

María Martínez F. ARAID & U. Zaragoza Workshop on the Standard Model and Beyond Corfu, Aug 31 – Sep 09 2018

OUTLINE

- INTRO
- Direct detection status @ 2018
- DM Annual Modulation & DAMA signal
- Checking the DAMA signal: ANAIS experiment

Intro: DM

The evidence for DM in the Universe is beyond question

We know how much there is:

But we don't know what it is DM made of !!

From "US Cosmic Visions: New Ideas in Dark Matter 2017:Community Report", arXiv:1707.04591

From "US Cosmic Visions: New Ideas in Dark Matter 2017:Community Report", arXiv:1707.04591

DM direct detection

From "US Cosmic Visions: New Ideas in Dark Matter 2017:Community Report", arXiv:1707.04591

DM direct detection

From "US Cosmic Visions: New Ideas in Dark Matter 2017:Community Report", arXiv:1707.04591

Expected WIMP rate

Extremely low and without characteristic signatures (no peaks!)

Expected rate @ Earth:

 $\frac{dR}{dE_R} = \frac{\rho_0 M_{Det}}{2m_W m_{WN}^2} \sigma_{WN} \int_{vmin}^{vmax} \frac{f(v)}{v} dv^3$

(depend on WIMP & Halo Model!)

Beating the background

- Cosmic rays-induced muons, cosmogenic activation
- Natural radioactivity
 - Shieldings
 - Fiducialization
 - Particle discrimination

35

Neutrinos!

Underground experiments

M. Martínez, F. Araid & U. Zaragoza

COHERENT, Science Aug 3 (2017

25

15

5

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 9

Underground laboratorios around the World

The DM race

1990 - 2000

Scintillators

Cryogenic detectors

HPGe

The DM race

The DM race

M. Martínez, F. Araid & U. Zaragoza

 One positive signal: DAMA/LIBRA (Nal(Tl) scintillators)

M. Martínez, F. Araid & U. Zaragoza

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 16

M. Martínez, F. Araid & U. Zaragoza

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 $^{-1}$

• High mass region (>10 GeV) Spin dependent

WIMP-proton

Bubble chambers (PICO)

superheated CF_3I , C_3F_8 , C_4F_{10}

WIMP-neutron

Xe experiments

- Low mass region (<10 GeV):
 - Cryogenic experiments with sub-keV threshold (CRESST, SuperCDMS, EDELWEISS)
 - **New ideas:** CCDs (DAMIC, SENSEI), TPCs (NEWS, TREX), graphene & carbon nanotubes, superconductors, superfluid He...

See K. Nikolopoulos talk on Sat 08

Beyond neutrino floor

Cygnus: coordination of R&D efforts for gas detectors, one common technology in 2019

But also: annual modulation, complementarity among targets, energy dependence..

Looking for a distinctive signal: Annual Modulation

Annual modulation

Annual modulation: a disctintive signal

✓ Cosine behaviour

- 1 year period
- ✓ Maximum around June 2nd
 - ✓ Weak effect (1-10%)
- Only noticeable at low energy
- ✓ Should have a phase reversal at low E

→ Very hard to mimic by bkg!!

v_{orbital} = 30 km/s

 $\alpha = 60^{\circ}$ /

v = 225 km/s

DAMA/LIBRA @ LNGS

- 20 ultrapure Nal(TI) scintillating crystals (250 kg total mass) in a 5x5 matrix
- Each crystal coupled to two PMT for light readout
- First setup (DAMA/Nal, 115 kg) started in ~1995
- Expusure so far: 2.17 ton × y (!!)

