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Double copy

® Double copy structure states that the scattering amplitudes of the Yang-Mills
theory and gravity are related by exchanging the color and kinematic factors
[Bern, Carrasco Johansson 2008,2010]

ci S n;

e Gravity amplitudes can be obtained by just replacing the color factor to the
kinematic factor without any knowledge of the gravity action or Feynman rules.

e For tree level amplitude, it is equivalent to the field theory limit, o’ — 0, of KLT

relation.



* Tree level closed string and open string scattering amplitudes are related via the
KLT relation [Kawai, Lewellen, Tye 1986]

tree tree i tree
M, =A,"K,A,

where IC,, is the KLT kernel.
e KLT relation provides the string theory origin of double copy structure.
b
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Gravity

® Spectrum
graviton =2 (p;) = gluon = (p;) @ gluon = (p:)
dilaton

= gluon ** (p;) ® gluon F* (p;)
axion

(perturbative) gravity = (Yang-Mills)*



Implications

Tree level scattering amplitude — on-shell, no quantum effects

It is natural to deduce its extension to the level of the classical equations of
motion.

Q: Can solutions of the Einstein field equations be represented by solutions of

the Yang-Mills equations beyond the linearized level?

Solution of GR <= Solution of YM
Y

?

Graviton h,, is given by the linearized perturbation of the metric

Guv = N + "y

Recall the spectrum relation. Is it possible to represent k., ~ ALA?

One possible way is the so called classical double copy based on Kerr-Schild
formalism in GR [Monteiro, O’Connell, White, 2014]



Kerr-Scild ansatz in GR

The Kerr-Schild ansatz is an extension of linear perturbation around a

background metric g.
Einstein equation is nonlinear PDE —> Hard to solve
What is the condition

Einstein equation becomes linear?

Kerr and Schild proposed a metric ansatz which makes Einstein equation a
linear equation [Kerr 1963], [Kerr, Schild 1965] .

Meyers-Perry BH, (A)dS Kerr, (A)dS Kerr-Newman, Black string, branes, Waves

in flat and (A)dS spaces (PP-wave, Kundt wave, Shock wave ) etc.



e Kerr-Schild ansatz

Guv = Guv + kpluly

Juv - @ background metric satisfying Einstein equation
£,, > null vector
£,g" 0, = £,g"" 0, =0

® The main advantage of the Kerr-Schild ansatz is that it preserves some features

of the linearized perturbation
g’ =g — kpl'e” det(g) = det(g)
® Suppose that ¢ satisfies the geodesic equation
8, = 049,04, =0
then the vacuum eom reduces to the linear equation

- [~ 1.
KV (V(u(tp&,)ﬂp) _ ivp(@f}t&,)) =0



Classical double copy in GR

® Consider KS ansatz on a flat background, g =

Guv = Muv + 0l

® |dentify the null vector ¢ and ¢ with gauge field and the biadjoint scala field
[Monteiro, O’Connell, White, 2014]

ra’

Al = pl,c” e’ — pcc
e Assume that spacetime is stationary and choose ¢+ as (° = 1
1
Roo = §V2<,D
1., 1 .
Ro; = 3¢ (9i(wt;) — 0;(ti)) = 50 Fij

where Fi; = 0;A; — 0; A;



Questions

How can we include Kalb-Ramond field B,,,, and dilaton ¢ in Kerr-Schild
formalism?

Oe=[eHe-
Curved background generalization - It is not clear how to define scattering

amplitude in curved background in general. (time-dependent backgrounds,

nonasymptotic flat spaces)
Classical double coupy for non Kerr-Schild type geometries?

Nonlinear level?



What we will discuss today

® Generalized Kerr-Schild method in DFT
= Novel solution generating technique for supergravity.
= Arbitrary on-shell background

e Classical double copy for entire massless NSNS sector

e Classical double copy in Killing spinor equation
= From the Killing spinor equation for gravitino, Yang-Mills BPS equation

can be derived



Why DFT?

DFT is the best framework for describing the double copy structure.
Double copy <= Left-right decomposition of closed string theory
Generalized metric is represented by the coset

0(d, d)
O(d—1,1) x O(1,1 —d)

H—

and this implies there are two local Lorentz groups

These are related with local Lorentz groups for left-right sectors of closed string
theory. [Arkani-Hamed,Kaplan, 2008], [Hohm, 2011]

nyu + h,uu — hmﬁ

Cheung and Remmen derived perturbative DFT action (without dilaton and
B,..,) around an arbitrary curved background from Einstein-Hilbert action by

assuming the two local Lorentz groups. [Cheung, Remmen, 2016]
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Generalized Kerr-Schild ansatz



Linear perturbation

First, we analyze the properties of linear perturbations of generalized metric

around an on-shell background generalized metric Ho satisfying
’HOMNJNPHOPQ = JmQ

Split H into the background part and perturbation parts
Hun = Homn + EYMN ,

where 4 describes perturbation and « is a small expansion parameter.

