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Double copy

• Double copy structure states that the scattering amplitudes of the Yang-Mills

theory and gravity are related by exchanging the color and kinematic factors

[Bern, Carrasco Johansson 2008,2010]

ci ⇆ ni

• Gravity amplitudes can be obtained by just replacing the color factor to the

kinematic factor without any knowledge of the gravity action or Feynman rules.

• For tree level amplitude, it is equivalent to the field theory limit, α′ → 0 , of KLT

relation.



• Tree level closed string and open string scattering amplitudes are related via the

KLT relation [Kawai, Lewellen, Tye 1986]

M tree
n = Atree

n KnÃ
tree
n

where Kn is the KLT kernel.

• KLT relation provides the string theory origin of double copy structure.

• Spectrum

graviton ±2 (pi) = gluon ±1 (pi)⊗ gluon ±1 (pi)

dilaton

axion

󰀼
󰁀

󰀾 = gluon ±1 (pi)⊗ gluon ∓1 (pi)

(perturbative) gravity = (Yang-Mills)2



Implications

• Tree level scattering amplitude −→ on-shell, no quantum effects

It is natural to deduce its extension to the level of the classical equations of

motion.

• Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond the linearized level?

Solution of GR ⇐⇒󰁿 󰁾󰁽 󰂀
?

Solution of YM

• Graviton hµν is given by the linearized perturbation of the metric

gµν = ηµν + hµν

Recall the spectrum relation. Is it possible to represent hµν ∼ AµÃν?

• One possible way is the so called classical double copy based on Kerr-Schild

formalism in GR [Monteiro, O’Connell, White, 2014]



Kerr-Scild ansatz in GR

• The Kerr-Schild ansatz is an extension of linear perturbation around a

background metric g̃.

• Einstein equation is nonlinear PDE =⇒ Hard to solve

• What is the condition

Einstein equation becomes linear?

• Kerr and Schild proposed a metric ansatz which makes Einstein equation a

linear equation [Kerr 1963], [Kerr, Schild 1965] .

• Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



• Kerr-Schild ansatz

gµν = g̃µν + κϕℓµℓν

g̃µν : a background metric satisfying Einstein equation

ℓµ : null vector

ℓµg̃
µνℓν = ℓµg

µνℓν = 0

• The main advantage of the Kerr-Schild ansatz is that it preserves some features

of the linearized perturbation

gµν = g̃µν − κϕℓµℓν , det(g) = det(g̃)

• Suppose that ℓ satisfies the geodesic equation

ℓµ▽̃µℓν = ℓµ∂µℓν = 0

then the vacuum eom reduces to the linear equation

κ▽̃ρ

󰀓
▽̃(µ

󰀃
ϕℓν)ℓ

ρ󰀄− 1

2
▽̃ρ󰀃ϕℓµℓν

󰀄󰀔
= 0



Classical double copy in GR

• Consider KS ansatz on a flat background, g̃ = η

gµν = ηµν + ϕℓµℓν

• Identify the null vector ℓ and ϕ with gauge field and the biadjoint scala field

[Monteiro, O’Connell, White, 2014]

Aa
µ = ϕℓµc

a Φaa′
= ϕcac′a

′

• Assume that spacetime is stationary and choose ℓµ as ℓ0 = 1

R00 =
1

2
▽2ϕ

R0i =
1

2
∂j󰀃∂i(ϕℓj)− ∂j(ϕℓi)

󰀄
= −1

2
∂jFij

where Fij = ∂iAj − ∂jAi



Questions

• How can we include Kalb-Ramond field Bµν and dilaton φ in Kerr-Schild

formalism?

⊗ = ⊕ ⊕ •

• Curved background generalization - It is not clear how to define scattering

amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)

• Classical double coupy for non Kerr-Schild type geometries?

• Nonlinear level?



What we will discuss today

• Generalized Kerr-Schild method in DFT

=⇒ Novel solution generating technique for supergravity.