DAMA/Nal & DAMA/LIBRA (phase 1)

DAMA / Nal (1995-2002)

DAMA / LIBRA (2003-2010)

10 × 9.7 kg Nal(Tl)

(3x3 matrix)

- 7 anual cycles
- Exposure : 0.29 ton × y

- 25 × 9.7 kg Nal(Tl)
 (5x5 matrix)
- 7 anual cycles
- Exposure : 1.17 ton × y

25

Solid line: $Cos\omega(t - t_0)$, with period 1 year and phase on June 2nd

DAMA/LIBRA phase2 (2011-2018)

Interpreting DAMA/LIBRA ph1 as DM

+ No anual modulation signal in some experiments (when bkg discrimination is turned off)

- LUX: arXiv:1807.07113
- XMASS : arXiv:1801.10096
- XENON100 : PRL118, 101101 (2017)
- CDMS-II: arXiv:1203.1309

M. Martínez, F. Araid & U. Zaragoza

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 27

Interpreting DAMA/LIBRA ph1 as DM

+ No anual modulation signal in some experiments (when bkg discrimination is turned off)

- LUX: arXiv:1807.07113
- XMASS : arXiv:1801.10096
- XENON100 : PRL118, 101101 (2017)
- CDMS-II: arXiv:1203.1309

M. Martínez, F. Araid & U. Zaragoza

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 28

Nal experiments around the World

Borrowed from Yeongduk Kim @ RENATA meeting, Canfranc February 2018

Nal experiments around the World

Borrowed from Yeongduk Kim @ RENATA meeting, Canfranc February 2018

Go south

Same WIMP signal, but different seasonal-related backgrounds

But only two (not yet ready) underground labs in the southern hemisphere!!

Borrowed from Aldo Ianni @ TAUP 2017

- ANDES (Chile/Argentina) ready by 2027
- SUPL (Australia) should be ready soon → Second phase of SABRE experiment
- DM-ICE (south pole) Nal crystals in Ice-cube (but many technical problems!)

ANAIS-112

1542

Zaragoza

Universidad

The ANAIS program

<u>Annual modulation with <u>NAI</u> <u>S</u>cintillators</u>

<u>GOAL</u>: confirm the **DAMA/LIBRA** modulation signal using the **same target and technique** in a different environment at the **Canfranc Underground Laboratory** (LSC, Spain)

ANAIS-112

- 112 kg Nal(TI) scintillators
- Commissioning in March-April 2017
- Calibration and general assessment from April to July 2017
- Dark matter run is underway since 3rd, August 2017: first year of data taking successfully completed

ANAIS-112: Detectors

- •9 Nal(TI) crystals 12.3 kg each grown from selected ultrapure Nal powder (Alpha Spectra Inc)
- Housed in OFE copper
- •Two Hamamatsu R12669SEL2 PMT
 - •coupled to each crystal at LSC clean room
 - low background
 - •high QE (~40%)

Housing made at LSC of electroformed copper

Detector	Quality powder	Received at LSC:
D0, D1	<90 ppb K	December 2012
D2	WIMPScint-II	March 2015
D3	WIMPScint-III	March 2016
D4, D5	WIMPScint-III	November 2016
D6, D7, D8	WIMPScint-III	March 2017

ANAIS-112: Shielding

M. Martínez, F. Araid & U. Zaragoza

Workshop on the Standard Model and Beyond, Corfu Aug 31 - Sep 09 2018 35

Performed every two weeks

ANAIS-112: Low energy calibration >

Detectors equipped with a Mylar window! Radon-free system for low energy calibration:

- ¹⁰⁹Cd sources on flexible wires (radon-free)
- Energies: 11.9, 22.6 and 88.0 keV
- Simultaneous calibration of the nine modules.

Detector Response: duty cycle & stability

Excellent duty cycle

Good total rate and gain stability

Evolution of ¹⁰⁹Cd lines from calibrations along the whole data-taking (\sim 1 year)

Detector respose: threshold

Effectively triggering below 1 keV_{ee}

thresic. w 1 keV_{ee} bulk ²²Na and ⁴⁰K events identified by coincidences with high energy gammas

• Energy threshold limited by PMT noise **filtering** protocols efficiency

Multiparametric cuts to properly select events with pulse shapes from NaI(TI) scintillation (efficiency computed on ¹⁰⁹Cd calibration and ²²Na and ⁴⁰K coincidence populations)