The 4 is not arbitrary, but constrained by O(d, d) constraint
KHoTA + k4T Ho + K*4T4 = 0.
One may solve the constraint recursively

,’y — ,’y(o) + Kl,.’y(l) + KQ,?(Q) _|_ R



e |f we truncate the higher order terms in x, we get linearized O(d, d) constraint
HoT4+4THo =0, 4 =4"

® From O(d, d) constraint for H,, one can define a background chirality and the

corresponding projection operators

(J —Ho) ,

N =

Py = (.7-5—7'[0)’ Py =

N

which satisfy
PZ=p,, P =h, PyPy=PyPy=0.
® One can show that 4 has mixed chirality

"Ay = Po’AyPU + PO'A}/PO s PO"AYPO = PO’AYPO =0



generalized Kerr-Schild ansatz

Following the conventional Kerr-Schild ansatz, we now assume that 4 is a finite
perturbation and « is a formal finite parameter. The chirality condition is no

longer a linearized approximation, but an exact relation.
This implies 4 is a nilpotent matrix
T4 =0

Denote £ = PyyP,, then 4 = E + E*. The nilpotency condition of ¥ is rewritten
by

EunE"Np=E'yNENp =0.
By definition, £ has mixed background chirality

P = P
Eun =PoupE N =EupPy N.



® We assume that the rank of the matrix E is n. Any 2d x 2d matrix with rank n

can be recast in terms of n-pairs of some O(d, d) vectors K§; and K§;

Eun = Z Ky K N,

a=1
where ¢ are scalar functions.

® For the purpose of generalizing the Kerr-Schild ansatz in GR, we setn =1
Eun =¢KuK'y .
Since F is nilpotent, K and K should be null vectors
KuKM™ =0, KuK“ =0,
* From the chirality condition on Exv, K™ and K™ satisfy

PounK"N = K, PounKEYN = K, KuKY =0,



Taking all the results together, the generalized metric can be written as

Hun = Homn + HQO(KMKN + KMKN) ,
We refer this form as generalized Kerr-Schild ansatz. This ansatz satisfies the
0O(d, d) constraint automatically without any approximation or truncation.
Chirality condition = the K and K, are parametrized in terms of the

d-dimensional vectors I* and I*

Ko = " Kar =

M = —= ~ 9 M — —= ~ —
V2 \(@G+ B)ul” V2 \ (=g + Bl

Null condition = [ and [ are null vectors

Mgt =1"1,=0, Hgult =1", =0, 1-1#0



® Using the parametrization of generalized metric, we have

(7" =G )" + kel

~ K =

v = v — —=1 ll/ 9
Iu m 1+ %Htp(l'l) (ntv)

Buw = B;w + Ll[ul}] )

14 Lrp(l-1)
- 1 =\ 2
det g = (det g) (1 + iﬁw(l . l))
® Though H is linear in x, g and B are nonlinear.
e |f we identify i and I* and ignore the B field, then it reduces to the

conventional Kerr-Schild ansatz,

g = g"" + kel"l” Guv = Guv — kpluly .



Field equations and quasi-linear structure



Set up

® For simplicity consider a flat background,

n* 0
HomN = , dp = const.
0 N
e Generalized Kerr-Schild ansatz
Hun =Houn + k(K Ky + KnKy)
d=doy+ Iif .

® |dentities
KM(?NKMIO, RMaNRMZO7

KMonKy =0, EKMoyKy =0.



® DFT connection satisfies

KPTpunKY =0, KEfTpunKY =0, P pu KM =T p KM =0
and this implies
KMVyuEny = KMouKy, KYVuKy=KYouKnx
KMENVyonf = KMEY0ymon f
® A constraint from the DFT equations of motion, Sk, = 0,
KNRESin = 0K K00 f — 5ip(K 0 Kar) (P9 K™)

+ oK oK) (RP o K™M) = 0.