=⇒ Arbitrary on-shell background

• Classical double copy for entire massless NSNS sector

• Classical double copy in Killing spinor equation

=⇒ From the Killing spinor equation for gravitino, Yang-Mills BPS equation

can be derived



Why DFT?

• DFT is the best framework for describing the double copy structure.

• Double copy ⇐⇒ Left-right decomposition of closed string theory

• Generalized metric is represented by the coset

H → O(d, d)

O(d− 1, 1)×O(1, 1− d)

and this implies there are two local Lorentz groups

• These are related with local Lorentz groups for left-right sectors of closed string

theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

ηµν + hµν → hmn̄

• Cheung and Remmen derived perturbative DFT action (without dilaton and

Bµν ) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]
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Generalized Kerr-Schild ansatz



Linear perturbation

• First, we analyze the properties of linear perturbations of generalized metric

around an on-shell background generalized metric H0 satisfying

H0MNJNPH0PQ = JMQ

• Split H into the background part and perturbation parts

HMN = H0MN + κγ̂MN ,

where γ̂ describes perturbation and κ is a small expansion parameter.

• The γ̂ is not arbitrary, but constrained by O(d, d) constraint

κH0J γ̂ + κγ̂JH0 + κ2γ̂J γ̂ = 0 .

• One may solve the constraint recursively

γ̂ = γ̂(0) + κγ̂(1) + κ2γ̂(2) + · · ·



• If we truncate the higher order terms in κ, we get linearized O(d, d) constraint

H0J γ̂ + γ̂JH0 = 0 , γ̂ = γ̂(0)

• From O(d, d) constraint for H0, one can define a background chirality and the

corresponding projection operators

P0 =
1

2

󰀃
J +H0

󰀄
, P̄0 =

1

2

󰀃
J −H0

󰀄
,

which satisfy

P 2
0 = P0 , P̄ 2

0 = P̄0 , P0P̄0 = P̄0P0 = 0 .

• One can show that γ̂ has mixed chirality

γ̂ = P0γ̂P̄0 + P̄0γ̂P0 , P0γ̂P0 = P̄0γ̂P̄0 = 0



generalized Kerr-Schild ansatz

• Following the conventional Kerr-Schild ansatz, we now assume that γ̂ is a finite

perturbation and κ is a formal finite parameter. The chirality condition is no

longer a linearized approximation, but an exact relation.

• This implies γ̂ is a nilpotent matrix

γ̂J γ̂ = 0

• Denote E = P0γ̂P̄0, then γ̂ = E + Et. The nilpotency condition of γ̂ is rewritten

by

EMNEtN
P = Et

MNEN
P = 0 .

• By definition, E has mixed background chirality

EMN = P0MPE
P

N = EMP P̄0
P

N .



• We assume that the rank of the matrix E is n. Any 2d× 2d matrix with rank n

can be recast in terms of n-pairs of some O(d, d) vectors Ka
M and K̄a

M

EMN =

n󰁛

a=1

ϕaKM
aK̄t

N
a ,

where ϕa are scalar functions.

• For the purpose of generalizing the Kerr-Schild ansatz in GR, we set n = 1

EMN = ϕKMK̄t
N .

Since E is nilpotent, K and K̄ should be null vectors

KMKM = 0 , K̄MK̄M = 0 ,

• From the chirality condition on EMN , KM and K̄M satisfy

P0MNKN = KM , P̄0MNK̄N = K̄M , KMK̄M = 0 ,



• Taking all the results together, the generalized metric can be written as

HMN = H0MN + κϕ
󰀃
KMK̄N + K̄MKN

󰀄
,

• We refer this form as generalized Kerr-Schild ansatz. This ansatz satisfies the

O(d, d) constraint automatically without any approximation or truncation.

