to the conventional one,
Length — / dxrdx¥ gu. (x)

— Since it is independent of X,,, indeed it measures the distance between two gauge orbits, as desired.
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘completely covariant’ actions:

I. Particle action Ko-JHP-Suh 2016
Sepriids = /dr e " D xXMD XN (x) — 1 mPe
Il. String action Hull 2006, Lee-JHP 2013, Arvanitakis-Blair 2017

Ehtins = ﬁ/dsz Y —hhiijXMDjXNHMN(X) — ei/D,-XMA/M
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘completely covariant’ actions:

I. Particle action Ko-JHP-Suh 2016
Sparticle = /dr e D x" Do xNHun(x) — jmPe
Il. String action Hull 2006, Lee-JHP 2013, Arvanitakis-Blair 2017
Satring = 7207 / o — 3/ = DixMDpx" Huw(x) — ¢ DixM Ay

With the (0, 0) Riemannian DFT-metric plugged, after integrating out the auxiliary fields,
the above actions reduce to the conventional ones:

R 1,2
Sparticle = /dr e XtXVguy — gzme,

Ry = / d20 — I/=hhiOx XV g + JEIOXPOxY By + Sl 0%, 0px# .

2wa’
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘completely covariant’ actions:

I. Particle action Ko-JHP-Suh 2016
Sparticle = /dT e " D xXMD XN (x) — 1 mPe

Il. String action Hull 2006, Lee-JHP 2013, Arvanitakis-Blair 2017

Sstring = 47:(1/ /dzo' — %\/ —hhiijXMDjXNHMN(X) — eijD;XM.A/M

With the (0, 0) Riemannian DFT-metric plugged, after integrating out the auxiliary fields,
the above actions reduce to the conventional ones:

o g 1,2
Sparticle = /dr e ' xXExVgu, — zm-e,

Sstring = 1 /dZU = %\/ 7hhij(9,'X'u'8jXVg‘u‘y + %eijaixp’anVBu,/ + %eija/)?#ajxll‘ 3

2mal
lll. x-symmetric doubled-yet-gauged Green-Schwarz superstring, unifying 1A & IIB JHP 2016

1 /dzo' = ‘5\/7hh’7l'lfwl'll(\’HMN — DM (A — iZ)

4o

Sags =

where MY .= DixM — ix™ and ¥ .= 6,M5,0 + 8'5"5,6'.

WITH STEPHEN ANGUS, K E KEVIN MORAND ARX 1707.03713 1804.00964 1808.10



On the other hand, upon the generic (n, n) DFT backgrounds,
the auxiliary gauge potential decomposes into three parts:

Ay = KupHP" Ay + XUYY Ay + XLV A,

— The first part appears quadratically, which leads to Gaussian integral.

— The second and third parts appear linearly, as Lagrange multipliers, to prescribe
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On the other hand, upon the generic (n, n) DFT backgrounds,
the auxiliary gauge potential decomposes into three parts:

Ay = KupHP" Ay + XUYY Ay + XLV A,

— The first part appears quadratically, which leads to Gaussian integral.

— The second and third parts appear linearly, as Lagrange multipliers, to prescribe

i) Particle freezes over the (n + n) dimensions

(I —
Xu’x“ =0,

X xh =
X =0.

Remaining orthogonal directions are described by a reduced action:

—1 v 1,2
Sparticle = /dre XUXT Ky — zm°e.
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On the other hand, upon the generic (n, n) DFT backgrounds,
the auxiliary gauge potential decomposes into three parts:

Au = KupHPY A, + XL YV A+ XEYEA, .

— The first part appears quadratically, which leads to Gaussian integral.

— The second and third parts appear linearly, as Lagrange multipliers, to prescribe

i) Particle freezes over the (n + n) dimensions

X"xH =0.

i —
X“x =0, m

Remaining orthogonal directions are described by a reduced action:

—1 v 1,2
Sparticle = /dre XUXT Ky — zm°e.

ii) String becomes chiral over the n dimensions and anti-chiral over the n dimensions

X, (aax“ + eaﬂaﬁx“) =o, X (8(,)(“ -

e eaﬁaﬁx“) =0.

1
V—h

Sstring = 5 /dzcr — IV/=RAI9ixH 0pxY Ky + T 0ixH 8jx¥ By + 3 €V 0i%, 0px .