Improved algorithm for peak identification, detecting $\sim 75\%$ of the phe

Backgrond model

Comparison for low energy (<100 keV) (3 August 2017 to 30 March 2018)

DI

D6

D0

Comparison for very low energy (<20 keV) (Commissioning run, June-July 2017)

Most significant contributions:

- ⁴⁰K and ²²Na peaks
- ²¹⁰Pb (bulk+surface)

• ³H

ANAIS-112 annual Modulation sensitiviy

Detection limit at 90% C.L. for a critical limit at 90% C.L. for ANAIS-112

- Conservative estimate of **background** from measured, efficiency corrected levels
- 2-6 keV_{ee} region

• 5 years

Dark matter hypothesis

I. Coarasa et al, arXiv:1704.06861v1

OUTLOOK

- Enormous progress in sensitivity in the last two decades
- Xe/Ar future experiments sensitivity approaching neutrino floor in next decade, ideas to go beyond
- Many new ideas for light and ultra-light DM
- DAMA/LIBRA signal still alive, needs for proof/disproof with same target
- ANAIS-112, COSINE-100 can give an answer soon (combined analysis also agreed)

OUTLOOK

- Enormous progress in sensitivity in the last two decades
- Xe/Ar future experiments sensitivity approaching neutrino floor in next decade, ideas to go beyond
- Many new ideas for light and ultra-light DM
- DAMA/LIBRA signal still alive, needs for proof/disproof with same target
- ANAIS-112, COSINE-100 can give an answer soon (combined analysis also agreed)

THANKS!!

Interpretation of the 1 keV point

New ideas for ultra-light DM

Superconductors

- material with zero electrical resistance below a critical temperature
- DM interaction breaks cooper pairs, which releases energy
- sensitive to ~meV energy depositions

optical phonons

- DM interacts with optical phonons through dipole moment
- sensitive to ~ 30-100 meV energy depositions
- optical phonons exist in polar materials, i.e. GaAs, sapphire

superfluid helium

- DM couples to collective quasiparticle modes (phonons, rotons..)
- sensitive to meV-eV energy depositions

Graphene and carbon nanotubes

- Work function 4.3 eV = minimum energy to eject an electron
- has directional sensitivity!

ANAIS-112: Slow control

• Monitoring environmental parameters since the start of DM run

– Monitoring:

Rn content, humidity, pressure, different temperatures, N_2 flux, PMT HV, muon rate, ... Data saved every few minutes and alarm messages implemented

– Stability checks:

gain, trigger rate, ...

AV SUPPLY ENVIRONMENTAL SHIELDING PREAMPLIFIERS ELECTRONICS RATE A	ALARMS VETOS 🕘 🖲 Update graph in 6.8 sec	GENERAL HV SUPPLY ENVIRONMENTAL SHIELDING PREAMPLIFIERS ELECTRONICS RATE ALARMS VETOS
Test(C) 23.9 ** ANAIS - rHeat(%) 20.5 NIM 1 ** NIM 2 ** VME ** NIM 1 ** NIM 2 ** Train(C). Twme(C) 32.9 Train(C) 35.8 tHeat(%) 10 Train(C) 35.8 Theorem Train(C) 37.1 Train(C) 35.8	SlowControl 23.10 24.50 (1.10K) 5.1	File A112DM.0015.114.root.
Radon (Bq/m3) 3.5 Qgac(n/min) 42.5 1 rHoges(%)	Equitarian 2017, V2.0 06/11/2017 19:52:225 NewData Error Save defails	Block0.0Rate5.3Num.Blocks6.0Run Rate5.4
Tr(C) 226 rHt(%) 242 SIDE 1	23.0 ALARM 60 36) 24.0 ACQUISITION SIDE 0 Date 2017-11-02 16 54:11	To- Bate Rudite To- To- To- To- To- To- To- To-
V1+(V) 5.055 V1+(V) 5.023	0) 5.012 0) -5.010 File: A112DM.0015.77.root. Rate. 5.46 Block 2:10	4