• Chirality condition =⇒ the KM and K̄M are parametrized in terms of the

d-dimensional vectors lµ and l̄µ

KM =
1√
2

󰀳

󰁃 lµ

(g̃ + B̃)µν l
ν

󰀴

󰁄 , K̄M =
1√
2

󰀳

󰁃 l̄µ

(−g̃ + B̃)µν l̄
ν

󰀴

󰁄 .

• Null condition =⇒ l and l̄ are null vectors

lµg̃µν l
ν = lµlµ = 0 , l̄µg̃µν l̄

ν = l̄µ l̄µ = 0 , l · l̄ ∕= 0



• Using the parametrization of generalized metric, we have

(g−1)µν = (g̃−1)µν + κϕl(µ l̄ν) ,

gµν = g̃µν − κϕ

1 + 1
2
κϕ(l · l̄)

l(µ l̄ν) ,

Bµν = B̃µν +
κϕ

1 + 1
2
κϕ(l · l̄)

l[µ l̄ν] ,

det g = (det g̃)
󰀓
1 +

1

2
κϕ(l · l̄)

󰀔−2

• Though H is linear in κ, g and B are nonlinear.

• If we identify lµ and l̄µ and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

gµν = g̃µν + κϕlµlν , gµν = g̃µν − κϕlµlν .



Field equations and quasi-linear structure



Set up

• For simplicity consider a flat background,

H0MN =

󰀳

󰁃ηµν 0

0 ηµν

󰀴

󰁄 , d0 = const.

• Generalized Kerr-Schild ansatz

HMN = H0MN + κϕ
󰀃
KMK̄N + K̄MKN

󰀄

d = d0 + κf .

• Identities
KM∂NKM = 0 , K̄M∂NK̄M = 0 ,

KM∂NK̄M = 0 , K̄M∂NKM = 0 .



• DFT connection satisfies

KPΓPMNK̄N = 0 , K̄PΓPMNKN = 0 , ΓP
PMKM = ΓP

PMK̄M = 0

and this implies

KM∇MK̄N = KM∂MK̄N , K̄M∇MKN = K̄M∂MKN

KMK̄N∇M∂Nf = KMK̄N∂M∂Nf

• A constraint from the DFT equations of motion, SKL = 0,

KKK̄LSKL = 2KKK̄L∂K∂Lf − 1

2
ϕ
󰀃
KK∂KK̄M

󰀄󰀃
KL∂LK̄

M󰀄

+
1

2
ϕ
󰀃
K̄K∂KKM

󰀄󰀃
K̄L∂LK

M󰀄
= 0 .



• DFT connection satisfies

KPΓPMNK̄N = 0 , K̄PΓPMNKN = 0 , ΓP
PMKM = ΓP

PMK̄M = 0

and this implies

KM∇MK̄N = KM∂MK̄N = 0 , K̄M∇MKN = K̄M∂MKN = 0

KMK̄N∇M∂Nf = KMK̄N∂M∂Nf = 0

• A constraint from the DFT equations of motion, SKL = 0,

KKK̄LSKL = 2KKK̄L∂K∂Lf − 1

2
ϕ
󰀃
KK∂KK̄M

󰀄󰀃
KL∂LK̄

M󰀄

+
1

2
ϕ
󰀃
K̄K∂KKM

󰀄󰀃
K̄L∂LK

M󰀄
= 0 .



• Using the parametrization of K and K̄ on a flat background,

KM =
1√
2

󰀳

󰁃lµ

lµ

󰀴

󰁄 , K̄M =
1√
2

󰀳

󰁃 l̄µ

−l̄µ

󰀴

󰁄

we have generalized geodesic equation

lµ∂µ l̄ν = 0 , l̄µ∂µlν = 0 ,

lµ∂µf = 0 , l̄µ∂µf = 0 ,

• If we identify lµ and l̄µ and ignore f , it becomes the conventional geodesic

equation

lµ▽µl
ν = lµ∂µl

ν = 0 .



Equations of motion

• Assume that KM and K̄M satisfy the generalized geodesic equation.