2ma’
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Covariant derivatives and curvatures:

semi-covariant formalism (completely covariantizable)
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e Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011
n
NVeTaty Ay = 0cTa Ay Ay — WT rBBCTA1A2wAn + Z rCAI.BTA1 cAj_1BAipy A >
i=1
for which the DFT Christoffel connection can be uniquely fixed,
Foas=2(POcPP) g +2 (PP Pay® —PaPPg®) 00Pec— pts (PeiaPe P+ PeiaPe)® ) (20d+(POE PP)epy )
by demanding the compatibility, V 4Pgc = VaPgc = V ad = 0, and some torsionless conditions.

* There are no normal coordinates where I ¢4 would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for point particle.
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e Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011
n
NVeTaty Ay = 0cTa Ay Ay — WT rBBcTA1A2mAn + Z rCAI.BTA1 A1 BAi 1 An >
i=1
for which the DFT Christoffel connection can be uniquely fixed,
FCAB:Z(PGCPIE’)[AB]+2(F’[ADF’B]E—P[ADPB]E)aDPEC— o1 (PoiaPe P +PeiaPe °) (0pd+(POE PP ep))
by demanding the compatibility, VaPgc = VaPgc = Vad = 0, and some torsionless conditions.

* There are no normal coordinates where I ¢4 would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for point particle.

e Semi-covariant Riemann curvature :

_ _ 1 E _
Sasco = Siagjico] = Scoas = 5 (Rasco + Repas — T alecp) Siagcip =0,
where Rugcp denotes the ordinary “field strength”: Repas=0aTscp— 98T aco+T act T8ep—TBcET AED -

By construction, it varies as ‘total derivative’:  §Sagcp = Va6l giep + Vel pjas -

e Semi-covariant ‘Master’ derivative :
Dp ::aA+rA+¢A+q_>A:vA+¢A+&)A'

The two spin connections for the Spin (1, D—1), x Spin(D—1,1) , local Lorentz symmetries are
determined in terms of the DFT Christoffel connection by requiring the compatibility with the vielbeins,

DaVep = VaVep + Pa9Vag =0, DaViep = VaVep + Ppp7 Va5 = 0.
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o Complete covariantization
— Tensors,

Dp B D B
PC PA1 1 ”’PAn ”VDTmeBn — DPTQ162"'Z7N'
=

p.D B. B,
PC PA1 1 "'PAn nvDTBw---Bn DﬁTQ1Q2“‘QH7

T P T . T _DP
D ququ...qn. D ququ...qn, DpD Tc,1c,2___q,,7 DpDPTgy05---an -
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o Complete covariantization
— Tensors,
PCDP/H Ei "'PAHB”VDTByan - DPTQ162"'Z7n'
PCDP/:H 5 -~PANB"VDTBW,__BN — Dqu1q2~-~qn7

PT - = - P T- 0 PT. -~ - DP
DPTott-in>  DPPToqyap-ani  DPoDP’Tagpans DD Toyape-ean -
— Spinors, p®, p'%, ¥, P,

Y¥Dpp, AFDpp's Dpp, Dpp's ADovg, Doy, Dpy”, Dpy™.

— RR sector, C* 5 O(D, D) covariant nilpotent operators

DiC = ~+"DpC £ PV Dpc3P, (D1)?=0 = F:=D.C (RRflux).

— Yang-Mills,

]:Pl_l = Fpa VAp VB[? where Fag = VaWg — VgWy — i[WA, WB] o
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o Complete covariantization
— Tensors,
PCDPA1 By "'PA,,B”VDTBW...BN - ,DPT¢71¢72"'(7n'
=

p.D B. B,
PC PA1 1 -HPA,7 "VDTBW.__B,7 DETQ1Q2“‘Qn7

T pT. . T _ P
DPTotyap-dn> DPToqyapani DoDTagp-tns DpDPTayapan -
- Spinors, p®, p'%, ¥g', ¥,

Y¥Dpp, AFDpp's Dpp, Dpp's ADovg, Doy, Dpy”, Dpy™.

— RR sector, C* 5 O(D, D) covariant nilpotent operators

DiC = ~+"DpC £ PV Dpc3P, (D1)?=0 = F:=D.C (RRflux).

