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Group Theoretic Approach 
to

Theory of Fermion Production



Particle	Production

• Preheating	via	parametric	resonance	or	excitation	in	post-inflationary	 era

• Gravitational	waves	from	preheating

• Axion-inflation	 via	gauge	boson	 (𝜙𝐹𝐹# )	or	fermion	(𝜕%𝜙	𝑗%()	production
Anbor, Sorbo 10’ Adshead, Pearce, Peloso, Roberts, Sorbo 18’

Many literature (hard to list all here) 

Kofman, Linde 97’ 
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‘Classical’	scalar	or	
pseudo-scalar	fields

‘Quanta’	 of	Scalar,	Gauge	boson,	 Fermion
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Our	focus	is	on	the	‘Reformulation’	of	theory	of	fermion	production

we	will	not	get	into	any	detail	of	those	scenarios	…



Traditional	Approach
To	

Theory	of	Fermion	Production
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called	technique	of	‘Bogoliubov’	coefficient
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𝒮 = .𝑑0𝑥	 −𝑔	 𝜓4 	 𝑖	𝑒			7
% 	𝛾7𝐷% − 𝑚+ 𝑔 𝜙 𝜓+

1
2 𝜕%𝜙

>
− 𝑉(𝜙) 	

𝑑𝑠> = 𝑑𝑡> − 𝑎 𝑡 >𝑑𝐱> = 𝑎 𝑡 >(𝑑𝜏> − 𝑑𝐱>)

Under	rescaling	𝜓 → 𝑎HI/>𝜓

ℒ = 𝜓4 	 𝑖	𝛾%𝜕% −𝑚𝑎 + 𝑔 𝜙 𝜓 +
1
2𝑎

>𝜂%M𝜕%𝜙𝜕M𝜙 − 𝑎0𝑉(𝜙)

𝑔 𝜙 =
:		Yukawa-type	coupling

:		derivative	coupling

Common	Interaction	
type	in	literature

The	model	

On	the	metric:

N
ℎ𝜙

					
1
𝑓 𝛾

%𝛾(𝜕%𝜙

We	will	assume	spatially	homogenous	 scalar	field	:	 𝜕%𝜙	 = 𝜙̇

We will not distinguish 𝑡 and 𝜏
unless it is necessary
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ℒ = 𝜓4 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

R𝛾(𝜙̇ 𝜓+
1
2𝑎

>𝜂%M𝜕%𝜙𝜕M𝜙 − 𝑎0𝑉(𝜙)

A	subtlety	with	derivative	coupling

ΠT =
𝛿ℒ
𝛿𝜓̇

= 𝑖𝜓V ΠW =
𝛿ℒ
𝛿𝜙̇

= 𝑎>𝜙̇ −
1
𝑓 𝜓
4𝛾R𝛾(𝜓

ℋ = ΠT𝜓̇ + ΠW𝜙̇ − ℒ

= 𝜓4 	−𝑖	𝛾Y𝜕Y + 𝑚𝑎 +	
1
𝑓 𝛾

R𝛾(𝜙̇ 𝜓 −
1
2𝑎>

𝜓4𝛾R𝛾(𝜓 >

𝑓> +	
1
2𝑎> ΠW

> + 𝑎(𝑉(𝜙)

ü Definition	of	particle	number	 is	ambiguous

ü Massless	limit	is	not	manifest

Fermion	Production	is	formulated	
in	Hamiltonian	formalism	
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ℒ = 𝜓4 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

R𝛾(𝜙̇ 𝜓+
1
2𝑎

>𝜂%M𝜕%𝜙𝜕M𝜙 − 𝑎0𝑉(𝜙)

Hamiltonian	 formalism

ΠT =
𝛿ℒ
𝛿𝜓̇

= 𝑖𝜓V ΠW =
𝛿ℒ
𝛿𝜙̇

= 𝑎>𝜙̇

ℋ = 𝜓4 	−𝑖	𝛾Y𝜕Y + 𝑚Z − 𝑖	𝑚[𝛾( 𝜓 +	
1
2𝑎> ΠW

> + 𝑎0𝑉(𝜙)

