Corfu 6 Sept. 2018

Moduli Stabilization and Inflation in Type IIB/F-theory

 ${\it George~K.~Leontaris}$

The University of Ioannina

 $I\omega\alpha\nu\nu\iota\nu\alpha$

GREECE

based on work with Ignatios Antoniadis and Yifan Chen

Outline of the Talk

- \triangle Basic elements of II-B/ \mathcal{F} -Theory
- ▲ Moduli fields
- ▲ Supergavity from type II-B
- ▲ F-term potential and logarithmic corrections
- △ D7 branes and D-term potential
- ▲ Inflation
- ▲ Concluding Remarks

★ Type II-B/F-theory ★

Spectrum and Moduli Space

closed string II-B spectrum obtained by combining L- and R-moving open strings with NS and R-boundary conditions:

$$(NS_+, NS_+), (R_-, R_-), (NS_+, R_-), (R_-, NS_+)$$

Bosonic spectrum:

 (NS_+, NS_+) : graviton, dilaton and Kalb-Ramond (KR)-field

$$g_{\mu\nu}, \ \phi, \ B_{\mu\nu} \rightarrow B_2$$

 (R_-, R_-) : scalar, 2- and 4-index fields (p-form potentials)

$$\mathbf{C_0}, C_{\mu\nu}, C_{\kappa\lambda\mu\nu} \to C_p, \ p = 0, 2, 4$$

 $\mathcal{M}oduli\ \mathcal{F}ields$

- $\triangle \rightarrow$ Deformations of the compactification... corresponding to massless scalars in 4-dimensions (4d action unchanged)
 - 1. Dilaton field ϕ : related to perturbative expansion and the string coupling: $g_s = e^{-\phi}$.
 - 2. Axions: scalars related to C_p -form potentials. $C_0, \phi \rightarrow combined to axion-dilaton modulus$:

$$S = C_0 + i e^{\phi} \to C_0 + \frac{i}{g_s}$$

- 3. Complex Structure (CS) (shape) moduli, z_a ((2,1)-forms) (analogous to CS $\tau = \omega_2/\omega_1$ of torus \mathcal{T}^2)
- 4. Kähler (size) moduli, T_i ((1,1)-forms), analogous to \mathcal{T}^2 size
- 5. Brane deformations
 (branes related to gauge symmetries, tadpole cancellations ...)

- ▲ Moduli fields ubiquitous in CY compactifications
 Some issues:
 - Implications on cosmological evolutions
 - Affect the Big-Bang nucleosynthesis
 - Possible dark matter component
 - If coupled gravitationally to matter \Rightarrow long range forces
- ▲ Important task :

generate a potential and assure positive mass-squared for all moduli fields. This is called:

- $\Rightarrow \mathcal{M}oduli \mathcal{S}tabilisation \Leftarrow$
- \triangle Possible Inflaton candidates: brane positions, a ξ ions, Kähler moduli etc...

Type II-B effective Supergravity

Basic 'ingredients':

Superpotential ${\cal W}$ and ${\it K\"{a}hler}$ potential ${\cal K}$

ightharpoonup The Superpotential \mathcal{W}

... from B_2 KR-field and C_p potentials:

▲ field strengths:

$$F_p := dC_{p-1}, \ H_3 := dB_2, \ \Rightarrow G_3 := F_3 - SH_3$$

△ Holomorphic $\Omega = (3,0)$ -form associated with CS moduli z_a

Flux-induced superpotential:

$$\mathcal{W}_0 = \int \mathbf{G_3} \wedge \mathbf{\Omega}(z_a)$$

- ▲ Supersymmetric conditions: $\mathcal{D}_{z_a} \mathcal{W} = 0$, $\mathcal{D}_S \mathcal{W} = 0$ stabilise
- $complex\ structure\ moduli\ z_a\ and\ a\xi ion-dilaton$

but!