— Yang-Mills,
Fpa = Fpa VAp VB[? where Fag = VaWg — VgWy — i[WA, WB] o
— Curvatures,
Spg = SasV*p V85 (Ricci), Sy == (P*°PP° — P*°PP%)Sppcp (scalar).
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Assuming (0,0) Riemannian background, {e,”, &,P, B, ¢}, they reduce e.g. to

e Generalized Geometry :
1
Dqu = ﬁ (aqu + wbq,T’ + %Hbqur) 5

YDop = 257" (Omp + §wmnpr™p + 2 Honpy P — Omép) -

Hitchin 2002, Gualtieri 2004, Coimbra, Strickland-Constable, Waldram 2008, 2011

o With e,” = 8,P, H-twisted & democratic RR:

Dy = d+HA D_ = x(d+HA )*

Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen 2001
e The scalar curvature gives the closed string effective action :

[ 50 = [figle™ (Ry+40.60"6 — Hum ) .

These results show how closed string massless sector, {g,..., B.., ¢}, should couple
minimally and O(D, D)-covariantly to extra matter, while forming (pure) Stringy Gravity.
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Equipped with the semi-covariant derivatives, one can construct, e.g.
e D = 10 Maximally Supersymmetric Double Field Theory, Jeon-Lee-JHP-Suh 2012
Lipert = 6729 [ 180) + YT(FF) + ipFol + idp1aF3P%'9 + i3 57" Dpp — i35 7P D!
—ifPDpp — i3 UP17Dqyp + i'PDpp’ + i3FPFIDgu'p |

which unifies Il1A & 1IB SUGRAs (thanks to the twofold spin groups), and further
supersymmetrises non-Riemannian gravities, e.g. Newton-Cartan, Gomis-Ooguri.

= The single theory contains the various gravities as different solution sectors.

e Minimal coupling to the D = 4 Standard Model, Kangsin Choi & JHP 2015

167rGN So
Lom = 729 | 15, PABPCOTY(FpcFap) + Xy 577Dt + Xy /72 Daty’

—HAB(Dp) Dap — V() + Vg Gdd+yuGdu+yel-pe

Every single term above is completely covariant, w.r.t. O(D, D), DFT-diffeomorphisms, and
twofold local Lorentz symmetries.
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Derivation of the Einstein Double Field Equations
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ e_2d |: ﬁs(o) et Lmattcr} )
Jx

where S is the stringy scalar curvature and Limatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, X.

We seek the variation of the action induced by all the fields, d, Vg, \7Ap, Ta.
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ e_2d |: ﬁS(O) et Lmattcr} )
Jx

where S is the stringy scalar curvature and Limatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, X.

We seek the variation of the action induced by all the fields, d, Vg, \7Ap, Ta.

— Firstly, the pure Stringy Gravity term transforms, up to total derivatives (~), as

) (efzds(t))) ~ 4672 (‘78% Ve Spq — 20d S(m)
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, T 4,

/ e_2d |: ﬁS(O) et Lmattcr} )
Jx

where S is the stringy scalar curvature and Limatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, Dy,. The integral is taken over a section, X.

We seek the variation of the action induced by all the fields, d, Vg, \7Ap, Ta.

— Firstly, the pure Stringy Gravity term transforms, up to total derivatives (~), as

) (efzds(w) ~ 4672 (‘78% Ve Spq — 20d S(m)

— Secondly, the matter Lagrangian transforms as

T/AQ (SLrna er
8 (67 Linatter ) = 672 <72 VA5 VP Ky + 5d Ty + 5T37“>

0T

where we have been naturally led to define

0 (eizdLmaLLcr)

To) = €9
© x sd

oa =5 \ 50 v

1 6Lma er o 6Ln)a er
< V, tt tt ) ,
2
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e Combining the two results, the variation of the action reads

5/ e 2 [ ﬁs(m + Lmatter}
b

_ - OLmatter
= /):e * {ﬁ VAq6VAp(Spq = SWGKpa) = &ifG(;d(S(o) = 87'I'GT(0)) + (;Taiu

T2
Hence, the equations of motion are ‘for now’ exhaustively,

0 Lmat, ter

Spg = 87GKyg , Si0) = 87GT), =
a

=0.
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e Combining the two results, the variation of the action reads