® DFT connection satisfies

KPTpunKY =0, KEfTpunKY =0, P pu KM =T p KM =0
and this implies
KMVyuEn = KMouKEny =0, KMVuKy=KYouKn =0
KMENY yonf = KMENoyonf =0
® A constraint from the DFT equations of motion, Sk, = 0,
KNRESin = 0K K00 f — 5ip(K 0 Kar) (P9 K™)

+ oK oK) (RP o K™M) = 0.



¢ Using the parametrization of K and K on a flat background,

POVRL N L I B
e\ ) RV

we have generalized geodesic equation
0,1, =0, 0,1, =0,
"0,f =0, "o,f=0,
e |f we identify i and I* and ignore f, it becomes the conventional geodesic

equation
49,07 =1"9,0" =0.



Equations of motion

e Assume that K, and K, satisfy the generalized geodesic equation.

® Equations of motion in the flat backgrounds
S = —2k0k 0L (9K E KLY + axHEL 00 f—4r*HEL O fOLf = 0.
Pox™PoryNSun = K[ - %H(])V[NaMaN (pK(x K1) + 0mOn (KN K (i) Pory™
— OMON (PE (KN ) Pory™ + 4PO(KMP0L)N8M8Nf]
+r7 {H(}IN({)M.I"(?N (pK (K1) — 2Po(rc M 01| (¢ KN Kp)on f)
2Py 1M (@KMR’N(‘?Nf)} —0.
* |nterestingly, one can show that the first two chiral equations are redundant
Pox™PorNSun = —KKKMPO(LPPOM)QSPQ ,
Pox™PorNSun = —Kx KM Po.” Poary%Spq -

* Field equation for H: Rxr = Po(x™ Pory~ Sun.



® |n terms of d-dimensional vector indices,

R = K’|: 6”’61’ (gplﬂl_u) - 4Df i| + 4‘%28#]‘.8”]“ = 07
Ry = n[ O(pluly) — 80, (lyh) — 020, (luly) + 48,0, f ]

— 2k2 [ap F0° (Qluly) — B, (9110, ) — By (0L, ) ] — .

Note that R . is not symmetric tensor:
- symmetric part — eom of ¢

- antisymmetric part — eom of B
* ltis interesting that the generalized KS ansatz for g,.,, and B, is not linear in ¢,
1" and I*, but the field equations are linear in these fields.
® However, unlike the conventional KS formalism in GR, the above equations are

quadratic in x due to the presence of f.

If we set f = 0, field equations reduce to linear equations.



Strategy

Recall that the generalized KS ansatz is linear in «, but there is no a priori

restriction on f
d=do+rf, f:Z“nf(n)
n=0
By substituting the series expansion of f into the field equations, we get

S= ZK”S(") , RunN = ZKWR(")MN7

n=1 n=1

Linear equations

8,0 (pI"1) —40f =0,

O(pluls) — 00, (plply) — 0°0, (plul,) + 40,0, f = 0.
Higher order equations

Df(n-H) _ Z 8uf(p)8”f(q) =0, n>0

p+q=n

49,0, fTY =20, f™M 0P (plul) +---=0,  n>0



Note that ¢, I*, I* and f© can be completely determined from the linear
equations only, and the higher order equations define recursion relations with

respect to £, for n > 0.

This means that the metric and the Kalb-Ramond field are determined from the

linear equations only.

Instead of taking the approach using the recursion relations, we substitute ¢, *
and [* into the full equations of motion. Since these equations are linear with

respect to F = e~2%f and f, one can determine f completely.

The solutions of the linear equations are the solutions of the full field equations
automatically, but the converse is not true. This is because the linear equations
does not capture the full nonperturbative effects.

However, the linear equations are remarkably simple compare to the
supergravity equations of motion, and it provides a useful tool for finding exact

solutions of supergravities.



Killing Spinor equation

® The Killing spinor equation reduce the supergravity field equations to first order
in derivatives. Combined with the generalized KS ansatz, it will lead to linear

equations.

® The SUSY variation of fermions provides the Killing spinor equations, which are
1 1 m n
6p = —~A"Dpe = —"V,M e — ZVM,,CDan'ypm”s - 5VM P prrmny"e =0,
(/ (/ 15 mn
0y = VMI*,'DME = VMf,aM&‘ + ZVMIE(I)an'V e=0,

® For simplicity, let us choose ¢ as a Killing spinor for the background geometry

satisfying

where ¢ is the background Killing spinor.



Then the Killing spinor equations are greatly simplified as
1~ + 1y v i
(0w + 5D (#11") ) 720 = 0,
and
™ 7 1 - j0 v
(Du@tuls) = 5o (9117) )7 20 = 0.
where ¥ = =27/ o/ = 72"/, and ¢, is the background Killing spinor.

