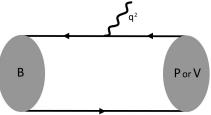
$B \rightarrow P, V$ Form Factors from Light-Cone Sum Rules

Nico Gubernari

in collaboration with Ahmet Kokulu and Danny van Dyk

Technische Universität München

Workshop on the Standard Model and Beyond Corfu Summer Institute

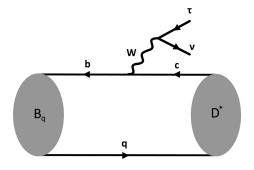

An overview of the talk

- Introduction: Form Factors (FF) definition
- Motivation: The importance of FFs in physics and B anomalies
- Method: B light-cone Sum Rules (B-LCSR)
- Theoretical Results: New higher twist corrections to the B-LCSR
- Numerical Results: How big are these higher twist contributions?

Introduction: what are the Form Factors?

FFs are functions of q^2 that parametrize exclusive local hadronic elements. They are defined as follows:

• for $B \to P$ $\langle P(k) | \bar{q}_1 \gamma_\mu b | \bar{B}(k+q) \rangle = 2k_\mu f_{BP}^+(q^2) + q_\mu [f_{BP}^+(q^2) + f_{BP}^-(q^2)]$ • for $B \to V$ $\langle V(k) | \bar{q}_1 \gamma_\mu (1-\gamma_5) b | \bar{B}(k+q) \rangle = -i\varepsilon_\mu^* (M_B + M_V) A_1^{BV}(q^2) + i(2k+q)_\mu \frac{A_2^{BV}(q^2)}{M_B + M_V}$ $+ iq_\mu (\varepsilon^* \cdot q) \frac{2M_V \left[A_3^{BV}(q^2) - A_0^{BV}(q^2) \right]}{q^2} + \epsilon_{\mu\nu\rho\sigma} \varepsilon^{*\nu} q^\rho k^\sigma \frac{2V^{BV}(q^2)}{M_B + M_V}$ $[q^2 \text{ is the dilepton mass squared}]$

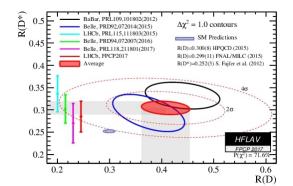

Motivations: why do we need $B \rightarrow P, V$ Form Factors?

In general $B \rightarrow P, V$ FFs are needed to

• predict decay amplitudes, such as $B \to \{P, V\}\overline{l}l$ or $B \to \{P, V\}l\nu_l$

[In this work we consider the final states: $P = \pi, K, D$ and $V = \rho, K^*, D^*$] • extract $|V_{CKM}|$ element from branching ratios

• test the Standard Model and constrain new physics contributions



B anomalies: $R_{K^{(*)}}$ and $R_{D^{(*)}}$

LHCb, Belle and BaBar measurements exhibit a deviation with respect the SM prediction for the observables

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^+\mu^-)}{BR(B \to K^{(*)}e^+e^-)} \qquad \qquad R_{D^{(*)}} = \frac{BR(B \to D^{(*)}\tau^+\nu)}{BR(B \to K^{(*)}\mu^+\nu)}$$

In both cases the combination of the results leads to a 4σ deviation from the SM prediction.

QCD perturbation theory breaks down at low energy, hence **non perturbative techniques** are needed to compute local hadronic matrix elements, that is the form factors.

The most successful methods to compute $B \rightarrow P, V$ are FFs are Lattice QCD and light-cone sum rules.