5/ e 2 [ 1%;?3@ + Lmatter}
b

- /z e 2 [47176 VAIS VAP (Spy — 87GKog) — 51560(Se) — BrGTy) + 6T

5Lmatter
0T a
Hence, the equations of motion are ‘for now’ exhaustively,
6Lmatter

Spg = 8mGKpg Sy = 87GT ), ot =0,

o Specifically when the variation is generated by diffeomorphisms, we have 6: T4 = ﬁgTa and
5ed = — 16297 (e729) = —1DyeA, VATSe VP = VATL VP = 2Dyt VATVEP
Substituting these, the diffeomorphic invariance of the action implies

= Ve d OLm T
0 :/Ze = [&%GgBDA {4V{Ap Vg)%(Spg — 8 GKyg) — 5 Tas(S0) — 87rGT(0))} + 5§Ta76,;:e
This leads to the definitions of the off-shell conserved stringy Einstein curvature,

Gag = 4V(aP Vg 9S55 — 574850 » DaG*B =0  (off-shell),

n JHP-Rey-Rim-Sakatani 2015
and the on-shell conserved stringy Energy-Momentum tensor, Y

Tag == 4V|aP Vg 9Kpg — 3748 T0) » DaTAB =0  (on-shell).
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e Since Gup and T4 each have D? + 1 components as reversely decomposable as
VA, VB5Gag = 2Sp5, G = —-DS, VAL VB Tas = 2Ky, TAs = —DT),

the equations of motion of the DFT vielbeins and dilaton can be unified into a single expression:

Einstein Double Field Equations

Gag = 87GTsp

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed
string massless sector as geometrical stringy graviton fields.
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Einstein Double Field Equations

Gag =87GTap

ALL FOR ONE
ONE FOR ALL!

WITH STEPHEN ANGUS, K GHO CHO, AND KEVIN MORAND : 713 804.00964 808.106



Einstein Double Field Equations

Gpg = 87GTyp

e Restricting to the (0, 0) Riemannian backgrounds,
the EDFE reduce to

Ruv + 2Vu(6V¢) - %HWJUHVPU = BWGK(HV) ’
V7 (e o) = 16mGe 2Ky,
R+40¢ — 40,00"¢ — HAu W = 871G

e For other non-Riemannian cases, (n, n) # (0,0), EDFE govern the dynamics of the
non-Riemannian ‘chiral’ gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.
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Examples: Typ :=4V|4P \75]‘_7Kpa, = %JABT@)

o RR sector,
Lrr = 3 Tx(FF), Kog = — 3 Tr(vpFAgF), Toy=0.
e Spinor field,
Ly = pyPDptp + mypy) Kog = — ‘11 (JWpDaw - Da@’nﬂﬁ) ) T =0.
e Scalar field,
[—<p - _%HMNaMSOaNW - V(@)v Kp& = OP‘Pat'?‘Pv T(O) = _ZLW :

Fundamental string: with Djy™ = 9;y™ — AM (doubled-yet-gauged),
€ % Lotring = 7o /d2 [ SV —hh Dy Dy N (y) — €UD/,VMA,'M] 8(x — y(2)),

Kpg =

47'04

) [ RoV=RHIDY)(Dy) Pk~ y(@)), Ty =0.

More examples in our paper include Yang-Mills, point particle, superstring, etc.
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Moduli-free Kaluza—Klein reduction Cho-Morand-JHP 1808.10605

e The maximally non-Riemannian background, Hag = Jas, is special.

Itis the fully O(D, D) symmetric vacuum.
— It does not allow any linear fluctuation: from HApHBc = 6%¢,

SHAEHB + HABOHB: =0 = SHas =0 for H'g=5"5.

The coset structure is trivial,
O(D, D)

0D, D) x00,0) '

In other words, there is no Nambu-Goldstone mode for the completely symmetric vacuum.