A	way	out:	field	redefinition

𝜓 → 𝑒HY\]W/^𝜓

ℒ = 𝜓4 	 𝑖	𝛾%𝜕% −𝑚𝑎 cos
2𝜙
𝑓 + 𝑖	𝑚𝑎 sin

2𝜙
𝑓 𝛾( 𝜓 +

1
2𝑎

>𝜂%M𝜕%𝜙𝜕M𝜙 − 𝑎0𝑉(𝜙)

ü No	𝜓 - dependence	in	conjugate	momentum	ΠW

ü Entire	fermion	sector	is	quadratic	in	𝜓

= 𝑚Z = 𝑚[

ü Massless	limit	is	manifest
: particle number is unambiguously defined

Adshead, Pearce, Peloso, 
Roberts, Sorbo 18’

Adshead, Sfakianakis 15’
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Fermion	production

ℋ = 𝜓4 	−𝑖	𝛾Y𝜕Y + 𝑚Z − 𝑖	𝑚[𝛾( 𝜓 +	
1
2𝑎> ΠW

> + 𝑎0𝑉(𝜙)

Quantum	field𝜓

𝜓 = .
𝑑I𝑘
2𝜋 I/>𝑒

Y𝐤⋅𝐱h 𝑈j 𝐤,𝑡 𝑎j 𝐤 + 𝑉j −𝐤,𝑡 𝑏jV(−𝐤)
jm±

To	estimate	Fermion	Production,	 we	quantize	𝜓
while	keeping	pseudo-scalar	as	a	classical	field

𝑈j =	
𝑢j 𝐤,𝑡 	𝜒j(𝐤)
𝑟	𝑣j 𝐤,𝑡 𝜒j(𝐤)

, 𝑉j = 𝐶𝑈sjt with	𝐶 = 0 𝑖𝜎>
𝑖𝜎> 0

𝜒j 𝐤 =
𝑘 + 𝑟	𝜎⃗ ⋅ 𝐤
2𝑘 𝑘 + 𝑘I

𝜒̅j	 where	𝜒̅V =
1
0 , 𝜒̅H =

0
1

We follow notation and convention in
Adshead, Pearce, Peloso, Roberts, Sorbo 18’

Adshead, Pearce, Peloso, Roberts, Sorbo 18’

** helicity basis for an arbitrary 𝐤
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ℋT =h .𝑑𝑘I
jm±

𝑎jV 𝐤 , 𝑏j −𝐤
𝐴j 𝐵j∗
𝐵j −𝐴j

𝑎j(𝐤)
𝑏jV(−𝐤)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

𝐴j =
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔 𝑅𝑒 𝑢j

∗𝑣j −
𝑟𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝐵j =
𝑟	𝑒Yj��
2 2	𝑚Z𝑢j𝑣j − 𝑘 𝑢j>− 𝑣j> − 𝑖𝑟𝑚[(𝑢j>+ 𝑣j>)

Fermion	number	density	 for	a	particle	with	helicity	𝑟

𝑎j(𝐤) 0 = 0 𝑎j 𝐤; 𝑡 0 ≠ 0

𝑎j 𝐤 , 𝑎jV 𝐤
↔ one-particle	state	
due	to	𝐵j = 0

At 𝑡 = 0 At 𝑡 ≠ 0

w/	𝑎j(𝐤; 𝑡),	𝑎jV(𝐤;𝑡) are	diagonalized	𝑎j(𝐤),	𝑎jV(𝐤) at	𝑡 ≠ 0

𝑎j 𝐤 , 𝑎jV 𝐤
↮ one-particle	state	
anymore	due	to	𝐵j ≠ 0
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ℋT =h .𝑑𝑘I
jm±

𝑎jV 𝐤 , 𝑏j −𝐤
𝐴j 𝐵j∗
𝐵j −𝐴j

𝑎j(𝐤)
𝑏jV(−𝐤)

=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0 = 𝛽j >

𝐴j =
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔 𝑅𝑒 𝑢j

∗𝑣j −
𝑟𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝐵j =
𝑟	𝑒Yj��
2 2	𝑚Z𝑢j𝑣j − 𝑘 𝑢j>− 𝑣j> − 𝑖𝑟𝑚[(𝑢j>+ 𝑣j>)

