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General motivation

String geometry departs from Riemannian geometry, notably in presence of fluxes

% open strings ~» noncommutativity - Poisson structure - x-product - Kontsevich '97 DQ
Chu, Ho '99; Seiberg, Witten '99

+ closed strings ~» noncommutativity /nonassociativity - (twisted) Poisson - x-product
Halmagyi '09; Liist '10; Blumenhagen, Plauschinn '10; Mylonas, Schupp, Szabo '12; & c.

String dualities relate different geometries/topologies ~> “non-geometric
backgrounds”

Manifestly duality-invariant theories - double and exceptional field theories
Hull, Hohm, Zwiebach; Hohm, Samtleben; & c.

Evidence that the correct language is algebroid/generalized geometry

Courant; Liu, Weinstein, Xu, Severa; Roytenberg; Hitchin; Gualtieri; Cavalcanti; Bouwknegt, Hannabuss, Mathai; & c.



In this talk

Use Courant algebroid structure to unravel geometric structure of DFT.
Construct membrane sigma model for DFT.
Discuss DFT membrane sigma model gauge symmetry.

DFT constraints vs. gauge invariance.



Courant Algebroids and Double Field Theory

Courant Algebroids and Generalized Geometry double the bundle, e.g. TM ® T*M

DFT doubles the base, M = M x M — comes with constraints

Solving the strong constraint, reduces DFT data to the data of the standard CA

What is the geometric origin of the DFT data and the strong constraint?
cf. Deser, Saemann '16, Freidel, Rudolph, Svoboda '17; Svoboda '18

CAs provide membrane sigma models ~~ describe non-geometric backgrounds
Roytenberg '06
Mylonas, Schupp, Szabo '12; ACh, Jonke, Lechtenfeld '15; Bessho, Heller, Ikeda, Watamura '15

Is there a “DFT algebroid” that could provide a DFT membrane sigma model?
cf. Fech Scen talk



Membrane Sigma Model for CA



AKSZ sigma models

AKSZ sigma model - topological sigma models satisfying the classical master equation

Alexandrov, Kontsevich, A. Schwarz, Zaboronsky ‘97.

In 2d Poisson sigma model is most general TFT cattaneo, Felder '01. Quantization of this
model lead to Kontsevich deformation quantization formula.

In 3d the AKSZ sigma model requires a dg-manifolds for source and target, symplectic
form on a target, and a self-commuting hamiltonian of degree 3.

Theorem

A QP-2 manifold is in 1:1-correspondence with a Courant algebroid. (Roytenberg ‘02.)

Given the data of a CA, (E, [, ]&, (-, )£, p), one can uniquely construct a membrane
sigma model Roytenberg ‘06.



Courant sigma model

In local coordinates

S[X,A F] = / FindX 4+ InuA A A — o' i(X)A A F 4+ 2 Tiuc(X)AT A A7 A AR

X3
i=1,...,d (target space index) and | = 1,...,2d (CA index).
Maps X = (X') : 3 — M, 1-forms A € Q'(X3, X*E), and auxiliary 2-form

F e Q*(X3, X*T*M).
Symmetric bilinear form of the CA ~» O(d, d) invariant metric

n= ()= (10d 10d) :

p and T are the anchor and twist of the CA, the latter generating a generalized
Wess-Zumino term.

For a manifold with boundaries on can add both topological and non-topological terms
Cattaneo, Felder ‘01; Park ‘00

Sp[X, Al = / 1guA NxA + 1BA N AT
%3



Gauge symmetry of Courant sigma model

Gauge invariance of the Courant sigma model = CA axioms and properties.

The gauge transformations Ikeda ‘02
56Xi = piJEJ ’
5 A = de' + g™ Tuw AR — ol |
8cFm =~ 0mp' sFi + 1 0n TiyA' N A" — At — 9mp/ JA Y
where €/ and t; are gauge parameters - world-sheet scalar and one-form, respectively,
define first-stage reducible gauge symmetry of CA sigma model.
# Gauge invariance of equations of motion
SFi(dX™ — p7A’) .= 6F,DX' =0,
5.DX" = Omp’ s DX™ + 17" 1l it + EJAK(2pm[KaﬂpiJ] — o™ Tuws) -

gives o ‘ '
"0 ik =0, 20" kOmp' sy — p'nn™ T = 0.