— String in the doubled-yet-gauged sigma model becomes completely chiral & la Siegel.
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Moduli-free Kaluza—Klein reduction Cho-Morand-JHP 1808.10605

e For DFT Kaluza-Klein ansatz, we set the internal space to be maximally non-Riemannian,

ﬁ_eXp[w](”';J' i).sxp[wr], W_<5V ZV> m(f ;)

O(D+D’,D+D")
D’+1,D+D"—1)xO(D—1,1) "

where WA := W, WAL 0, =0, and the coset structure is o
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Moduli-free Kaluza—Klein reduction Cho-Morand-JHP 1808.10605

e For DFT Kaluza-Klein ansatz, we set the internal space to be maximally non-Riemannian,

qq_eXp[w]<”';~7' i>exp[wr], W_<5V ZV> j_(i' ;)

O(D+D’,D+D")
H,D+D—1)x0(D—1,1) "

where WA := W, WAL 0, =0, and the coset structure is o

e Plugging this ansatz into the (D+D’)-dimensional ‘pure’ DFT action as well as
the doubled-yet-gauged string action, we obtain
— Heterotic DFT (non-Abelian after Scherk-Schwarz twist),
Liter = S0y — YHACHPPFaghFpy — S HAPHEEHCT (wABcwDEF - 6wABcH[DGBE7-LF]G) :
where as for Yang—Mills and Chern-Simons terms,
Fag® = 0,W5C — 8sW,C + fA'BCWAA We? waBc = 3VV[AA85 Weia + fage Wit WeB el

c.f. Hohm-Kwak, Grana-Marques, Berman-Lee, efc.
— Heterotic string (with W4, = 0 for simplicity),

g /Z /=Rl g, X" Ox” + 1B, Ox* Ox” + 1%, 0" + 18,7, o+

Here the internal coordinates, y"'/ (1 < p' < D), areall chiral: (\/—hhaﬁ + e“ﬁ) aﬂy“/ =0.
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Conclusion
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Conclusion

e String theory predicts its own gravity, i.e. Stringy Gravity (DFT), rather than GR:  1804.00964

Gpg = 87GTyB.
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Conclusion

e String theory predicts its own gravity, i.e. Stringy Gravity (DFT), rather than GR:  1804.00964

Gpg = 87GTyB.

e Stringy Gravity may be formulated in ‘doubled-yet-gauged’ spacetime, and can unify

Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc.
1707.03713
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Conclusion

e String theory predicts its own gravity, i.e. Stringy Gravity (DFT), rather than GR:  1804.00964

Gpg = 87GTyB.

e Stringy Gravity may be formulated in ‘doubled-yet-gauged’ spacetime, and can unify
Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc.
1707.03713
e The maximally non-Riemannian space, Hag = Jag, is the fully O(D, D) symmetric vaccum.
It does not admit any moduli, and, adopted into KK ansatz, realizes heterotic string/DFT.

= Heterotic string has non-Riemannian origin. 1808.10605
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Conclusion

e String theory predicts its own gravity, i.e. Stringy Gravity (DFT), rather than GR:  1804.00964

Gag = 87GTyp .

e Stringy Gravity may be formulated in ‘doubled-yet-gauged’ spacetime, and can unify
Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc.
1707.03713

e The maximally non-Riemannian space, Hag = Jas, is the fully O(D, D) symmetric vaccum.
It does not admit any moduli, and, adopted into KK ansatz, realizes heterotic string/DFT.

= Heterotic string has non-Riemannian origin. 1808.10605

Thank you

One must be prepared to follow up the consequence of theory, and feel that
one just has to accept the consequences no matter where they lead.

— Paul Dirac —
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Einstein Double Field Equations

Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park

Depariment of Physics, Sogang Urisersiy. 5 Backbeom o, Mapo-gu. Scoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR

Derivation of Einstein Double Field Equations
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Gravitational effect

e The regular spherical solution to the D = 4 Einstein Double Field Equations shows that
Stringy Gravity modifies GR (Schwarzschild geometry), in particular at “short" dimensionless
scales, R/MG, i.e. distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially
from “short distance" observations:

Electron Hydrogen | Billiard Solar System | Milky Way | Galaxy | Universe
Proton Earth i .
(R~0) Atom Ball (1AU/MoG) | (visible) |Cluster | (Mo R?)
| 0
R/(MG) 0t 7.1x10%%| 2.0x10% | 2.4%x1026 | 1.4x10° 1.0x10% 1.5x10% | ~ 10° 0t

e Furthermore, it would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’,
since they decouple from the geodesic motion of point particles, which should be defined in
string frame.
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