Fermion	number	density	 for	a	particle	with	helicity	𝑟

𝑎j(𝐤; 𝑡) = 𝛼j	𝑎j(𝐤) − 𝛽j∗	𝑏jV(𝐤)

w/	𝑎j(𝐤; 𝑡),	𝑎jV(𝐤;𝑡) are	diagonalized	𝑎j(𝐤),	𝑎jV(𝐤) at	𝑡 ≠ 0

𝑏jV(𝐤; 𝑡) = 𝛽j	𝑎j(𝐤) + 𝛼j∗	𝑏jV(𝐤)

Bogoliubov
coeff.

Diag.	ops	at		
𝑡 ≠ 0

In	terms	of	diag.	
ops	at	𝑡 = 0
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=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟	𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

looks	too	technical	…	Any	simplication?	

Solving	EOM	of	𝑢j, 𝑣j with	correct	initial	condition	is	
another	source	of	confusion
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=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟	𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

𝜓 ∼ 𝑈j 𝐤, 𝑡 𝑎j 𝐤 + 𝑉j −𝐤, 𝑡 𝑏jV(−𝐤)

𝑈j = 	
𝑢j 𝐤, 𝑡 	𝜒j(𝐤)
𝑟	𝑣j 𝐤, 𝑡 𝜒j(𝐤)

=
𝑢j
𝑟𝑣j ⊗ 𝜒j ≡ 𝜉j ⊗ 𝜒j

Recall	a	Fourier	mode	in	‘helicity’	basis

looks	too	technical	…	Any	simplication?	

Solving	EOM	of	𝑢j, 𝑣j with	correct	initial	condition	is	
another	source	of	confusion
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=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟	𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

𝜁j = 𝜉jV𝜎	𝜉j
𝜁j	� =

1
2
𝑟(𝑢j∗𝑣j + 𝑢j𝑣j∗) = 𝑟	𝑅𝑒(𝑢j∗𝑣j)

𝜁j	> = −
𝑖
2
𝑟(𝑢j∗𝑣j − 𝑢j𝑣j∗) = 𝑟	𝐼𝑚(𝑢j∗𝑣j)

𝜁j	I =
1
2

𝑢j > − 𝑣j >

𝜓 ∼ 𝑈j 𝐤, 𝑡 𝑎j 𝐤 + 𝑉j −𝐤, 𝑡 𝑏jV(−𝐤)

𝑈j = 	
𝑢j 𝐤, 𝑡 	𝜒j(𝐤)
𝑟	𝑣j 𝐤, 𝑡 𝜒j(𝐤)

=
𝑢j
𝑟𝑣j ⊗ 𝜒j ≡ 𝜉j ⊗ 𝜒j

Then	we	realize	that	

Recall	a	Fourier	mode	in	‘helicity’	basis

collapses	into	one	vector

looks	too	technical	…	Any	simplication?	

Solving	EOM	of	𝑢j, 𝑣j with	correct	initial	condition	is	
another	source	of	confusion



14

=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟	𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

𝜁j = 𝜉jV𝜎⃗	𝜉j

𝜁j	� =
1
2
𝑟(𝑢j∗𝑣j + 𝑢j𝑣j∗) = 𝑟	𝑅𝑒(𝑢j∗𝑣j)

𝜁j	> = −
𝑖
2
𝑟(𝑢j∗𝑣j − 𝑢j𝑣j∗) = 𝑟	𝐼𝑚(𝑢j∗𝑣j)

𝜁j	I =
1
2

𝑢j > − 𝑣j >

𝐪 = 𝑟𝑘	𝑥�� +𝑚[	𝑥�> +𝑚Z	𝑥�I w/	𝜉j ≡
𝑢j
𝑟𝑣j

*	We	will	see	the	origin	
of	this	vector	later
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=
1
2 −