For the flat background case
(auxp n ay(go’zul’v))wgo —0,
where ¢ is a constant spinor.

These equations are remarkably simple, and much easier to solve than the full

Killing spinor equations.



Cassical double copy



Classical double copy in KS DFT

The KLT and BCJ relations indicate that not only the Einstein field equation, but
also the field equations of entire massless NS-NS sector should be related to

the Maxwell equation.

Suppose that the full geometry admits at least one Killing vector £#,
[,,gg:O, ﬁgBZO, £g¢:0.

We can locally choose a coordinate system z* = {z*, y} such that the Killing

vector is a constant, ¢# = 0z /0y = ¢);. The Killing vector ensures
£0, (pluly) = €05 =0
We also normalize I,, and I,, as follows:

gl=¢-1=1



¢ Classical double copy is achieved by contracting £# with the linear order
equations of motion Rf}) = 0 in Kerr-Schild ansatz

RELIV) = D(gpl,jy) - apau (‘PZPZV) —9°0, (‘Pl;jp) + 48/Lauf(0) =0
e Zeroth copy
Contracting £* with all the free indices of R(t), we make a scalar equation
R =Dp =0,

® Monteiro, O’Connell and White identified ¢ as the biadjoint scalar field
[Cachazo,He,Yuan,2013]

@(La/ _ @Ca Ea/

where c* and ¢* are color index vectors for Lie group G1 and Go.

¢ |t can be understood as a linearized equation of motion for P’

82q)aa’ _ yfabCfa/b/c/¢bb'¢cc' -0



® Single copy
Contracting £* with the one of the free index of R .., we have

"Ry = O(plyu) — 0°0u(ply) =0,
E"Ruw = D(ply) — 0”00 (l,) = 0.
e we identify I, and ol,, with gauge fields
Ay =l A, =l

® Then "R, and ¥R .. reduce to a pair of Maxwell equations

0"F, =0, 0"F,, =0,

where F},, and F,, are the field strengths of A, and A,, respectively,

Fu = 0,A, —0A,,  Fu = 0,4, —0,4,.



Supersymmetric double copy

* On a flat background, Killing spinor equation for gravitino is given by

Ha[m (gf)ln]lu)’ymn&‘ =0
e contraction with a Killing vector ¢*
F.y"e=0.

® This is the typical BPS equation of N = 1 SYM. This shows the classical double

copy is still valid for supersymmetric backgrounds



Example



Chiral null model

A class of string backgrounds which have one conserved chiral null current on

the world sheet. [Horowitz, Tseytlin, 1994]

It is a generalization of the gravitational wave and fundamental string

background and is exact in the o expansion.

In the target space they have a null Killing vector and unbroken

supersymmetries.
Special cases are the Taub-NUT geometry and rotating black holes.
The explicit geometry is given by
ds? = F(z')du (dv + K(u,z)du + 2Vi(u, mi)dmi) +dz'da’
Buw = F(z'),  Bui = 2F(z")Vi(u,z'),

6= 6(u) + 5 log F(x')



¢ This fits into the generalized Kerr-Schild ansatz in a flat background.
ds? = dudd + de*dz’ + (F — 1)du (df; —ViVidu + mx") :

where 1
T/}:Y~/i+§8¢X, v="0—X(z,u),
Xau) = [ (K + g V) @

® The associated ¢ and null vectors I and [ can be easily read off

mp:F_l—l,

=1,

. 2F \2- -, - -~ 2F
L==(Fog) W b1 b=

and one can easily show that [ and [ are orthogonal with respect to the flat
background metric.



e | and [ satisfy the generalized geodesic constraint
0,1, =0, "0ul, =0
e Equations of motion imply, xf = ¢(u)
20 F ' =0,
—0'0; K +20'0,Vi +4F 1929 =0,
—487 Fji + 40,08, F ' = 0.
where fij = BJ/J — QJVZ

® This is the same exactly with the equation derived by Callan, Maldacena and
Peet.



Conclusion

A novel solution generating technique in supergravities via generalized
Kerr-Schild method in DFT

Classical double copy including B,.,, and dilaton

Classical double copy in Killing spinor equation

Heterotic DFT, including matters (RR sector, fermions), Introducing U(1) gauge
fields using Kaluza-Klein reduction, Gauged supergravity extension via
Scherk-Schwarz reduction, Extended Kerr-Schild method, Finding new

supergravity solutions,....



Thank you