 \land Kähler moduli $\notin \mathcal{W} \Rightarrow$ remain unfixed! \land

▲ The Kähler potential ▲

$$\mathcal{K}_{0} = -\sum_{i=1}^{3} \ln(-i(T_{i} - \bar{T}_{i}))$$
$$-\ln(-i(S - \bar{S})) - \ln(i \int \Omega \wedge \bar{\Omega}) .$$

Scalar Potential

$$V = e^{\mathcal{K}} \left(\sum_{I,J} \mathcal{D}_{I} \mathcal{W}_{0} \mathcal{K}^{I\bar{J}} \mathcal{D}_{\bar{J}} \mathcal{W}_{0} - 3|\mathcal{W}_{0}|^{2} \right)$$

$$= e^{\mathcal{K}} \sum_{I,J=z_{a},\neq T_{i}} \mathcal{D}_{I} \mathcal{W}_{0} \mathcal{K}_{I\bar{J}}^{-1} \mathcal{D}_{\bar{J}} \mathcal{W}_{0} \ \left(\mathcal{D}_{I} \mathcal{W}_{0} = 0, \text{ flatness} \right)$$

$$+ e^{\mathcal{K}} \left(\sum_{I,J=T_{i}} \mathcal{K}_{0}^{I\bar{J}} \partial_{I} \mathcal{W}_{0} \partial_{\bar{J}} \mathcal{W}_{0} - 3|\mathcal{W}_{0}|^{2} \right) \quad (= 0, \text{ no scale})$$

⇒ Kähler moduli completely undetermined!

▲ Deus Ex Machina ▲

Non Perturbative (NP) corrections W_{NP} !

(only NP are allowed in W_0 . Perturbative ones not possible because of non-renormalisation theorems)

 \triangle Case A: Simplest scenario: KKLT (hep-th/0301240).

$$\mathcal{W} = \mathcal{W}_0 + \Lambda^3 e^{-\lambda T}$$

▲ NP Origin: Euclidean D3 instantons wrapping 4-cycles.

(for gaugino condensation $\rightarrow \lambda = 2\pi/N$)

Supersymmetric condition $\mathcal{D}_T \mathcal{W} = 0$ stabilises T-modulus.

However

- i) Requires fine-tuning of parameters \mathcal{W}_0, Λ and λ
- ii) AdS minimum

$$V_{AdS} \propto -3|\mathcal{W}|^2 e^{\mathcal{K}} < 0$$

AdS in conflict with observation

- \rightarrow Uplift to dS with $\overline{D3}$ branes
- $\overline{D3}$ contributions break SUSY
- $\triangle \overline{D3}$'s source of positive energy coming from:

 $\overline{\text{D3}}$ tension \oplus 3 form fluxes to cancel Tadpole

positive energy depends on warp factor e^A :

$$V_{\overline{D3}} = 2\mu e^{4A}, ds_{10}^2 = e^{2A}dx_4^2 + e^{-2A}dy_6^2$$

issues

- Uplift term should not be big, otherwise local minimum is lost
- \bullet $\overline{D3}$ branes should not annihilate immediately with background fluxes

 \triangle Case \mathcal{B} : Large Volume Generalisation: (hep-th/0502058) for two moduli $\tau_{b,s} \to \mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2}$:

$$\mathcal{K}_{LV} = -2\ln(\tau_b^{\frac{3}{2}} - \tau_s^{\frac{3}{2}} + \xi),$$
 (1)

$$\mathcal{W}_{LV} = W_0 + \Lambda^3 e^{-\lambda \tau_s} \tag{2}$$

gaugino condensation and α' correction ξ stabilise τ_b, τ_s . As in KKLT (case A): a mechanism is required to uplift it to a dS minimum.