Gauge symmetry of Courant sigma model

# Closure of algebra of gauge transformations

[61,52]A" = 612A" — M0 Turef 5DX" — 1" Ziumser esAY

el = 0" Tokwel' €5, tiai = 0 Tukel A + 23,‘#;(66 ty
gives
Zike = 30" Trax Tpew + 30" 10m T + p"10m Tik =0 .

Thus the gauge invariance of CA sigma model reproduces all three local coordinate
expressions defining CA.

The algebra of gauge transformations closes on-shell and there exists BV-BRST
formulation lkeda ‘02, Roytenberg ‘06.



From CA to DFT









Large CA and projection

Chatzistavrakidis, Jonke, Khoo, Szabo ‘18

Remember that CAs doubles the bundle, while DFT doubles the base.

Strategy:

# Double the target and construct large CA.

# Find appropriate embedding of DFT within large CA and project

4 fields A and structure functions p, T

+ bracket(s) and bilinear

#« Define DFT algebroid structure and properties.



From CA to DFT - some details

« Doubling - take a 2" order bundle E = (T @ T*)M with sections A € E

A=Ay + Ar = A5 + AdX .

# Embedding-E=(TO®T*)M=L,DL_

A=ALef +A e, where e,i:&:tnUdXJ,

#« Projecting

p:E — Ly
(A\/,AF) — A=A ,

Systematically project bracket, bilinear and the structure functions.

~~ Reproduces DFT vectors, C-bracket, generalized Lie derivative with properties
defining the DFT algebroid Fech Scen talk.



Membrane sigma model for DFT



The DFT Membrane Sigma Model

Using the data of DFT algebroid we propose cf. Chatzistavrakidis, Jonke, Lechtenfeld '15

S[X, A, F] :/

(F, AdX 4+ Al A AT = (o) AT A Fr+ L TuAl A AY A AK) ,
X3
where p; : Ly — TM is a map to the tangent bundle and T corresponds to DFT fluxes.

Maps X = (X') : £3 — M, 1-forms A € Q'(X3,X*L,), and auxiliary 2-form
F e Q*(Z3, X" T*M).

Symmetric bilinear form 7 is O(d, d) invariant metric.



The DFT Membrane Sigma Model

Using the data of DFT algebroid we propose cf. Chatzistavrakidis, Jonke, Lechtenfeld '15

S[X, A, F] :/

3

(F, AdX 4+ Al A AT = (o) AT A Fr+ L TuAl A AY A AK) ,

where p; : Ly — TM is a map to the tangent bundle and T corresponds to DFT fluxes.

Maps X = (X') : £3 — M, 1-forms A € Q'(X3,X*L,), and auxiliary 2-form
F e Q*(Z3, X" T*M).

Symmetric bilinear form 7 is O(d, d) invariant metric.

Use the DFT MSM to
o describe the flux backgrounds

o find the relation with flux formulation of DFT



Universal description of flux backgrounds

The standard T-duality chain relating geometric and non-geometric fluxes schematically
thl’OUgh Shelton, Taylor, Wecht '05

T Tk T
H,‘jk <—k> f;jk (—j> Q;Jk < Ruk s
can be obtained using DFT membrane action.

Take a doubled torus as target of the DFT MSM and DFT structural data as
(p4)'s = (', 0%, 07, pis) 5 Tuk = (Hix, fi*, Q7*, R¥) and symmetric term on boundary
gu = (gj,&’,8',8") .



R flux background
Choose
(p+)'s=1(0,0,67,0) Tk =(0,0,0,R™)  gu = (g;,0,0,0),

Then the membrane action becomes
s = / (FIAndX"+ ¢ Adpi+piAdg — pi AF + L R™ pi A pi A pr)
23
- / lgiq Axq .
a%3
After integrating out the auxiliary fields F; the action takes form

/ (¢ AdXi+ L gy g’ Axq) +/ LR AX; A dX; A dXi -
o%;3 ¥
Finally, after integrating out pqg’ we obtain
SR[X]:/ %g’de,A*d)?jJr/ LR AX; A dX; A dXe
933 3

is the same as the sigma-model action with H-flux under the duality exchanges of all
fields X' with X;.