𝑚Z

4𝜔 𝑢j > − 𝑣j > −
𝑘
2𝜔𝑅𝑒 𝑢j∗𝑣j −

𝑟	𝑚[

2𝜔 𝐼𝑚(𝑢j∗𝑣j)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0

𝜁j = 𝜉jV𝜎⃗	𝜉j

𝜁j	� =
1
2
𝑟(𝑢j∗𝑣j + 𝑢j𝑣j∗) = 𝑟	𝑅𝑒(𝑢j∗𝑣j)

𝜁j	> = −
𝑖
2
𝑟(𝑢j∗𝑣j − 𝑢j𝑣j∗) = 𝑟	𝐼𝑚(𝑢j∗𝑣j)

𝜁j	I =
1
2

𝑢j > − 𝑣j >

𝐪 = 𝑟𝑘	𝑥�� +𝑚[	𝑥�> +𝑚Z	𝑥�I

𝑛j,| 𝑡 		= 		
1
2 1 −

𝐪 ⋅ 𝜁j
|𝐪| =

1
2(1 − cos𝜃)

𝜁j, 𝐪 behave	like	vector	reps	of	SO(3)	!

w/	𝜉j ≡
𝑢j
𝑟𝑣j

*	We	will	see	the	origin	
of	this	vector	later

What	is	this	mysterious	SO(3)?



Group	Theoretic	Approach

16
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Lorentz	Group

𝛾R = 0 𝐼>
𝐼> 0 = 𝜎�⊗ 𝐼> 𝛾Y = 0 𝜎Y

−𝜎Y 0 = 𝑖	𝜎>⊗ 𝜎Y 𝛾( = −𝐼> 0
0 𝐼>

= −𝜎I ⊗ 𝐼>

𝑆%M =
𝑖
4 [𝛾

%,𝛾M]

Weyl	Representation

𝐽Y ≡
1
2
𝜖Y�|𝑆�| =

1
2
𝐼> ⊗𝜎Y 𝐾Y ≡ 𝑆YR =

𝑖
2
𝜎I ⊗𝜎Y

𝐽�,	Z Y
=
𝐽Y ∓ 𝑖	𝐾Y

2
= 	
1
2
𝐼> ± 𝜎I ⊗

𝜎Y
2

𝜓 = 𝜓�
𝜓Z

1
2
, 0 ⊕ 0,

1
2

Spinor	 rep.	satisfying	Lorentz	algebra

(space	rotation)	 , (boost)

:						𝑆𝑈 2 �×𝑆𝑈 2 Z

:	Rep.	of	𝑆𝑈 2 �×𝑆𝑈 2 Z is	
constructed	as	a	‘tensor sum’

𝜓 ∼ 	𝜉j ⊗ 𝜒j	 → 		𝑒HY�⋅�⃗𝜓 = 𝜉 ⊗𝑒HY�⋅
 
> 	𝜒j

On	the	other	hand



‘Reparametrization’	Group
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𝛾%, 𝛾M = 2	𝜂%M10
𝛾% → 𝑈𝛾%𝑈H� : GL(4,C)

ℒ = 𝜓V𝛾R 𝑖𝛾%𝜕% −𝑚 𝜓	
→ ℒ = 𝜓V 𝑈V𝑈𝛾R𝑈H� 𝑖𝑈𝛾%𝑈H�𝜕% −𝑚 𝑈𝜓	

𝑈V𝑈 = 𝑈𝑈V = 1 : U(4)

Clifford	Algebra

Dirac	Theory
We	assign	the	transformation	of	𝜓,		𝜓 → 𝑈𝜓

While	𝛾% is	fixed	and	only	𝜓 transforms	in	the	Lorentz	group,

𝛾% → 𝛾%, 𝜓 → Λ�/>𝜓	,

there	is	a	freedom	 in	choosing	 a	representation	of	the	gamma	matrices.	
This	freedom	 is	totally	unphysical.
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We	consider	the	following	subgroup	of	𝑈(4)

𝑆𝑈 2 �×𝑆𝑈 2 >×𝑈(1) ⊂ 𝑈(4)
The	rep	of	subgroup	 is	constructed	as	a	‘tensor	product’	of	two	𝑆𝑈(2)’s	
and	phase	rotation,	e.g.	