• Equations of motion in the flat backgrounds

S = −2κ∂K∂L(ϕK
KK̄L) + 4κHKL

0 ∂K∂Lf−4κ2HKL
0 ∂Kf∂Lf = 0 .

P0(K
M P̄0L)

NSMN = κ
󰁫
−

1

2
HMN

0 ∂M∂N
󰀃
ϕK(KK̄L)

󰀄
+ ∂M∂N

󰀃
ϕKN K̄(K

󰀄
P0L)

M

− ∂M∂N
󰀃
ϕK(KK̄N

󰀄
P̄0L)

M + 4P0(K
M P̄0L)

N∂M∂Nf
󰁬

+κ2
󰁫
HMN

0 ∂Mf∂N
󰀃
ϕK(KK̄L)

󰀄
− 2P0(K

M∂|M|
󰀃
ϕKN K̄L)∂Nf

󰀄

+2P̄0(K
M∂|M|

󰀃
ϕKL)K̄

N∂Nf
󰀄󰁬

= 0 .

• Interestingly, one can show that the first two chiral equations are redundant

P0K
MP0L

NSMN = −KKK̄MP0(L
P P̄0M)

QSPQ ,

P̄0K
M P̄0L

NSMN = −K̄KKMP0(L
P P̄0M)

QSPQ .

• Field equation for H: RKL = P0(K
M P̄0L)

NSMN .



• In terms of d-dimensional vector indices,

R = κ
󰁫
∂µ∂ν

󰀃
ϕlµ l̄ν

󰀄
− 4□f

󰁬
+ 4κ2∂µf∂

µf = 0 ,

Rµν = κ
󰁫
□
󰀃
ϕlµ l̄ν

󰀄
− ∂ρ∂µ

󰀃
ϕlρ l̄ν

󰀄
− ∂ρ∂ν

󰀃
ϕlµ l̄ρ

󰀄
+ 4∂µ∂νf

󰁬

− 2κ2
󰁫
∂ρf∂

ρ󰀃ϕlµ l̄ν
󰀄
− ∂µ

󰀃
ϕlρ l̄ν∂ρf

󰀄
− ∂ν

󰀃
ϕlµ l̄

ρ∂ρf
󰀄 󰁬

= 0 .

• Note that Rµν is not symmetric tensor:

- symmetric part → eom of g

- antisymmetric part → eom of B

• It is interesting that the generalized KS ansatz for gµν and Bµν is not linear in ϕ,

lµ and l̄µ, but the field equations are linear in these fields.

• However, unlike the conventional KS formalism in GR, the above equations are

quadratic in κ due to the presence of f .

• If we set f = 0, field equations reduce to linear equations.



Strategy

• Recall that the generalized KS ansatz is linear in κ, but there is no a priori

restriction on f

d = d0 + κf , f =
∞󰁛

n=0

κnf (n)

• By substituting the series expansion of f into the field equations, we get

S =

∞󰁛

n=1

κnS(n) , RMN =

∞󰁛

n=1

κnR(n)
MN ,

• Linear equations

∂µ∂ν

󰀃
ϕlµ l̄ν

󰀄
− 4□f (0) = 0 ,

□
󰀃
ϕlµ l̄ν

󰀄
− ∂ρ∂µ

󰀃
ϕlρ l̄ν

󰀄
− ∂ρ∂ν

󰀃
ϕlµ l̄ρ

󰀄
+ 4∂µ∂νf

(0) = 0 .

• Higher order equations

□f (n+1) −
󰁛

p+q=n

∂µf
(p)∂µf (q) = 0 , n ≥ 0

4∂µ∂νf
(n+1) − 2∂ρf

(n)∂ρ󰀃ϕlµ l̄ν
󰀄
+ · · · = 0 , n ≥ 0



• Note that ϕ, lµ, l̄µ and f (0) can be completely determined from the linear

equations only, and the higher order equations define recursion relations with

respect to f (n), for n > 0.