- ▲ advantage w.r.t. KKLT:
- LV-vacuum realised with large volume where quantum corrections are better controlled.
- D-term uplifiting generated by magnetised D-branes (hep-th/0309187, 0602253)

MODULI STABILISATION

with

PERTURBATIVE

STRING LOOP CORRECTIONS

Perturbative Quantum Corrections

- 1. α' -corrections

 shifting volume by a constant
- 2. string loop-corrections

important in the presence of D-branes known in Type-I orientifolds (Antoniadis et al hep-th/9608012) Dualities \Rightarrow type II-B

Dualities and Type-IIB Kähler potential

Assuming configuration with D9 and $3 \times D5$ branes in type-I 6d internal space $\rightarrow \prod_{i=1}^{3} \mathcal{T}_{i}^{2}$:

Kähler potential

$$\mathcal{K} = -\ln(S - \bar{S}) - \sum_{i=1}^{3} \ln(T_i - \bar{T}_i) + \cdots,$$

$$\operatorname{Im} S = \frac{1}{g_9^2} = e^{-\phi} v_1 v_2 v_3, \ \operatorname{Im} T_i = \frac{1}{g_{5_i}^2} = e^{-\phi} v_i$$

with notation:

 v_i =volume of \mathcal{T}_i

Total volume: $V = v_1 v_2 v_3$

T-Dualities: $D9 \rightarrow D3$, $D5 \rightarrow D7$, and:

$$\mathcal{R} \to \frac{1}{\mathcal{R}}, \ e^{-\phi} \to e^{-\phi}/\mathcal{R}$$

to go to Type-IIB/F framework:

Perform six dualities along six compact dimensions:

$$\operatorname{Im} S \to \frac{1}{g_3^2} = e^{-\phi}, \ \operatorname{Im} T_i \to \frac{1}{g_{7_i}^2} = e^{-\phi} \mathcal{V}/v_i$$

Kähler potential takes the form:

$$\mathcal{K} \rightarrow -2\ln(e^{-2\phi}\mathcal{V}) = -\ln(S - \bar{S}) - 2\ln\hat{\mathcal{V}}$$

... with
$$\hat{\mathcal{V}} = e^{-3\phi/2}\mathcal{V}, \ S - \bar{S} = e^{-\phi}$$
.

$\triangle \alpha'$ -corrections

... from higher derivative terms: (hep-th:0204254)

$$\propto \int d^{10}x \sqrt{-g}e^{-2\phi}\alpha'^3 \nabla^2\phi Q$$

 $(Q = 6d \text{ Euler integrand}, \chi = \int d^6x \sqrt{g}Q)$

Effects:

i) shift of the total volume by a constant ξ

$$\mathcal{V} \to \mathcal{V} + \boldsymbol{\xi}, \quad \boldsymbol{\xi} = -\frac{\zeta(3)}{4(2\pi)^3} \boldsymbol{\chi}$$

ii) definition of 4-d dilaton field to order $\mathcal{O}(\alpha'^3)$

$$e^{-2\phi_4} = e^{-2\phi}(\mathcal{V} + \xi)$$

▲▲ string coupling loop corrections

(Antoniadis, Chen, L.: hep-th/1803.08941)

Einstein kinetic terms in S:

$$S = -\frac{1}{2\kappa_{10}^2} \int d^{10}x \sqrt{-g} \left(e^{-2\phi} (\mathcal{V} + \xi) + \delta \right) \mathcal{R} + \cdots$$

Kähler potential:

$$\mathcal{K} = -2\ln\left[e^{-2\phi}(\mathcal{V} + \xi) + \delta\right]$$
$$= -\ln\left[-i(S - \bar{S})\right] - 2\ln\left(\hat{\mathcal{V}} + \hat{\xi} + \hat{\delta}\right)$$

with

$$S = b + ie^{-\phi}$$
, $\hat{\delta} = \delta g_s^{1/2}$

\triangle Moduli dependence of δ corrections \triangle

Non-zero $\xi \propto \chi \neq 0$ in large volume limit generates localised graviton kinetic terms $(\cdots (\mathcal{V} + \xi)\mathcal{R} \cdots)$ (hep-th/0209030)

