Generalized Geometry, A/B-models and topological M-theory

Zoltán Kökényesi

MTA Wigner Research Center for Physics, Budapest

based on 1802.04581 and 1805.11485
with A. Sinkovics and R. J. Szabo

We reformulate AKSZ constructions of topological sigma-models (in topological string theory) on doubled space and relate them to generalized complex structures.

[1802.04581]
We reformulate AKSZ constructions of topological sigma-models (in topological string theory) on doubled space and relate them to generalized complex structures.

[1802.04581]

We describe the known membrane theories related to topological M-theory with an AKSZ 3-brane, which has the higher Courant bracket on $\mathcal{T} \oplus \wedge^2 \mathcal{T}^*$ as its underlying derived bracket.

[1805.11485]
Topological string theory

- Where does it come from?
 \[\mathcal{N} = 2 \text{ sigma-model} \]
 & coupled to gravity
 \} \rightarrow \text{bosonic string theory}
Topological string theory

- Where does it come from?

\[\mathcal{N} = 2 \text{ sigma-model} \]
& coupled to gravity
\[
\begin{align*}
\text{topological sigma-model} & \quad \rightarrow \quad \text{bosonic string theory} \\
\text{& coupled to gravity} & \quad \rightarrow \quad \text{topological string theory}
\end{align*}
\]
Topological string theory

- Where does it come from?
 \[\mathcal{N} = 2 \text{ sigma-model} \]
 \& coupled to gravity
 \[\rightarrow \]
 topological sigma-model
 \& coupled to gravity
 \[\rightarrow \]
 topological string theory

- Procedure to get the topological sigma-model: \(\sim \) topological twisting
 \[\mathcal{N} = 2 \text{ sigma-model} \quad \xrightarrow{\text{twist}} \quad \text{topological sigma-model} \]
Topological string theory

- Where does it come from?
 \[\mathcal{N} = 2 \text{ sigma-model} \]
 \[\& \text{ coupled to gravity} \]
 \[\text{topological sigma-model} \]
 \[\& \text{ coupled to gravity} \]
 \[\xrightarrow{\text{topological twisting}} \text{bosonic string theory} \]
 \[\xrightarrow{\text{topological string theory}} \]

- Procedure to get the topological sigma-model: \(\sim \) topological twisting

 \[\mathcal{N} = 2 \text{ sigma-model} \xrightarrow{\text{twist}} \text{topological sigma-model} \]

- Two non-equivalent twists:

 \(\sim \) A- and B-models
Topological string theory

- Where does it come from?

\[\mathcal{N} = 2 \text{ sigma-model} \]
& coupled to gravity
\[\text{topological sigma-model} \]
& coupled to gravity
\[\rightarrow \text{ topological string theory} \]

- Procedure to get the topological sigma-model: \(\sim \) topological twisting

\[\mathcal{N} = 2 \text{ sigma-model} \xrightarrow{\text{twist}} \text{topological sigma-model} \]

- Two non-equivalent twists:

\(\sim \) A- and B-models

- Where does it appear in physical string theory?

 a) IIA or IIB compactifications \(\sim \) superpotential

 b) IIA compactification \(\sim \) entropy of BPS black hole
AKSZ sigma-models

- **AKSZ construction:** a natural geometric method for constructing BV quantized topological sigma-models.

 [Alexandrov, Kontsevich, Schwartz, Zaboronsky]
AKSZ sigma-models

- **AKSZ construction**: a natural geometric method for constructing BV quantized topological sigma-models.

 [AlexandrovanKontsevichSchwartzZaboronsky]

 Well known examples are Poisson sigma-model, A/B-models, Chern-Simons theory, Courant sigma-model, etc.
AKSZ sigma-models

• **AKSZ construction**: a natural geometric method for constructing BV quantized topological sigma-models.

 [Alexandrov, Kontsevich, Schwartz, Zaboronsky]

 Well known examples are Poisson sigma-model, A/B-models, Chern-Simons theory, Courant sigma-model, etc.

• Construction:

 Source manifold: $T[1]\Sigma_d$ graded worldvolume with $\dim \Sigma_d = d$
AKSZ sigma-models

- **AKSZ construction**: a natural geometric method for constructing BV quantized topological sigma-models.