• This means that the metric and the Kalb-Ramond field are determined from the

linear equations only.

• Instead of taking the approach using the recursion relations, we substitute ϕ, lµ

and l̄µ into the full equations of motion. Since these equations are linear with

respect to F = e−2κf and f , one can determine f completely.

• The solutions of the linear equations are the solutions of the full field equations

automatically, but the converse is not true. This is because the linear equations

does not capture the full nonperturbative effects.

• However, the linear equations are remarkably simple compare to the

supergravity equations of motion, and it provides a useful tool for finding exact

solutions of supergravities.



Killing Spinor equation

• The Killing spinor equation reduce the supergravity field equations to first order

in derivatives. Combined with the generalized KS ansatz, it will lead to linear

equations.

• The SUSY variation of fermions provides the Killing spinor equations, which are

δρ = −γpDpε = −γpVp
M∂Mε− 1

4
V M

pΦMmnγ
pmnε− 1

2
V MmΦMmnγ

nε = 0 ,

δψp̄ = V̄ M
p̄DMε = V̄ M

p̄∂Mε+
1

4
V̄ M

p̄ΦMmnγ
mnε = 0 ,

• For simplicity, let us choose ε as a Killing spinor for the background geometry

satisfying

∂pφγ
pε0 +

1

12
H̃mnpγ

mnpε0 = 0 ,

D̃+
p̄ ε0 = 0 ,

where ε0 is the background Killing spinor.



• Then the Killing spinor equations are greatly simplified as
󰀓
∂µΨ+

1

2
D̃+

ν

󰀃
ϕ′lµ l̄

ν󰀄󰀔γµε0 = 0 ,

and 󰀓
D̃µ

󰀃
ϕlν l̄ρ

󰀄
− 1

2
H̃µρσ

󰀃
ϕlν l̄

σ󰀄󰀔γµνε0 = 0 .

where Ψ = e−2κf , ϕ′ = e−2κfϕ and ε0 is the background Killing spinor.

• For the flat background case
󰀓
∂µΨ+

1

2
∂ν

󰀃
ϕ′lµ l̄ν

󰀄󰀔
γµε0 = 0 ,

∂µ

󰀃
ϕlν l̄ρ

󰀄
γµνε0 = 0 ,

where ε0 is a constant spinor.

• These equations are remarkably simple, and much easier to solve than the full

Killing spinor equations.



Cassical double copy



Classical double copy in KS DFT

• The KLT and BCJ relations indicate that not only the Einstein field equation, but

also the field equations of entire massless NS-NS sector should be related to

the Maxwell equation.

• Suppose that the full geometry admits at least one Killing vector ξµ,

Lξg = 0 , LξB = 0 , Lξφ = 0 .

• We can locally choose a coordinate system xµ = {xi, y} such that the Killing

vector is a constant, ξµ = ∂xµ/∂y = δµy . The Killing vector ensures

ξρ∂ρ

󰀓
ϕlµ l̄ν

󰀔
= ξµ∂µf = 0

• We also normalize lµ and l̄µ as follows:

ξ · l = ξ · l̄ = 1



• Classical double copy is achieved by contracting ξµ with the linear order

equations of motion R(1)
µν = 0 in Kerr-Schild ansatz

R(1)
µν = □

󰀃
ϕlµ l̄ν

󰀄
− ∂ρ∂µ

󰀃
ϕlρ l̄ν

󰀄
− ∂ρ∂ν

󰀃
ϕlµ l̄ρ

󰀄
+ 4∂µ∂νf

(0) = 0

• Zeroth copy

Contracting ξµ with all the free indices of R(1)
µν , we make a scalar equation

ξµξνR(1)
µν = □ϕ = 0 ,

• Monteiro, O’Connell and White identified ϕ as the biadjoint scalar field

[Cachazo,He,Yuan,2013]

Φaa′
= ϕcac̄a

′

where ca and c̄ā are color index vectors for Lie group G1 and G2.