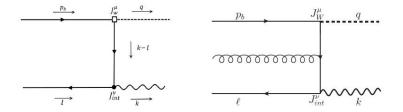
Lattice QCD

spacetime discretization smaller error High q^2 (low recoil)

Light-cone sum rules

quark-hadron duality bigger error Low q^2 (large recoil)

Light-Cone Sum Rules in a nutshell


- LCSR are used to determine products of exclusive hadronic matrix elements from an artificial, less-exclusive, non-local hadronic matrix element Π(k², q²)
- $\Pi(k^2, q^2)$ is then expanded near the light-cone

$$\Pi(k^{2},q^{2}) = f_{B}m_{B}\int ds \sum_{n,t} \frac{J_{n,t}(s,q^{2})}{[k^{2}-s]^{n}}\phi_{t}(s)$$

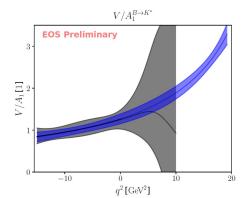
- $J_{n,t}$ can be computed from a hard scattering kernel
- B-meson Light-Cone Distribution Amplitudes (LCDAs) ϕ_t are necessary non-perturbative input
 - general $B \rightarrow V$, $B \rightarrow P$ results available [Khodjamirian et al. '06 + '08]
 - new insights on LCDAs triggered our revisiting of these sum rule results [Braun/Ji/Manashov '17]

Theoretical results

- LCSRs togheter with lattice results and Heavy Quark expansions have been used in present analyses
- B-LCSRs have $1/m_b$ corrections (related to twist expansion)
- We present new twist 4 corrections to the B → P, V LCSRs, higher twists are expected to give corrections only of the order O(1/m²_b)
- $O(\alpha_s)$ corrections are not considered

	FKKM2008	GKvD2018	
			NEW Contrib.
$\textbf{B} \rightarrow \textbf{D}^* \; \textbf{F}\textbf{F}$	2pt tw2+3 + 3pt	2pt tw2+3 + 3pt*	2pt tw4
$A_0(q^2 = 0)$	0.78	0.79	-10%
$A_1(q^2=0)$	0.73	0.73	-12%
$A_2(q^2=0)$	0.66	0.65	-17%
$A_0(0)/A_1(0)$	1.07	1.09	+3%

[using the same input parameters, with q^2 the dilepton mass square]


 $φ_{+}, φ_{-}$ 2-particle L+NL twist contributions [Faller/Khodjamirian/Klein/Mannel '06] \mathbf{g}_{+} new 2-particle NNL twist contributions [Gubernari/Kokulu/van Dyk w.i.p.] $φ_{3}, φ_{4}$ new and self-consistent 3-particle NL+NNL twist contr. [Gubernari/Kokulu/van Dyk w.i.p.] 8/9

Combining Lattice with LCSRs

- Uncertainties for the LCSRs are of similar size as in previous works
- To improve the knowledge of the FFs over the whole q² range, we fit LCSR and Lattice results to the BSZ2015 parametrization.

[Bharucha, Straub, Zwicky 2015]

The fit to the BSZ2015 parametrization makes uncertainties smaller

Thank you for your attention!

- correlator is calculated with on-shell *B* meson, using its Light-Cone Distribution Amplitudes (LCDAs)
- *B*-meson LCDAs are defined for bi-local currents involving an HQET field h_v
- power corrections to this involve power of the covariant derivative $\textit{i}D^{\mu}$
- strings of the type *iD^{µ1} iD^{µ2} ... iD^{µn}* are incorporated in LCDAs of increasing (collinear) twist

- ϕ_3 , ϕ_4 , ... are LCDAs of definite collinear twist 3, 4, ...
- LCDAs of twists \geq 5 are expected to contribute *beyond* the next-to-leading $1/m_b$ corrections! [Braun/Ji/Manashov '17]
- inserting a gluon field adds at least one unit of twist
 - 2-particle LCDAs start at twist 2, and are included in our results (up to and including twist 4)
 - 3-particle LCDAs start at twist 3, and are included in our results (up to and including twist 4)
 - 4-particle LCDAs start at twist 4, and are not included in our results
 - 4-particle LCDAs have autonomous RG behaviour, *do not mix with 3-particle LCDAs*

[Braun/Ji/Manashov '17]