 [Alexandrov, Kontsevich, Schwartz, Zaboronsky]

 Well known examples are Poisson sigma-model, A/B-models, Chern-Simons theory, Courant sigma-model, etc.

- **Construction**:
 - **Source manifold**: $T[1]\Sigma_d$ graded worldvolume with $\dim\Sigma_d = d$
 - **Target manifold**: $(\mathcal{M}, Q_\gamma, \omega)$ QP-manifold of degree $d - 1$

 $\omega = d\vartheta$ is a graded symplectic structure

 $Q_\gamma = \{\gamma, .\}$ is a cohomological vector field
AKSZ sigma-models

- **AKSZ construction**: a natural geometric method for constructing BV quantized topological sigma-models.

 [Alexandrov, Kontsevich, Schwartz, Zaboronsky]

Well known examples are Poisson sigma-model, A/B-models, Chern-Simons theory, Courant sigma-model, etc.

- **Construction**:
 Source manifold: $T[1] \Sigma_d$ graded worldvolume with $\dim \Sigma_d = d$
 Target manifold: $(\mathcal{M}, Q_\gamma, \omega)$ QP-manifold of degree $d - 1$
 $\omega = d\theta$ is a graded symplectic structure
 $Q_\gamma = \{\gamma, .\}$ is a cohomological vector field

- **The space of fields** is the mapping space
 $\mathcal{M} = \text{Map}(T[1] \Sigma_d, \mathcal{M})$

 \implies An arbitrary coordinate $\phi \in \mathcal{M}$ of degree $|\phi|$ corresponds to a field $\phi \in \mathcal{M}$ of ghost number $|\phi|$
AKSZ sigma-models

- The **AKSZ action** is determined by the symplectic potential ϑ and the Hamiltonian γ

\[S = S_{\text{kin}} + S_{\text{int}} \]

1. **Gauge fixing:**
 - Assign fields and antifields (paired in the BV symplectic structure ω)
 - Gauge fix the antifields
 - Choose a Lagrangian submanifold $L \in M$ such that $\omega|_L = 0$.
AKSZ sigma-models

- The AKSZ action is determined by the symplectic potential ϑ and the Hamiltonian γ

\[S = S_{\text{kin}} + S_{\text{int}} \]

It gives a solution to the master equation

\[(S, S)_{\text{BV}} = 0 \iff \{\gamma, \gamma\} = 0 \]
AKSZ sigma-models

- The AKSZ action is determined by the symplectic potential ϑ and the Hamiltonian γ

$$S = S_{\text{kin}} + S_{\text{int}}$$

It gives a solution to the master equation

$$(S, S)_{\text{BV}} = 0 \quad \iff \quad \{\gamma, \gamma\} = 0$$

and defines the BV-BRST transformation

$$Q = (S, \cdot)_{\text{BV}}$$
AKSZ sigma-models

- The **AKSZ action** is determined by the symplectic potential ϑ and the Hamiltonian γ

$$S = S_{\text{kin}} + S_{\text{int}}$$

It gives a solution to the **master equation**

$$(S, S)_{\text{BV}} = 0 \quad \iff \quad \{\gamma, \gamma\} = 0$$

and defines the **BV-BRST transformation**

$$Q = (S, \cdot)_{\text{BV}}$$

- **Gauge fixing:**
AKSZ sigma-models

- The **AKSZ action** is determined by the symplectic potential ϑ and the Hamiltonian γ

\[
\mathcal{S} = \mathcal{S}_{\text{kin}} + \mathcal{S}_{\text{int}}
\]

It gives a solution to the master equation

\[
(\mathcal{S}, \mathcal{S})_{\text{BV}} = 0 \quad \leftrightarrow \quad \{\gamma, \gamma\} = 0
\]

and defines the BV-BRST transformation

\[
Q = (\mathcal{S}, \cdot)_{\text{BV}}
\]

- **Gauge fixing:**
 1) Assign ’fields’ and ’antifields’ (paired in the BV symplectic structure ω)
The AKSZ action is determined by the symplectic potential ϑ and the Hamiltonian γ

$$S = S_{\text{kin}} + S_{\text{int}}$$

It gives a solution to the master equation

$$(S, S)_{\text{BV}} = 0 \iff \{\gamma, \gamma\} = 0$$

and defines the BV-BRST transformation

$$Q = (S, \cdot)_{\text{BV}}$$

Gauge fixing:

1) Assign 'fields' and 'antifields' (paired in the BV symplectic structure ω)
2) Gauge fix the antifields \leftrightarrow Choose a Lagrangian submanifold $\mathcal{L} \in \mathcal{M}$ ($\omega|_{\mathcal{L}} = 0$).
A- and B-models

- **Poisson sigma-model or A-model** \((\mathcal{M} = T^*[1]M)\)

\[\omega = d\chi_i \wedge dX^i \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j\]
A- and B-models

- Poisson sigma-model or A-model ($\mathcal{M} = T^*[1]M$)

\[\omega = d\chi^i_1 \wedge dX^i_0 \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j\]

\{\gamma, \gamma\} = 0 \quad \leftrightarrow \quad \text{Poisson condition for } \pi \quad (\pi^{[i|l} \partial_l \pi^{jk]} = 0)
\textbf{A- and B-models}

- Poisson sigma-model or A-model ($\mathcal{M} = T^*[1]M$)

\[\omega = d\chi_i \wedge dX^i \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j \]

\[\{\gamma, \gamma\} = 0 \quad \leftrightarrow \quad \text{Poisson condition for } \pi \quad (\pi^{[i|l} \partial_l \pi^{jk]} = 0) \]

\[S^{(2)}_\pi = \int_{T[1]\Sigma_2} \left(\chi_i DX^i + \frac{1}{2} \pi^{ij} \chi_i \chi_j \right) \]
A- and B-models

- **Poisson sigma-model or A-model** \((\mathcal{M} = T^*[1]M) \)

\[
\omega = d\chi^i \wedge dX^i \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j \\
\{\gamma, \gamma\} = 0 \quad \leftarrow \quad \text{Poisson condition for } \pi \quad (\pi^{[i|l} \partial_l \pi^{|jk]} = 0) \\
S^{(2)}_\pi = \int_{\{1\} \Sigma_2} \left(\chi_i D\!X^i + \frac{1}{2} \pi^{ij} \chi_i \chi_j \right)
\]

- **Complex structure sigma-model or B-model** \((\mathcal{M} = T^*[1]T^*M \text{ doubled}) \)

\[
\omega = d\chi^i \wedge dX^i + d\tilde{\chi}^i \wedge d\tilde{X}_i \quad \text{and} \quad \gamma = J^i_j \chi_i \tilde{\chi}^j - \partial_j J^i_k \tilde{X}_i \tilde{\chi}^j \tilde{\chi}^k
\]
A- and B-models

- **Poisson sigma-model or A-model** \((\mathcal{M} = T^*[1]M)\)

 \[
 \omega = d\chi^i_0 \wedge dX^i_0 \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j
 \]

 \[\{\gamma, \gamma\} = 0 \quad \iff \quad \text{Poisson condition for } \pi \quad \left(\pi^{[i|l} \partial_l \pi^{|jk]} = 0\right)\]

 \[
 S^{(2)}_\pi = \int_{\tau[1] \Sigma_2} \left(\chi_i DX^i + \frac{1}{2} \pi^{ij} \chi_i \chi_j \right)
 \]

- **Complex structure sigma-model or B-model** \((\mathcal{M} = T^*[1]T^*M \text{ doubled})\)

 \[
 \omega = d\chi^i_0 \wedge dX^i_0 + d\tilde{\chi}^i_0 \wedge d\tilde{X}^i_0 \quad \text{and} \quad \gamma = J^i_j \chi_i \tilde{\chi}^j - \partial_j J^i_k \tilde{X}_i \tilde{\chi}^i \tilde{\chi}^k
 \]

 \[\{\gamma, \gamma\} = 0 \quad \iff \quad \text{Integrability condition for the complex structure } J\]
A- and B-models

- Poisson sigma-model or A-model \((\mathcal{M} = T^*[1]M)\)

\[
\omega = d\chi_i \wedge dX^i \quad \text{and} \quad \gamma = \frac{1}{2} \pi^{ij}(X) \chi_i \chi_j
\]