R flux and nonassociativity

On the other hand, choosing
(p+) s = (6, R™ X, —487,0) Tuk = (0,0,0, R%) gu = (0,0,0,g") .

leads to Mylonas, Schupp, Szabo '12

SR[X,>~<]:/az (dX: A dX' + 3 R™ X dXi A dX; + 3 g7 dXi A xdX) |
3

One defines a bivector © = %G)” 01 N\ 5 on phase space T*M given by

R X &',
eIJ _ .k J .
(%

It induces a twisted Poisson bracket given by {X',X”}¢ = ©", with non-vanishing
Jacobiator

(X, X, X Yo = 1 {({X', X }e, X"} + cyclic = R¥ .



~> In terms of the doubled space of DFT, the four T-dual backgrounds with H-, f-, Q-
and R-flux all correspond to the standard Courant algebroid over different submanifolds
of the doubled space.

~ Nonassociative (nor noncommutative) background violate the strong constraint of
DFT and therefore do not correspond to Courant sigma-models.



DFT fluxes from membrane sigma model

Taking a parametrization of the map p; to be

(8B
(P+) J = (BU 6,_] +/8Jk Bki) ’
we obtain

IJ K L KL
nopips=1

20 0™ sy — p" ™ Ti = pryd oty

Thus we make contact with flux formulation of DFT Geissbuhler, Marques, Nunez, Penas ‘13:

Mo N
Ea E N = Mas
A I J
Tasc =3 140167 Eqyy -
The parametrization of the anchor map in terms of the generalized bein components has
an important consequence:
#« On algebroid structure - the anchor map p has no kernel.

« On DFT - constraining bein to be an element of O(D, D) is the source of the strong
constraint. cf. Fech Scen talk



Gauge invariance of DFT MSM and the strong constraint

Gauge transformations obtained by projection {A, e} — {A, e} and
gauge-fixing t; = e[JK(X)AJ6K.

Ok (X) is determined in terms of the structure functions of large CA by imposing
SAL =0. .

5.X! = p’JeJ 7

5€AI = del + ’I']U(-i\—JKL — pMJ@MKL)AKeL = dEI + d)IKLAKeL ,

6Fr = O Al Ade — X Fn(a1p" k + %eIJKUJMPNM) +

K AN Jia $ L M 1 LM 3
+e AV ANA(Oi Tuny — p nOLOuk — Oip” NOmuk + 59Oukn™ Tmny) —
—8L@/JK€KDXL N AJ — @UKGK(dAJ — %UJKpIKF/ + %T]JK 7A-KLMAL A\ AM) .

Note that variation of F; now contains terms proportional to eoms, i.e., the trivial gauge
transformations.



Gauge invariance continued

#« Gauge invariance of equations of motion

(55DXI = EJaKp’JDXK + EJAK(sz[KaMpIJ] — pIN¢NKJ) .

gives
20" kdmp' 5 — p'w® ks = 0.

# Closure of algebra of gauge transformations

[01, 8:]A" = 612A" — 9,0" e s DX — 1" Zuumser s AM

I I KL

e =% e,

Ziktls.e. = 0" Trapk Toew + oM 0w T + 3V 00m Tk -

~~ Strong constraint needed for gauge invariance of DFT sigma model and for (on-shell)
closure of gauge algebra.



Closing remarks

@ We proposed membrane sigma model for DFT, gauge invariant under the strong
constraint. It provides universal description of geometric and non-geometric fluxes.

@ What about NC and NA examples, which do not satisfy the strong constraint? Can
we find gauge invariant sigma model formulation for these cases?

~ Relaxing the strong constraint by using pre-DFT (or metric Vvaisman '12) algebroid
structure. Can one formulate membrane sigma model for these structures?

~» Changing the embedding - project to subbundle [, span by & =0, + ApdX??

~~ Role of the boundary terms and symplectic form? Freidel, Rudolph, Svoboda '17

@ Applications - physical models where one truly needs doubled space, e.g. string gas
cosmology by Brandenberger and Vafa?