These can emit closed strings propagating in 6d internal space \Rightarrow

∃ diagrams involving the exchange of such strings between:

graviton vertices (4d Einstein action) and D7-branes

▲ \mathbf{p}_{\perp} not conserved due to presence of D7s ⇒
Contribution to δ , from relevant diagrams in the large transverse volume \mathcal{V}_{\perp} : (see also Antoniadis-Bachas, hep-th/9812093)

$$\delta \sim \frac{1}{V_{\perp}} \sum_{n_{\perp}} \frac{1}{p_{\perp}^2} F(\vec{p}_{\perp}) \qquad ; \qquad \vec{p}_{\perp} = \left(\frac{n_1}{R}, \cdots, \frac{n_d}{R}\right)$$

 $(F(\vec{p}_{\perp}) = local\ tadpole\ in\ \vec{p}\ space.)$ (see hep-th/9812093) Dimension of bulk space $u\perp$ to $D7 \Rightarrow d=2$

$$\Rightarrow \delta = \gamma \ln(u)$$

 \checkmark ξ and δ break **no-scale** invariance of Kähler potential:

$$\mathcal{K} = -2\ln\left(\mathcal{V} + \boldsymbol{\xi} + \gamma \ln \boldsymbol{u}\right)$$

Stabilisation and D7 Branes

Quantum corrections from a single D7 Brane

 \blacktriangle volume parametrised in terms of 4-cycle moduli \intercal , u

$$\mathcal{K} = -2\ln\left(\mathcal{V} + \xi + \eta \ln u\right) = -2\ln\left(\tau \sqrt{u} + \xi + \eta \ln u\right)$$

▲ validity of perturbation:

$$|\eta \ln u| \ll \tau \sqrt{u}$$

 \land minimisation w.r.t. u:

$$\frac{dV_{\text{eff}}}{du} \propto \frac{\eta}{\eta} \frac{10 - 3\ln u}{\tau^3 u^{\frac{5}{2}}} + \mathcal{O}(\eta^2) + \cdots$$

- $\triangle \exists$ minimum for *u*-direction iff $\eta < 0$
- ▲ stabilisation of τ -direction, not possible with only one D7! ▲ this is also true for two intersecting D7s!

Three Intersecting magnetised D7 Branes

Three Intersecting magnetised D7 Branes

Recall that each $D7_i$ world volume described by 4-cycle modulus τ_i (total volume $\mathcal{V} = \sqrt{\tau_1 \tau_2 \tau_3}$)

△ loop corrections:

$$\frac{\eta}{\eta} \ln(u) \to \sum_{k=1}^{3} \gamma_k \ln(\tau_k) \equiv \sum_{k=1}^{3} \gamma_k' \ln(\mathcal{V}/\tau_k)$$

▲ Kähler potential

$$\mathcal{K} = -2\ln\{\mathcal{V} + \xi + \sum_{k=1}^{3} \gamma_k \ln(\mathcal{V}/\tau_k)\} + \mathcal{C}.\mathcal{S}.$$

Stabilisation of total volume \mathcal{V}

For simplicity take all three $\gamma_k \equiv \gamma$:

$$\mathcal{K} = -2\ln\{\mathcal{V} + \xi + \gamma \ln(\mathcal{V})\} + \cdots$$

F-term potential:

$$V_F \approx 3\gamma \frac{\ln \mathcal{V} - 4}{\mathcal{V}^3} + \mathcal{O}(\gamma^3)$$

minimisation w.r.t. $\mathcal{V}: \frac{dV_F}{d\mathcal{V}} = 0 \rightarrow \mathcal{V}_{min} = e^{\frac{13}{3}}.$

 \Rightarrow minimum: $(V_F)_{\min} = \frac{\gamma}{V_{min}} < 0 \Rightarrow AdS!$

Flatness condition: $\mathcal{D}_{\mathcal{V}}\mathcal{W}_0 = -\frac{2}{\mathcal{V}_{min}} \neq \mathbf{0} :\Rightarrow \text{SUSY}$ broken!

The F-term scalar potential V_F vs $\mathcal{V} = \sqrt{\tau_1 \tau_2 \tau_3}$. The other two directions can not by determined. \Rightarrow F-terms only, not enough to stabilise the minimum. moreover... we still don't seem to have a dS minimum... ... let's pause for a moment to see...

what kind of minimum we are looking for...

In type II-B, at the classical level $V_{eff}(\tau)$ vanishes $(\tau = T + \bar{T} \to K\ddot{a}hler\ modulus)$

Hence, any τ -dependent perturbative quantum corrections must vanish for $\tau \to \infty$

$$\lim_{\tau \to \infty} V_{eff} \to 0$$

If V_{eff} vanishes from negative values $\lim_{\tau \to \infty} V_{eff} \to 0^-$, then this means that there is an AdS minimum.

Hence, vanishing at infinity must occur from positive values

$$\lim_{\tau \to \infty} V_{eff} \to 0^+$$

Then, the expected shape of the potential is of the form:

Inclusion of \mathcal{D} -terms

Setting all scalar VEVs equal to zero: $\langle \Phi_i \rangle = 0$,

$$V_{\mathcal{D}} = \sum_{a} \frac{d_a}{\tau_a} \left(\frac{\partial \mathcal{K}}{\partial \tau_a} \right)^2 \approx \sum_{a} \frac{d_a}{\tau_a^3} + O(\gamma_i).$$

F- and D-term potential

$$V_{\text{eff}} = V_F + V_D = 3\gamma \frac{\ln V - 4}{V^3} + \frac{d_1}{\tau_1^3} + \frac{d_2}{\tau_2^3} + \frac{d_3\tau_1^3\tau_2^3}{V^6}.$$

minimisation conditions fix the remaining two moduli in terms of \mathcal{V}

$$\tau_i^3 = \sqrt[3]{\frac{d_i^2}{d_k d_j}} \mathcal{V}^2, \quad \tau_j^3 = \sqrt[3]{\frac{d_j^2}{d_k d_i}} \mathcal{V}^2$$

putting back in V_{eff} ($\mathbf{d} := \sqrt[3]{d_1 d_2 d_3}$)

$$V_{
m eff} \propto \gamma rac{\ln \mathcal{V} - 4}{\mathcal{V}^3} + rac{d}{\mathcal{V}^2}$$

▲ de Sitter vacua ▲

minimisation condition for $dV_F/dV = 0$ with \mathcal{D} -terms:

$$\frac{13}{3} - \ln \mathcal{V} = \frac{2}{3} \frac{d}{\gamma} \mathcal{V} \tag{3}$$

convenient definition:

$$\frac{\mathbf{w}}{\mathbf{w}} = \frac{13}{3} - \ln \mathcal{V} \tag{4}$$

Vanishing of derivative (i.e. condition 3) takes the form:

$$we^w = z$$

 $(z = \frac{2}{3} \frac{d}{\gamma} e^{\frac{13}{3}}$ in present case) inversion determines w and hence V through (4). solution given by inversion \rightarrow (multivalued) Lambert W-function:

$$w \Rightarrow W(z)$$

The two branches of the Lambert function $W_0(z)$ and $W_{-1}(z)$

- \triangle Double values for $z \leq 0$.
- \blacktriangle We need two extrema (max and min), hence

$$-e^{-1} < z < 0$$

vertical line represents any value of $z_m = \frac{2d}{3\gamma}e^{\frac{13}{3}}$ between $(-e^{-1}, 0)$ where min and max can coexist.

but! requirement for de Sitter vacua puts additional restrictions

▲ de Sitter vacua ▲

volume at min is

$$\mathcal{V}_0 = e^{\frac{13}{3} - W_0(\frac{2}{3} \frac{d}{\gamma} e^{\frac{13}{3}})}$$

minimum $V_{\text{eff}} = V_F + V_D$ at V_0 must be positive:

$$V_{eff}^{min} = \frac{\gamma}{\mathcal{V}_0^3} + \frac{d}{\mathcal{V}_0^2} > 0$$

 \rightarrow existence of de Sitter vacuum implies:

$$-\frac{3}{2}e^{-16/3} < \frac{d}{\gamma} < -e^{W_0(\frac{2}{3}\frac{d}{\gamma}e^{\frac{13}{3}})}$$

or

$$-7.24 < 10^3 \frac{d}{\gamma} < -6.74$$

INFLATION

I. Antoniadis, Yifan Chen, GKL (preliminary results)

Although a dS minimum exists, allowed region too restrictive. Additional requirements for slow-roll inflation hard to be met.

Additional restrictions for de Sitter vacua

▲ FI contributions ▲

recall that

 \land Intersecting D7 branes with flux-truncated spectra \Rightarrow

 $anomalous \ U(1) \ symmetries$

- ▲ Novel ways to construct FI-terms suggested in 1712.08601
- △ Consistent modification FI-term to respect Kähler invariance (Antoniadis et al 1805.00852)
- ightharpoonup Final FI effect is an uplift of V_{eff} by a V_{up} :
- ▲ Total scalar potential

$$V_{total} = V_F + V_{\mathcal{D}} + V_{up}$$

normalised kinetic terms require redefinition of moduli fields:

$$t_i = \frac{1}{\sqrt{2}} \ln \tau_i$$

Inflaton is associated with volume \mathcal{V} :

$$t = \frac{t_1 + t_2 + t_3}{\sqrt{3}} = \sqrt{\frac{2}{3}} \ln(\mathcal{V}),$$

minimum and maximum w.r.t t:

$$t_{min/max} = \sqrt{\frac{2}{3}} \left(\frac{13}{3} - \mathcal{W}_{0/-1} \left(\frac{2}{3} \frac{d}{\gamma} e^{\frac{13}{3}} \right) \right)$$
 (5)

Redefining remaining two moduli fields to be "orthogonal" to t:

$$u = \frac{t_1 - t_2}{\sqrt{2}}, \ v = \frac{t_1 + t_2 - 2t_3}{\sqrt{6}}$$

Inflation period should be constrained between t_{max}, t_{min}

Constraints from slow-roll conditions

Ending point of inflation $t_{min} < t_{end} < t_{max}$:

$$t_{end} = \max\{t|_{\frac{1}{2}(\frac{V_t}{V})^2 \simeq 1}, t|_{\frac{|V_{tt}|}{V} \simeq 1}\},$$

Finding point t_* such that $t_{min} < t_{end} < t_* < t_{max}$ where e-folds:

$$N_* = \int_{t_{end}} {t_* \frac{V}{V_t}} dt \sim 50 - 60$$

Spectral index at t_* :

$$n_s = 1 - 3\left(\frac{V_t}{V}\right)^2 + 2\frac{V_{tt}}{V}\bigg|_{t_*} \approx 0.96$$

Plot of V_{eff} vs \mathcal{V} . Inflation occurs between t_* and t_{end}

- ★ Moduli Fields (MF) always present in CY compactifications
- ▲ Instrumental rôle at High Energies and particularly on Inflation
- \bigstar IIB/F-theory:
- complex structure MF stabilised by fluxes
- stabilisation of Kähler MF requires Quantum Corrections generated by fluxed D7-branes and α' -corrections:

$$\mathcal{K} = -2\ln\left(\mathcal{V} + \xi + \gamma \ln u\right)$$

- \land Kähler MF \Rightarrow suitable inflaton candidates
- \triangle D-terms contribute to scalar potential, uplift the vacuum and generate a dS minimum.
- \blacktriangle FI-terms contribute to uplifting and allow for a slow-roll inflation
- △ non-perturbative superpotential corrections are not necessary!

★ Thank you for your attention ★