Under	𝑆𝑈 2 � ⊗ 𝑆𝑈 2 > transformation	 (we	associate	𝑈(1) with	𝜉j)	

𝑎�� 𝑎�>
𝑎>� 𝑎>> ⊗ 𝑈> 	=

𝑎��𝑈> 𝑎�>𝑈>
𝑎>�𝑈> 𝑎>>𝑈>

= 𝑈�

𝜓 ∼	 𝜉j ⊗ 𝜒j	 → 		 𝑈� ⊗ 𝑈> 𝜉j ⊗	𝜒j = 𝑈�𝜉j ⊗ (𝑈>𝜒j)

Looks	similar	to	space	
rotation	of	Lorentz	group.	

This seems what 
we are looking for

But	it	can	not	be	identified	
with	SU(2)	space	rotation

𝜓4𝛾%𝜓 → 𝜓V𝑈V𝑈𝛾R𝑈H�𝑈𝛾%𝑈H�𝑈𝜓 = 𝜓4𝛾%𝜓

𝜓4𝛾%𝜓 → 𝜓4	Λ�/>H� 𝛾%Λ�/>𝜓 = Λ			M
% 	𝜓s 𝛾%𝜓

E.g.
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𝛾R = 𝐼> 0
0 −𝐼>

= 𝜎I ⊗ 𝐼> 𝛾Y = 0 𝜎Y
−𝜎Y 0 = 𝑖	𝜎>⊗ 𝜎Y 𝛾( = 0 𝐼>

𝐼> 0 = 𝜎�⊗ 𝐼>

𝛾R = 0 𝐼>
𝐼> 0 = 𝜎�⊗ 𝐼> 𝛾Y = 0 𝜎Y

−𝜎Y 0 = 𝑖	𝜎>⊗ 𝜎Y 𝛾( = −𝐼> 0
0 𝐼>

= −𝜎I ⊗ 𝐼>

Weyl	Representation

Dirac	Representation

𝜓£¤¥¦ =
𝜓�
𝜓Z

𝜓§¨©ª« =
1
2

𝜓� +𝜓Z
−𝜓� +𝜓Z

w/	𝑈�(𝜋/2) = 𝑒Y	
¬
­	
®¯
­ = �

>
1 1
−1 1

𝜓£¤¥¦ 		→ 𝑈�𝜓£¤¥¦ = 𝜓§¨©ª«

𝛾£¤¥¦
% 		→ 		𝑈�𝛾£¤¥¦

% 𝑈�H� = 𝛾§¨©ª«
%

Two	representations	are	related	via	a	similarity	transformation

A	well-known	example	of	𝑆𝑈(2)�
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This	is	what	our	group	theoretic	approach	is	based	on

Previously	mysterious	group	
that	we	were	looking	for	is

We	will	drop	subscript	from	now	on

𝑆𝑈(2)> does	not	play	any	important	role.	We	ignore	it

𝑆𝑈(2)�×𝑈(1)
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Fermion	production	
in	`Inertial Frame’

ℒ = 𝜓4	 𝑖	𝛾%𝜕% −𝑚Z + 𝑖	𝑚[𝛾( 𝜓+⋯
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚[	𝑥�> +𝑚Z	𝑥�I
𝜕±𝜉j 	= 		−𝑖 𝐪 ⋅ 𝜎⃗ 𝜉j

Gives	rise	to	EOM	of	 fundamental	 rep.

SU(2)	embedding	
of	SO(3)	vector	𝐪

𝑖	𝛾%𝜕% −𝑚Z + 𝑖	𝑚[𝛾( 𝜓 = 0

𝑖	𝜎I𝜕± − 𝑖𝑟𝑘𝜎> − 𝑚Z𝐼> + 𝑖𝑚[𝜎� ⊗ 𝐼> (𝜉j ⊗ 𝜒j) = 0

Dirac	equation	in	inertial	frame

EOM	in	tensor	form	for	a	Fourier	mode	can	be	written	as	(using	 𝜎 ⋅ 𝐤 𝜒j = 𝑟𝑘𝜒j)

SU(2)	
fundamental

:	it	is	called	Weyl	 equation	in	condensed	matter	physics

Group	Theoretic	Approach
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚[	𝑥�> +𝑚Z	𝑥�I

𝜉j ≡
𝑢j
𝑟𝑣j

𝜕±𝜉j 	= 		−𝑖 𝐪 ⋅ 𝜎⃗ 𝜉j

ü Fundamental	rep.	of	SU(2)

• EOM	of	fundamental	rep.