Detector response: light collection

- Outstanding light collection of ~15 phe/keV
 - all modules
 - at different set-ups
 - checked to be stable over time

Detector	PMT/set-up	Total Light Collection
		(phe/keV)
D0	Ham R12669 / ANAIS112	14.6± 0.1
D1	Ham R12669 / ANAIS112	14.8 ± 0.1
D2	Ham R12669 / ANAIS112	14.6 ± 0.1
D3	Ham R12669 / ANAIS112	14.5 ± 0.1
D4	Ham R12669 / ANAIS112	14.5 ± 0.1
D5	Ham R12669 / ANAIS112	14.5 ± 0.1
D6	Ham R12669 / ANAIS112	12.7 ± 0.1
D7	Ham R12669 / ANAIS112	14.8 ± 0.1
D8	Ham R12669 / ANAIS112	16.0 ± 0.1

M.A. Oliván et al, Astropart. Phys. 93 (2017) 86

Larger and more homogeneous than the reported light collection for DAMA/LIBRA detectors: Phase 1: **5.5-7.5 phe/keV** Phase 2: **6-10 phe/keV**

Detector response: noise rejection

Effective filtering protocols for PMT noise limitig the energy threshold

1.- Biparametric cut to properly select events with pulse shapes from NaI(TI) scintillation

$$\mu_p = \frac{\sum A_p t_p}{\sum A_p}$$

Detector response: noise rejection

Effective filtering protocols for PMT noise limitig the energy threshold

1.-Asymmetric events (<2 keVee): accept events with number_of_peaks > 4 @ every PMT

A **blank module** will be setup to monitor non Nal(Tl) scintillation events along the second year of operation

- Acceptance efficiency curves after two cuts:

Still working on final tuning, before unblinding the low energy data. Expected **analysis** down to **1 keV**_{ee}

Detector response: noise rejection

- Effective filtering protocols for PMT noise limitig the energy threshold
 - Consistent analysis of populations from ²²Na and ⁴⁰K selected by the coincidence with a high energy gamma

Time evolution of the rate at low energy peaks

 Measured rate (after filtering and efficiency correction) at 0.9 keV well reproduced by simulation using the ²²Na activity quantified independently Still working on final tuning, before unblinding the low energy data. Expected **analysis** down to **1 keV**_{ee}

Background model: bkg sources

- Detailed background models for each detector
 - Geant4 Monte Carlo simulation
 - accurate quantification of background sources
 - Activity from external components measured with HPGe detectors at Canfranc
 - Internal activity directly assessed: mainly ⁴⁰K, ²¹⁰Pb

Module	⁴⁰ K	²¹⁰ Pb
	(mBq/kg)	(mBq/kg)
D0	1.4 ± 0.2	3.15 ± 0.10
D1	1.1 ± 0.2	3.15 ± 0.10
D2	1.1 ± 0.2	0.7 ± 0.1
D3	0.60 ± 0.06	1.8 ± 0.1
D4	0.5 ± 0.2	1.8 ± 0.1
D5	0.8 ± 0.2	0.78 ± 0.01
D6	0.8 ± 0.2	0.81 ± 0.01
D7	0.9 ± 0.2	0.80 ± 0.01
D8	0.6 ± 0.2	0.74 ± 0.01

C. Cuesta et al., Int. J. Mod. Phys. A. 29 (2014) 1443010 J. Amaré et al, Eur. Phys. J. C 76 (2016) 429

Background model: bkg sources

- Detailed background models for each detector
 - Geant4 Monte Carlo simulation
 - accurate quantification of background sources
 - Activity from external components measured with HPGe detectors at Canfranc
 - Internal activity directly assessed: mainly ⁴⁰K, ²¹⁰Pb
 - Cosmogenic activity: short-lived Te and I isotopes, ³H, ²²Na, ¹⁰⁹Cd, ¹¹³Sn

Backgrond model : comparison with data

Comparison for high energy (>250 keV) (3 August 2017 to 30 March 2018)

Individual contributions:

