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Outline

We reformulate AKSZ constructions of topological sigma-models (in
topological string theory) on doubled space and relate them to generalized
complex structures.

[1802.04581]

We describe the known membrane theories related to topological M-theory with
an AKSZ 3-brane, which has the higher Courant bracket on T ⊕

∧2T ∗ as its
underlying derived bracket.

[1805.11485]
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Topological string theory

Where does it come from?

N = 2 sigma-model

& coupled to gravity

}
−→ bosonic string theory

topological sigma-model

& coupled to gravity

}
−→ topological string theory

Procedure to get the topological sigma-model: ; topological twisting

N = 2 sigma-model
twist−−−→ topological sigma-model

Two non-equivalent twists:

; A- and B-models

Where does it appear in physical string theory?

a) IIA or IIB compacti�cations ; superpotential

b) IIA compacti�cation ; entropy of BPS black hole
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AKSZ sigma-models

AKSZ construction: a natural geometric method for constructing BV
quantized topological sigma-models.

[Alexandrov,Kontsevich,Schwartz,Zaboronsky]

Well known examples are Poisson sigma-model, A/B-models,
Chern-Simons theory, Courant sigma-model, etc.

Construction:

Source manifold: T [1]Σd graded worldvolume with dimΣd = d

Target manifold: (M,Qγ , ω) QP-manifold of degree d − 1

ω = dϑ is a graded symplectic structure

Qγ = {γ, . } is a cohomological vector �eld

The space of �elds is the mapping space

M = Map
(
T [1]Σd ,M

)
=⇒ An arbitrary coordinate φ ∈M of degree |φ| corresponds to a �eld
φ ∈M of ghost number |φ|
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AKSZ sigma-models

The AKSZ action is determined by the symplectic potential ϑ and the
Hamiltonian γ

S = Skin
↑
ϑ

+ Sint
↑
γ

It gives a solution to the master equation

(S,S)BV = 0 ←→ {γ, γ} = 0

and de�nes the BV-BRST transformation

Q = (S, . )BV

Gauge �xing:

1) Assign '�elds' and 'anti�elds' (paired in the BV symplectic srtucture ω)

2) Gauge �x the anti�elds ←→ Choose a Lagrangian submanifold

L ∈M (ω|L = 0).
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A- and B-models

Poisson sigma-model or A-model (M = T ∗[1]M)

ω = dχi
1
∧ dX i

0
and γ =

1

2
πij(X )χi χj

{γ, γ} = 0 ←→ Poisson condition for π (π[i|l∂lπ
|jk] = 0)

S(2)
π =

∫
T [1]Σ2

(
χi DX

i +
1

2
πij χi χj

)

Complex structure sigma-model or B-model (M = T ∗[1]T ∗M doubled)

ω = dχi
1
∧ dX i

0
+ dχ̃i

1
∧ dX̃i

0

and γ = J i
j χi χ̃

j − ∂jJ
i
k X̃i χ̃

j χ̃k

{γ, γ} = 0 ←→ Integrability condition for the complex structure J

S(2)
J =

∫
T [1]Σ2

(
χi DX

i − X̃ i Dχ̃
i + J

i
j χi χ̃

j + ∂ jJ
i
k X̃ i χ̃

j χ̃k)
[Ikeda,Tokunaga]
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Doubled Poisson sigma-model for A/B-models

Poisson sigma-model on doubled targetspaceM = T ∗[1]T ∗M

ω = dχI
1
∧ dX I

0
and γ =

1

2
ΩIJ(X )χI χJ

with X I =

(
X i

X̃i

)
and χI =

(
χi

χ̃ i

)
S(2)

Ω =

∫
T [1]Σ2

(
χI DX

I +
1

2
ΩIJ(X )χI χJ

)
.

Observation: it gives the AKSZ formulation of A- or B-models

ΩIJ =

(
πij 0
0 0

)
=⇒ A-model

ΩIJ =

(
0 J i

j

−J j
i −2∂[iJ

k
j]X̃k

)
=⇒ B-model
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AKSZ membrane formulation for A/B-models

We lift up the doubled Poisson sigma-model to an AKSZ membrane
(contravariant Courant sigma-model [Bessho,Heller,Ikeda,Watamura] on
M = T ∗[2]T [1]T ∗M)

ω = dFI
2
∧ dX I

0
+ dχI

1
∧ dψI

1

S(3)
Ω,R =

∫
T [1]Σ3

(
F I DX

I − χI Dψ
I + ΩIJ

F I χJ

− 1

2
∂ IΩ

JK ψI χJ χK +
1

3!
RIJK χI χJ χK

)

It allows the de�nition of �uxes

RIJK −→ Hijk , F
i
jk , Q

ij
k , R

ijk

and the master equation gives them Bianchi identities [Ω,R]S = 0.

In the partial gauge

F I = DχI and ψI = −DX I −→ ωgf =

∮
T [1]∂Σ3

δX IδχI

it gives back the doubled Poisson sigma-model.
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Relation to generalized complex structure and topological S-duality

Halving degree 1 �elds with DFT projection [Chatzistavrakidis,Jonke,Khoo,Szabo]

and imposing the master equation (it has the role of a section condition) we
get the Courant sigma-model

S(3)
π,J =

∫
T [1]Σ3

(
F i DX

i − χi Dψ
i + πij

F i χj + J
i
j F i ψ

j

− 1

2
∂ iπ

jk ψi χj χk + ∂ iJ
k
j ψ

i ψj χk

)

The master equation gives the integrability condition for the generalized
complex structure

JI J =

(
J i

j πij

0 −J j
i

)
It gives back the AKSZ formulations of A- or B-models on the boundary
after a full gauge �xing on the bulk.

Topological S-duality between A- and B-models arises (gA ←→ 1/gB)
from J, as a canonical transformation:

S(2)
B ←− S(3)

π,J −→ S(2)
A
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Di�erent reductions and connections between the AKSZ string and membrane
sigma-models related to the topological A- and B-models

Doubled contravariant
Courant sigma-model

Doubled Poisson
sigma-model

Courant sigma-model
for gen. complex str.

A-model B-model A-model B-model

Contravariant
Courant sigma-model 

Courant sigma-model
for complex str. 

S 

Boundary
reduction 

Poisson str. Complex str.

Poisson str. Complex str.

Boundary
reduction 

Boundary
reduction 

DFT projection &
zero dual coord.

String

Membrane
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Topological membranes on G2-manifold

Topological M-theory: Hitchin-type form theory of G2-manifolds

It is a uni�cation of the form theory of A- and B-models.

Two topological membrane has been proposed to be the worldvolume
formulation:

1) Using Mathai-Quillen formalism

[Anguelova,Medeiros,Sinkovics]

2) BRST gauge �xed version of the associative 3-form

[Bonelli,Tanzini,Zabzine]

They can be uni�ed within one single AKSZ 3-brane (M = T ∗[3]T [1]M)

ω = dX i

0
∧ dFi

3
+ dχi

2
∧ dψi

1
and γ = Fi ψ

i

S(4)
G2

=

∫
T [1]Σ4

(
F i DX

i + ψi
Dχi + F i ψ

i)
Worldvolume dimension reductions of S(4)

G2
gives both topological

membranes in di�erent gauges.
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Relation to higher Courant bracket

The master equation de�nes a higher analog of the Courant algebroid:

Lie algebroid up to homotopy

[Ikeda,Uchino]

Degree two functions correspond to elements in TM ⊕
∧2 T ∗M

Ai (X )χi +
1

2
αij(X )ψiψj ←→ Ai (X )

∂

∂X i
+

1

2
αij(X ) dX i ∧dX j ,

and the derived bracket

[A + α , B + β ]C = {{ γ , A + α } , B + β }

= [A,B] + LAβ − LBα +
1

2
d(ιB α− ιA β)

is the higher Courant bracket on TM ⊕
∧2 T ∗M.

This construction allows the de�nition of geometric �uxes.
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Summary

We reformulated the AKSZ constructions of A- and B-models on doubled
space and introduced a Courant sigma-model for generalized complex
structure, which reduces to the A- and B-models on the boundary.

As an application, we derived topological S-duality from generalized
complex structure.

Our approach led to new classes of Courant algebroids associated to
(generalized) complex geometry.

We constructed an AKSZ 3-brane, which uni�es the known topological
membranes on G2-manifold.

We showed that its derived bracket gives the higher Courant bracket on
TM ⊕

∧2 T ∗M.

Outlook

Explore the relation of our Courant sigma-model for generalized complex
structure to topological string theory.

Investigate the AKSZ 3-brane theory in the context of non-geometric �ux
backgrounds.
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Thank you for your attention!
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