• It can be understood as a linearized equation of motion for Φaa′

∂2Φaa′
− yfabcfa′b′c′Φbb′Φcc′ = 0



• Single copy

Contracting ξµ with the one of the free index of Rµν , we have

ξνRµν = □(ϕlµ)− ∂ρ∂µ(ϕlρ) = 0 ,

ξµRµν = □(ϕl̄ν)− ∂ρ∂ν(ϕl̄ρ) = 0 .

• we identify ϕlµ and ϕl̄µ with gauge fields

Aµ = ϕlµ , Āµ = ϕl̄µ

• Then ξνRµν and ξµRµν reduce to a pair of Maxwell equations

∂µFµν = 0 , ∂µF̄µν = 0 ,

where Fµν and F̄µν are the field strengths of Aµ and Āµ respectively,

Fµν = ∂µAν − ∂νAµ , F̄µν = ∂µĀν − ∂νĀµ .



Supersymmetric double copy

• On a flat background, Killing spinor equation for gravitino is given by

κ∂[m

󰀃
φln] l̄µ

󰀄
γmnε = 0

• contraction with a Killing vector ξµ

Fµνγ
µνε = 0 .

• This is the typical BPS equation of N = 1 SYM. This shows the classical double

copy is still valid for supersymmetric backgrounds



Example



Chiral null model

• A class of string backgrounds which have one conserved chiral null current on

the world sheet. [Horowitz, Tseytlin, 1994]

• It is a generalization of the gravitational wave and fundamental string

background and is exact in the α′ expansion.

• In the target space they have a null Killing vector and unbroken

supersymmetries.

• Special cases are the Taub-NUT geometry and rotating black holes.

• The explicit geometry is given by

ds2 = F (xi)du
󰀓
dv +K(u, xi)du+ 2Vi(u, x

i)dxi
󰀔
+ dxidxi ,

Buv = F (xi) , Bui = 2F (xi)Vi(u, x
i) ,

φ = φ(u) +
1

2
logF (xi) ,



• This fits into the generalized Kerr-Schild ansatz in a flat background.

ds2 = dudṽ + dxidxi + (F − 1)du
󰀓
dṽ − ṼiṼ

idu+ Ṽidx
i
󰀔
,

where
Vi = Ṽi +

1

2
∂iX , v = ṽ −X(x, u) ,

X(x, u) =

󰁝 u 󰀓
K +

4F

(F − 1)
ṼiṼ

i
󰀔
(󰂓x, u′)du′ ,

• The associated ϕ and null vectors l and l̄ can be easily read off

κϕ = F−1 − 1 ,

lu = 1 ,

l̄u = −
󰀓 2F

F − 1

󰀔2

ṼiṼ
i , l̄ṽ = 1 , l̄i =

2F

F − 1
Ṽi ,

and one can easily show that l and l̄ are orthogonal with respect to the flat

background metric.



• l and l̄ satisfy the generalized geodesic constraint

lµ∂µ l̄ν = 0 , l̄µ∂µlν = 0

• Equations of motion imply, κf = φ(u)

∂i∂
iF−1 = 0 ,

−∂i∂iK + 2∂i∂uVi + 4F−1∂2
uφ = 0 ,

−4∂jFji + 4∂uφ∂iF
−1 = 0 .

where Fij = ∂iVj − ∂jVi.

• This is the same exactly with the equation derived by Callan, Maldacena and

Peet.



Conclusion

• A novel solution generating technique in supergravities via generalized

Kerr-Schild method in DFT

• Classical double copy including Bµν and dilaton

• Classical double copy in Killing spinor equation

• Heterotic DFT, including matters (RR sector, fermions), Introducing U(1) gauge

fields using Kaluza-Klein reduction, Gauged supergravity extension via

Scherk-Schwarz reduction, Extended Kerr-Schild method, Finding new

supergravity solutions,....



Thank you