SU(2)	embedding	
of	SO(3)	vector

Group	Theoretic	Approach
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𝜁j = 𝜉V𝜎⃗	𝜉 :			vector

1
2 𝜕±𝜁j 	= 𝐪×𝜁j

ü In	terms	of	SO(3)	∼ SU(2)	reps

𝜕±𝜁j	Y =
1
2 𝜉j

V 𝑖𝐪 ⋅ 𝜎⃗,	𝜎Y 𝜉j = 2𝜖Y�|𝑞�𝜁j	|	

Bilinear	of	𝜉j :					𝜉jV𝐴	𝜉j

𝜉V	𝜉	(= 1) :			scalar

w/	𝐴 =	arbitrary	2×2
complex	matrix

• EOM	of	vector	rep.

the only non-trivial rep.

Group	Theoretic	Approach
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Analog	to	classical	precession	motion

1
2
𝑑𝜁j
𝑑𝑡 	= 		𝐪×𝜁j

Classical	precession	of	a	vector	𝑟
with	angular	velocity	𝜔

𝜔
𝑟

𝑑𝑟
𝑑𝑡 = 𝜔×𝑟

torque

Quantum	mechanical	fermion	
production

𝑟 = 𝐌 (magnetization),
𝜔 = 𝜔𝐌 = −𝛾𝐁

:	called	block	eq.

𝐸 = 𝜔𝐌 ⋅ 𝐌

𝑑𝐌
𝑑𝑡 = 𝜔𝐌×𝐌

E.g.	when

?= 𝒒 ⋅ 𝜁j

𝐪 as	angular	velocity
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ℋT =h .𝑑𝑘I
jm±

𝑎jV 𝐤 , 𝑏j −𝐤
𝐴j 𝐵j∗
𝐵j −𝐴j

𝑎j(𝐤)
𝑏jV(−𝐤)

𝐴j =
1
2
−
𝑚Z
4𝜔

𝑢j > − 𝑣j > −
𝑘
2𝜔

𝑅𝑒 𝑢j∗𝑣j −
𝑟𝑚[
2𝜔

𝐼𝑚(𝑢j∗𝑣j)

𝐵j =
𝑟	𝑒Yj��
2

2	𝑚Z𝑢j𝑣j − 𝑘 𝑢j> − 𝑣j> − 𝑖𝑟𝑚[(𝑢j> + 𝑣j>)

𝐴j = 𝐪 ⋅ 𝜁j
= 𝜔 cos𝜃

Now	it	is	clear	that	each	matrix	element	should	be	a	function	of	𝐪 and	𝜁j in	our	
group	theoretic	approach

𝐵j = 𝐪×𝜁j

Diagonal	element Off-diagonal	element

One	can	easily	see	why	
eigenvalues	are	±𝜔 = ±|𝐪|

Particle	number	density

= 𝜔 sin𝜃

𝐪 = 𝜔 = 𝑘> +𝑚>
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Particle	number	density

ℋT = h .𝑑𝑘I

jm±

𝑎jV 𝐤 ,𝑏j −𝐤
𝐴j 𝐵j∗
𝐵j −𝐴j

𝑎j(𝐤)
𝑏jV(−𝐤)

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0 = 𝛽j >= 𝑓(𝐪 ⋅ 𝜁j, |𝐪|)