\(\{\gamma, \gamma\} = 0 \quad \leftrightarrow \quad \text{Poisson condition for } \pi \quad (\pi^{[i|l} \partial_l \pi^{jk]} = 0)\)

\[
S_\pi^{(2)} = \int_{T[1]\Sigma_2} \left(\chi_i DX^i + \frac{1}{2} \pi^{ij} \chi_i \chi_j \right)
\]

- Complex structure sigma-model or B-model \((\mathcal{M} = T^*[1]T^*M \text{ doubled})\)

\[
\omega = d\chi_i \wedge dX^i + d\tilde{\chi}_i \wedge d\tilde{X}_i \quad \text{and} \quad \gamma = J^i_j \chi_i \tilde{\chi}^j - \partial_j J^i_k \tilde{X}_i \tilde{\chi}^j \tilde{\chi}^k
\]

\(\{\gamma, \gamma\} = 0 \quad \leftrightarrow \quad \text{Integrability condition for the complex structure } J\)

\[
S_J^{(2)} = \int_{T[1]\Sigma_2} \left(\chi_i DX^i - \tilde{X}_i D\tilde{\chi}^i + J^i_j \chi_i \tilde{\chi}^j + \partial_j J^i_k \tilde{X}_i \tilde{\chi}^j \tilde{\chi}^k \right)
\]

[Ikeda, Tokunaga]
Doubled Poisson sigma-model for A/B-models

- Poisson sigma-model on doubled targetspace $\mathcal{M} = T^*[1] T^* M$

$$\omega = d\chi_I \wedge dX^I \quad \text{and} \quad \gamma = \frac{1}{2} \Omega^{IJ}(X) \chi_I \chi_J$$

with $X^I = \left(\begin{array}{c} X^i \\ \tilde{X}_i \end{array} \right)$ and $\chi_I = \left(\begin{array}{c} \chi_i \\ \tilde{\chi}_i \end{array} \right)$

$$S^{(2)}_\Omega = \int_{T[1] \Sigma_2} \left(\chi_I D X^I + \frac{1}{2} \Omega^{IJ}(X) \chi_I \chi_J \right).$$
Doubled Poisson sigma-model for A/B-models

- Poisson sigma-model on doubled targetspace $\mathcal{M} = T^*[1] T^* M$

$$\omega = d\chi_i \wedge dX^i \quad \text{and} \quad \gamma = \frac{1}{2} \Omega^{ij}(X) \chi_i \chi_j$$

with $X^i = \left(X^i \right)$ and $\chi_i = \left(\chi_i \right)$

$$S^{(2)}_\Omega = \int_{\Sigma_2} \left(\chi_i D X^i + \frac{1}{2} \Omega^{ij}(X) \chi_i \chi_J \right).$$

- Observation: it gives the AKSZ formulation of A- or B-models

$$\Omega^{ij} = \begin{pmatrix} \pi^{ij} & 0 \\ 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \text{A-model}$$

$$\Omega^{ij} = \begin{pmatrix} 0 & J^i_j \\ -j^i_j & -2 \partial_{[i} J^k_{j]} \tilde{X}_k \end{pmatrix} \quad \Rightarrow \quad \text{B-model}$$
AKSZ membrane formulation for A/B-models

- We lift up the doubled Poisson sigma-model to an AKSZ membrane (contravariant Courant sigma-model [Bessho, Heller, Ikeda, Watamura] on $\mathcal{M} = T^*[2] T[1] T^* \mathcal{M}$)

\[
\omega = dF_I \wedge dX^I + d\chi_I \wedge d\psi^I
\]

\[
\mathcal{S}_{\Omega, \mathcal{R}}^{(3)} = \int_{T[1]\Sigma_3} \left(F_I DX^I - \chi_I D\psi^I + \Omega^{IJ} F_I \chi_J
- \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K \right)
\]
AKSZ membrane formulation for A/B-models

- We lift up the doubled Poisson sigma-model to an AKSZ membrane (contravariant Courant sigma-model [Bessho,Heller,Ikeda,Watamura] on $\mathcal{M} = T^*[2] T[1] T^* M$)

$$\omega = \frac{dF_I}{2} \wedge dX^I_0 + dX^I_1 \wedge d\psi^I_1$$

$$S^{(3)}_{\Omega,R} = \int_{T[1] \Sigma_3} \left(F_I DX^I - \chi_I D\psi^I + \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} R^{IJK} \chi_I \chi_J \chi_K \right)$$

- It allows the definition of fluxes

$$R^{IJK} \rightarrow H_{ijk}, F^i_{jk}, Q^{ij}_{k}, R^{ij}_{k}$$

and the master equation gives them Bianchi identities $[\Omega, R]_S = 0$.
AKSZ membrane formulation for A/B-models

- We lift up the doubled Poisson sigma-model to an AKSZ membrane (contravariant Courant sigma-model [Bessho,Heller,Ikeda,Watamura] on \(\mathcal{M} = T^*[2]T[1]T^*M \))

\[
\omega = dF_I \wedge dX^I + d\chi_I \wedge d\psi^I
\]

\[
S_{\Omega,R}^{(3)} = \int_{T[1] \Sigma^3} \left(\frac{1}{2} \Omega^{JL} \psi^J \psi^L + \frac{1}{3!} R^{IJK} \chi_I \chi_J \chi_K \right)
\]

- It allows the definition of fluxes

\[
R^{IJK} \rightarrow H_{ijk}, \ F^i_{jk}, Q^{ij}_k, R^{ijk}
\]

and the master equation gives them Bianchi identities \([\Omega, R]_S = 0\).

- In the partial gauge

\[
F_I = D\chi_I \quad \text{and} \quad \psi^I = -DX^I
\]
AKSZ membrane formulation for A/B-models

- We lift up the doubled Poisson sigma-model to an AKSZ membrane (contravariant Courant sigma-model [Bessho,Heller,Ikeda,Watamura] on $\mathcal{M} = T^*[2]T[1]T^*M$)

\[
\omega = dF_I \wedge dX^I_0 + d\chi_I \wedge d\psi^I_1
\]

\[
\mathcal{S}^{(3)}_{\Omega,\mathcal{R}} = \int_{T[1]\Sigma_3} \left(F_I DX^I - \chi_I D\psi^I + \Omega^{IJ} F_I \chi_J - \frac{1}{2} \partial_I \Omega^{JK} \psi^I \chi_J \chi_K + \frac{1}{3!} \mathcal{R}^{IJK} \chi_I \chi_J \chi_K \right)
\]

- It allows the definition of fluxes

\[
\mathcal{R}^{IJK} \rightarrow H_{ijk}, F_{ij}^k, Q^{ij}_k, R^{ijk}
\]

and the master equation gives them Bianchi identities $[\Omega, \mathcal{R}]_S = 0$.

- In the partial gauge

\[
F_I = D\chi_I \quad \text{and} \quad \psi^I = -DX^I \quad \rightarrow \quad \omega_{gf} = \int_{T[1]\partial\Sigma_3} \delta X^I \delta \chi_I
\]

it gives back the doubled Poisson sigma-model.
Relation to generalized complex structure and topological S-duality

Halving degree 1 fields with DFT projection [Chatzistavrakidis,Jonke,Khoo,Szabo] and imposing the master equation (it has the role of a section condition) we get the Courant sigma-model

$$S_{\pi,J}^{(3)} = \int_{T[1]\Sigma_3} \left(F_i D\chi^i - \chi_i D\psi^i + \pi^{ij} F_i \chi_j + J^i_j F_i \psi^j - \frac{1}{2} \partial_i \pi^{jk} \psi^i \chi_j \chi_k + \partial_i J^i_j \psi^i \psi^j \chi_k \right)$$
Relation to generalized complex structure and topological S-duality

Halving degree 1 fields with DFT projection [Chatzistavrakidis, Jonke, Khoo, Szabo] and imposing the master equation (it has the role of a section condition) we get the Courant sigma-model

$$S^{(3)}_{\pi,J} = \int_{T[1]\Sigma_3} \left(F_i DX^i - \chi_i D\psi^i + \pi^{ij} F_i \chi_j + J^i_j F_i \psi^j - \frac{1}{2} \partial_i \pi^{jk} \chi_j \chi_k + \partial_i J^k_j \psi^i \psi^j \chi_k \right)$$

- The master equation gives the integrability condition for the generalized complex structure

$$\mathbb{J}^i_j = \begin{pmatrix} J^i_j & \pi^{ij} \\ 0 & -J^j_i \end{pmatrix}$$
Relation to generalized complex structure and topological S-duality

Halving degree 1 fields with DFT projection [Chatzistavrakidis, Jonke, Khoo, Szabo] and imposing the master equation (it has the role of a section condition) we get the Courant sigma-model

\[S^{(3)}_{\pi, J} = \int_{T[1]\Sigma_3} \left(F_i D\chi^i - \chi_i D\psi^i + \pi^{ij} F_i \chi_j + J^i_j F_i \psi^j \right. \]
\[- \frac{1}{2} \partial_i \pi^{jk} \psi^i \chi_j \chi_k + \partial_i J^k_j \psi^i \psi^j \chi_k \right) \]

- The master equation gives the integrability condition for the generalized complex structure

\[\mathcal{J}^{ij}_j = \begin{pmatrix} J^i_j & \pi^{ij} \\ 0 & -J^j_i \end{pmatrix} \]

- It gives back the AKSZ formulations of A- or B-models on the boundary after a full gauge fixing on the bulk.
Relation to generalized complex structure and topological S-duality

Halving degree 1 fields with DFT projection [Chatzistavrakidis,Jonke,Khoo,Szabo] and imposing the master equation (it has the role of a section condition) we get the Courant sigma-model

\[S^{(3)}_{\pi,J} = \int_{T[1]\Sigma_3} \left(F_i DX^i - \chi_i D\psi^i + \pi^{ij} F_i \chi_j + J^i_j F_i \psi^j - \frac{1}{2} \partial_i \pi^{jk} \psi^i \chi_j \chi_k \right) \]

- The master equation gives the integrability condition for the generalized complex structure

\[\mathcal{J}^I \mathcal{J}^J = \begin{pmatrix} J^i_j & \pi^{ij} \\ 0 & -j^i_j \end{pmatrix} \]

- It gives back the AKSZ formulations of A- or B-models on the boundary after a full gauge fixing on the bulk.

- Topological S-duality between A- and B-models arises \((g_A \leftrightarrow 1/g_B)\) from \(\mathcal{J}\), as a canonical transformation:

\[S^{(2)}_B \leftarrow S^{(3)}_{\pi,J} \rightarrow S^{(2)}_A \]
Different reductions and connections between the AKSZ string and membrane sigma-models related to the topological A- and B-models.
Topological membranes on G_2-manifold

- **Topological M-theory:** Hitchin-type form theory of G_2-manifolds

 It is a unification of the form theory of A- and B-models.
Topological membranes on G_2-manifold

- **Topological M-theory**: Hitchin-type form theory of G_2-manifolds
 - It is a unification of the form theory of A- and B-models.
- Two topological membrane has been proposed to be the worldvolume formulation:
Topological membranes on G_2-manifold

- **Topological M-theory**: Hitchin-type form theory of G_2-manifolds
 - It is a unification of the form theory of A- and B-models.
- Two topological membrane has been proposed to be the worldvolume formulation:
 1) Using Mathai-Quillen formalism

\[\omega = dX_i^0 \wedge dF_i^3 + d\chi_i^2 \wedge d\psi_i^1 \]
\[\gamma = F_i^1 \psi_i^1 S(4) \]
\[G_2 = \int_{\Sigma^4} (F_i^1 D X_i^0 + \psi_i^1 D \chi_i^2 + F_i^1 \psi_i^1) \]

[Anguelova, Medeiros, Sinkovics]
Topological membranes on G_2-manifold

- **Topological M-theory:** Hitchin-type form theory of G_2-manifolds

 It is a unification of the form theory of A- and B-models.

- Two topological membrane has been proposed to be the worldvolume formulation:

 1) Using Mathai-Quillen formalism

 [Anguelova, Medeiros, Sinkovics]

 2) BRST gauge fixed version of the associative 3-form

 [Bonelli, Tanzini, Zabzine]
Topological membranes on G_2-manifold

- **Topological M-theory**: Hitchin-type form theory of G_2-manifolds
 - It is a unification of the form theory of A- and B-models.
- Two topological membrane has been proposed to be the worldvolume formulation:
 1) Using Mathai-Quillen formalism
 - [Anguelova,Medeiros,Sinkovics]
 2) BRST gauge fixed version of the associative 3-form
 - [Bonelli,Tanzini,Zabzine]

- They can be unified within one single AKSZ 3-brane ($\mathcal{M} = T^*[3] T[1]M$)

 \[
 \omega = dX^i_0 \wedge dF_i + d\chi^i_2 \wedge d\psi^i_1 \quad \text{and} \quad \gamma = F_i \psi^i
 \]

 \[
 S_{G_2}^{(4)} = \int_{T[1]\Sigma_4} \left(F_i DX^i + \psi^i D\chi_i + F_i \psi^i \right)
 \]

 Worldvolume dimension reductions of $S_{G_2}^{(4)}$ gives both topological membranes in different gauges.
The master equation defines a higher analog of the Courant algebroid:

\textbf{Lie algebroid up to homotopy}

[Ikeda, Uchino]
The master equation defines a higher analog of the Courant algebroid:

\[
\text{Lie algebroid up to homotopy}
\]

[Ikeda, Uchino]

Degree two functions correspond to elements in \(TM \oplus \bigwedge^2 T^*M \)

\[
A^i(X)\chi_i + \frac{1}{2} \alpha_{ij}(X) \psi^i \psi^j \quad \longleftrightarrow \quad A^i(X) \frac{\partial}{\partial X^i} + \frac{1}{2} \alpha_{ij}(X) dX^i \wedge dX^j,
\]

and the derived bracket

\[
[A + \alpha, B + \beta]_C = \{\{\gamma, A + \alpha\}, B + \beta\} = [A, B] + \mathcal{L}_A\beta - \mathcal{L}_B\alpha + \frac{1}{2} d(\iota_B \alpha - \iota_A \beta)
\]

is the higher Courant bracket on \(TM \oplus \bigwedge^2 T^*M \).
Relation to higher Courant bracket

- The master equation defines a higher analog of the Courant algebroid:

 \[
 \text{Lie algebroid up to homotopy}
 \]

 \[\text{[Ikeda,Uchino]}\]

- Degree two functions correspond to elements in \(TM \oplus \Lambda^2 T^*M \)

\[
A^i(X)\chi_i + \frac{1}{2} \alpha_{ij}(X) \psi^i \psi^j \quad \longleftrightarrow \quad A^i(X) \frac{\partial}{\partial X^i} + \frac{1}{2} \alpha_{ij}(X) dX^i \wedge dX^j,
\]

and the derived bracket

\[
[A + \alpha, B + \beta]_C = \{\gamma, A + \alpha\}, B + \beta \}
\]

\[
= [A, B] + \mathcal{L}_A \beta - \mathcal{L}_B \alpha + \frac{1}{2} d(\iota_B \alpha - \iota_A \beta)
\]

is the higher Courant bracket on \(TM \oplus \Lambda^2 T^*M \).

- This construction allows the definition of geometric fluxes.
Summary

- We reformulated the AKSZ constructions of A- and B-models on doubled space and introduced a Courant sigma-model for generalized complex structure, which reduces to the A- and B-models on the boundary.
- As an application, we derived topological S-duality from generalized complex structure.
- Our approach led to new classes of Courant algebroids associated to (generalized) complex geometry.
- We constructed an AKSZ 3-brane, which unifies the known topological membranes on G_2-manifold.
- We showed that its derived bracket gives the higher Courant bracket on $TM \oplus \bigwedge^2 T^*M$.
Summary

- We reformulated the AKSZ constructions of A- and B-models on doubled space and introduced a Courant sigma-model for generalized complex structure, which reduces to the A- and B-models on the boundary.
- As an application, we derived topological S-duality from generalized complex structure.
- Our approach led to new classes of Courant algebroids associated to (generalized) complex geometry.
- We constructed an AKSZ 3-brane, which unifies the known topological membranes on G_2-manifold.
- We showed that its derived bracket gives the higher Courant bracket on $TM \oplus \bigwedge^2 T^*M$.

Outlook

- Explore the relation of our Courant sigma-model for generalized complex structure to topological string theory.
- Investigate the AKSZ 3-brane theory in the context of non-geometric flux backgrounds.
Thank you for your attention!