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We describe the known membrane theories related to topological M-theory with

an AKSZ 3-brane, which has the higher Courant bracket on T @& A*T* as its
underlying derived bracket.

[1805.11485]
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@ Where does it come from?
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. — bosonic string theory
& coupled to gravity

topological sigma-model . )
. —  topological string theory
& coupled to gravity

@ Procedure to get the topological sigma-model: ~ topological twisting

N =2 sigma-model e, topological sigma-model
@ Two non-equivalent twists:

~» A- and B-models

@ Where does it appear in physical string theory?

a) lIA or IIB compactifications ~» superpotential

b) IIA compactification ~» entropy of BPS black hole
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AKSZ sigma-models

o AKSZ construction: a natural geometric method for constructing BV
quantized topological sigma-models.

[Alexandrov,Kontsevich,Schwartz,Zaboronsky]
Well known examples are Poisson sigma-model, A/B-models,
Chern-Simons theory, Courant sigma-model, etc.
o Construction:

Source manifold:  T[1]Xy; graded worldvolume with dim¥4 = d
Target manifold: (M, Qy,w) QP-manifold of degree d — 1

w = dv is a graded symplectic structure

Q, = {v, - } is a cohomological vector field

@ The space of fields is the mapping space
M = Map(T[1]Zq, M)

= An arbitrary coordinate ¢ € M of degree || corresponds to a field
¢ € M of ghost number |¢|
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AKSZ sigma-models

@ The AKSZ action is determined by the symplectic potential ¥ and the
Hamiltonian

S = Skin + Sint

T 1
9 Y

It gives a solution to the master equation
(8,8)py =0 — {v.7}=0
and defines the BV-BRST transformation

Q= (S, ')BV

o Gauge fixing:
1) Assign 'fields’ and 'antifields’ (paired in the BV symplectic srtucture w)
2) Gauge fix the antifields <— Choose a Lagrangian submanifold
LeM (w|z=0).
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@ Poisson sigma-model or A-model (M = T*[1]M)

. 1
w=dy; AdX' and ’Y:EWU(X)XI'X/
1 )
{v,7} =0 o Poisson condition for = (nl'g,x™ = 0)
@ _ iy Lo
ST = x; DX' + S w7 x; x;
Tz 2
o Complex structure sigma-model or B-model (M = T*[1]T*M doubled)
wzdx;/\dXiergi/\d)N(; and fy:_ljx,-ffajJL;(,‘ijik
1 [} 1 0

{v,7} =0 — Integrability condition for the complex structure J

s@ = /[] (x; DX' — XiDX' + J';x; X + 9.0« Xi X' XY
T[1]x2

[Ikeda, Tokunaga]
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Doubled Poisson sigma-model for A/B-models

@ Poisson sigma-model on doubled targetspace M = T*[1]T*M

w =dy; AdX' and ’Y:%QU(X)X[XJ
1 )

. X' i
with X' = ()NC) and X = (;)
S(z) - ( ! 1w

o0 = x; DX +§Q (X)XIXJ)'

T[1]x2

@ Observation: it gives the AKSZ formulation of A- or B-models
o a0
Q- = (0 0) = A-model

1J 0 JIJ
QY = . - =  B-model
(—JJ,- —20 1 X ode
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AKSZ membrane formulation for A/B-models

o We lift up the doubled Poisson sigma-model to an AKSZ membrane
(contravariant Courant sigma-model [Bessho,Heller,Ikeda,Watamura] on
M =T*2]T[1]T*M)

w=dF AdX" 4+ dys Ady'
2 o 1 1
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T3
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o It allows the definition of fluxes
UK i ii ijk
R — H,‘jk, F‘jk7 Quk, RY

and the master equation gives them Bianchi identities [Q2, R]s = 0.
o In the partial gauge

F/=Dx, and %' =-DX' — Wet :?{ X'y,
T[1]6%3

it gives back the doubled Poisson sigma-model.
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Relation to generalized complex structure and topological S-duality

Halving degree 1 fields with DFT projection [Chatzistavrakidis,Jonke,Khoo,Szabo]
and imposing the master equation (it has the role of a section condition) we
get the Courant sigma-model

s®, = / (F, DX' — x, D' + w' Fix; + J; Fiy/
T[1]z3
1 ji i i j
- SO Y XX + 0 ¥ W,

@ The master equation gives the integrability condition for the generalized

complex structure ‘ )
J]I _ J'j 7TU
T\ -

o It gives back the AKSZ formulations of A- or B-models on the boundary
after a full gauge fixing on the bulk.

@ Topological S-duality between A- and B-models arises (ga <— 1/gs)
from J, as a canonical transformation:

S« s¥ — sP
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Different reductions and connections between the AKSZ string and membrane
sigma-models related to the topological A- and B-models

Doubled contravariant
Courant sigma-model

DFT projection &
zero dual coord.

Courant sigma-model
for gen. complex str.

Poisson str. Complex str.

Boundary
reduction -
Contravarlant Courant sigma-model
Courant sigma-model for complex str.
Doubled Poisson Boundary Boundary
sigma-model reduction reduction
F’mssory\cimplex str.

‘ A-model ‘ ‘ B-model ‘ ‘ A-model ‘ B-model
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Topological membranes on G,-manifold

@ Topological M-theory: Hitchin-type form theory of Gz-manifolds
It is a unification of the form theory of A- and B-models.

@ Two topological membrane has been proposed to be the worldvolume
formulation:

1) Using Mathai-Quillen formalism
[Anguelova,Medeiros,Sinkovics]
2) BRST gauge fixed version of the associative 3-form

[Bonelli, Tanzini,Zabzine]
@ They can be unified within one single AKSZ 3-brane (M = T*[3] T[1]M)
w = d)g"/\dF,- +dyiAdy' and 4 = Fiy
3 2 1
S = / (FiDX' + 4 Dx; + Fiv')
T[1]%s

Worldvolume dimension reductions of S(Gaz) gives both topological
membranes in different gauges.
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Relation to higher Courant bracket

@ The master equation defines a higher analog of the Courant algebroid:
Lie algebroid up to homotopy
[Ikeda,Uchino]
o Degree two functions correspond to elements in TM & \* T*M

0
oxXi

A'(X)xi + %aU(X)wiW —  AX)== + %oz,-,-(X) dx’ ndx’ |
and the derived bracket
[A+a,B+Blc = {{y,A+a}, B+3}

1
= [A,B] =+ ﬁAﬁ — Lo + Ed(LBOé—LAﬂ)

is the higher Courant bracket on TM @ A®> T*M.

@ This construction allows the definition of geometric fluxes.
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Summary

@ We reformulated the AKSZ constructions of A- and B-models on doubled
space and introduced a Courant sigma-model for generalized complex
structure, which reduces to the A- and B-models on the boundary.

@ As an application, we derived topological S-duality from generalized
complex structure.

@ Our approach led to new classes of Courant algebroids associated to
(generalized) complex geometry.

@ We constructed an AKSZ 3-brane, which unifies the known topological
membranes on Gz-manifold.

@ We showed that its derived bracket gives the higher Courant bracket on
T™M & N\ T*M.
Outlook

@ Explore the relation of our Courant sigma-model for generalized complex
structure to topological string theory.

o Investigate the AKSZ 3-brane theory in the context of non-geometric flux
backgrounds.



Thank you for your attention!



	Intro
	A- and B-models
	Membranes for topological M-theory
	Conclusion