𝑛j,| = 𝐴 ± 𝐵
𝐪 ⋅ 𝜁j
|𝐪|

𝐴j = 𝐪 ⋅ 𝜁j , 𝐵j = 𝐪×𝜁j

1.	It	should	 be	at	most	linear	in	𝜁j (note	 	 𝜁j = 1)

𝐴 − 𝐵 ≤ 𝑛j,| ≤ 𝐴 + 𝐵

which	gives	rise	to	inequality, 𝑛j,| =
1
2 1 −

𝐪 ⋅ 𝜁j
|𝐪|

2.	Pauli-blocking

0 ≤ 𝑛j,| ≤ 1

′ − ′ sign	chosen	for	the	
consistency	with	the	form	of	𝐴j

(**	agrees	with	our	explicit	computation)

In	our	approach,	a few	group	properties	can	uniquely	
determine	fermion	number	density
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w/ 𝐪 = 𝑟𝑘	𝑥�� +𝑚[	𝑥�> + 𝑚Z	𝑥�I

Solution	of	EOM

Closed	form	of	solution	 is	available

1
2 𝜕±𝜁j 	= 𝐪×𝜁j = 𝐪 ⋅ 𝐋 𝜁j 𝑛j,| =

1
2 1 −

𝐪 ⋅ 𝜁j
|𝐪|

• Initial	condition	 (↔ zero	particle	number)	 at	𝑡 = 𝑡R is	straightforward	than	other	
approach

𝜁j(𝑡R, 𝑡R) =
𝐪R
|𝐪R|

𝜁j 𝑡, 𝑡R = 𝑇exp . 𝑑𝑡¿	(𝐪 ⋅ 𝐋)(𝑡′)
±

±À

𝐪R
|𝐪R|

• Just	like	solving	Schrödinger	 eq.	for	the	unitary	op.,	EOM	can	be	iteratively	solved

ü Expanding	 involves	commutators	of	𝐪 ⋅ 𝐋
ü WKB	solution	might	be	the	case	with	vanishing	commutators
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Switching	to	̀ Rotating Frame’

ℒ = 𝜓4 	 𝑖	𝛾%𝜕% − 𝑚𝑎 −
1
𝑓 𝛾

R𝛾(𝜙̇ 𝜓+
1
2𝑎

>𝜂%M𝜕%𝜙𝜕M𝜙 − 𝑎0𝑉(𝜙)

Via	𝜓 → 𝑒VY\]W/^𝜓

𝜁j → 𝑅 𝑡 𝜁j	, 𝑅 𝑡 =
1 0 0
0 cos2𝜙 𝑓⁄ −sin 2𝜙 𝑓⁄
0 sin2𝜙 𝑓⁄ cos2𝜙 𝑓⁄

ü This	rotating	frame	is	non-inertial	 frame

Equivalent	to	(in	terms	of	𝜁j)

ü Needs	to	supplement	extra	terms,	e.g.	Coriolis	 ,	centrifugal	
forces	etc,	to	keep	physics	independent	
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Under	𝜁j → 𝑅 𝑡 𝜁j	,

1
2 𝜕±𝜁j 	 = 𝐪×𝜁j = 𝐪 ⋅ 𝐋 𝜁j → 			

1
2 𝜕±(𝑅𝜁j) 	= 𝐪 ⋅ 𝐋 (𝑅𝜁j)

1
2 𝜕±𝜁j 	= 𝑅𝐪×𝜁j +	

1
2𝜔ÃÄ×𝜁j = 𝑅𝐪 + 𝜔ÃÄ ×𝜁j = 𝐪′×𝜁j

1
2 𝜕±𝜁j 	 = 𝑅t 𝐪 ⋅ 𝐋 𝑅	𝜁j − 	

1
2𝑅

t𝑅̇𝜁j

w/ 𝑅t𝑅̇ Y� ≡ 𝜖Y�|𝜔ÃÄ	|

Similarly	to	the	classical	mechanics,	EOM	transforms	like

𝐪¿ = 𝑟𝑘 +
𝜙̇
𝑓 𝑥�� +𝑚𝑎	𝑥�I

:	different	basis	amounts	to	choose	
different	angular	velocity

EOM	in	`Rotating	Frame’

EOM	can	be	brought	 back	to	the	universal	form
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Particle	number	density	 in	`Rotating	(non-inertial)	Frame’

Particle	number	density	in	rotating	frame	

𝑛j,| = 0 𝑎jV 𝐤; 𝑡 𝑎j(𝐤; 𝑡) 0 = 𝑓(𝐪¿ ⋅ 𝜁j, |𝐪′|)

It	should	be	at	most	linear	in	𝜁j.	
Higher	order	terms	should	vanish	to	match	to	the	one	in	inertial	frame	in	𝜙̇ → 0 limit

𝑛j,| =
1
2 1 −

𝐪′ ⋅ 𝜁j
|𝐪′|

ℋT = 𝜓4 	−𝑖	𝛾Y𝜕Y + 𝑚𝑎 +	
1
𝑓 𝛾

R𝛾(𝜙̇ 𝜓 −
1
2𝑎>

𝜓4𝛾R𝛾(𝜓 >

𝑓>

: matches to the quadratic term

1. It	looks	like	particle	numbers	are	different	in	two	different	 frames.	
2. Establishing	the	‘final’	particle	number	as	a	basis-independent	 quantity	seems	very	

non-trivial,	e.g.	Inertial	frame	vs.	Non-inertial	frame

See Adshead, Sfakianakis 15’ 
for a related discussion

*	does	 not	take	into	account	of	
quartic	coupling	 etc..	
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Summary

We	proposed	a	new	group	theoretic	approach	to	theory	of	fermion	production	

3. This approach applies to any fermion system

1. Based on the ‘Reparametrization’ group of gamma matrcies

a. Possible	extension	is	gravitino production,	fermion	production	from	
gravitational	background,	fermion	production	in	extra-dim.	spacetime

2. Insightful visualization of quantum mechanical fermion production dynamics. 

a. Totally	unphysical	symmetry	(that	we	never	cared)	provides	us	with	totally	
different	viewpoint	of	a	very	complicated	process	such	as	fermion	production

a. Dynamics	is	analogous	to	the	classical	precession.	
b. Crystal	clear	initial	condition	unlike	the	traditional	approach.
c. Systematic	comparison	between	Exact	solution	vs	WKB	solution.



34

Extra	Slides
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ü Rotation	by	𝑆𝑈 2 >

𝑆𝑈 2 > vs		Space	Rotation	of	Lorentz	group

𝑈>H�𝛾%𝑈> = Λ			M
% 𝛾M Λ�/>H� 𝛾%Λ�/> = Λ			M

% 𝛾M
ü Space	rotation	of	Lorentz	group

§ In	terms	of	transformation	of	𝜓 - bilinears,	they	are	very	different

𝜓4𝛾%𝜓 → 𝜓V𝑈V𝑈𝛾R𝑈H�𝑈𝛾%𝑈H�𝑈𝜓 = 𝜓4𝛾%𝜓

𝜓4𝛾%𝜓 → 𝜓4	Λ�/>H� 𝛾%Λ�/>𝜓 = Λ			M
% 	𝜓s 𝛾%𝜓

ü Under	rotation	by	𝑆𝑈 2 > ,

ü Under	space	rotation	of	Lorentz	group

§ In	terms	of	Gamma	matrices,	they	look	same

𝛾% = 𝑈𝛾%𝑈H�,𝜓 → 𝑈𝜓

𝛾% = 𝛾%,𝜓 → Λ�/>𝜓
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Back	reaction

𝜙̈ + 2	
𝑎̇
𝑎 𝜙̇ + 𝑎>𝑉 𝜙 =

2
𝑎>𝑓 〈𝜓

4 𝑚[ + 𝑖𝑚Z𝛾( 𝜓〉

= −h .
𝑑I𝑘
2𝜋 I 〈𝑚[𝜁j	I + 𝑚Z𝜁j	>〉

jm±

In	the	massless	limit,	𝑚 → 0

𝐪 = 𝑟𝑘	𝑥��

𝜕±𝜁j = 2	𝐪×𝜁j = 0

Initally	,	𝜁j should	be	parallel	to	𝐪,	stay	in	𝑥��-axis

Since	𝐪 is	constant,	𝜁j does	not	evolve.		𝜁j	> = 𝜁j	I = 0 for	any	time	


