

Search for light Dark Matter with NEWS-G

Konstantinos Nikolopoulos

University of Birmingham

Workshop on the Standard Model and Beyond September 8th, 2018, Corfu Summer Institute, Greece

SEDINE prototype at LSM

Dark Matter

Searching for light DM: Recoil Energy

Searching for light DM: Quenching Factor

Quenching factor: fraction of ion kinetic energy dissipated in a medium in the form of ionization electrons and excitation of the atomic and quasi-molecular states.

Direct detection experiment using light gases as target (H, He, Ne)

- Better projectile-target kinematic match
- Favourable quenching factor

Spherical Proportional Counter

Detector volume naturally divided in: "drift" and "amplification" regions.

K. Nikolopoulos / SM and Beyond, 8 Sep 2019 / Search for light Dark Matter with NEWS-G

 r_1 = anode radius

 $r_2 = \text{cathode radius}$

Spherical Proportional Counter

Capacitance dependence on size

- Low Capacitance \rightarrow Low electronic noise \rightarrow Low energy threshold
- Lowest surface to volume ratio
- Fiducial volume selection
 - Through pulse shape analysis
- Flexible (pressure, gas)
- Large mass/volume with one readout channel
- Simple sealed mode
- K. Nikolopoulos / SM and Beyond, 8 Sep 2019 / Search for light Dark Matter with NEWS-G

6

Low Energy Capabilities

- Spherical Proportional Counter 130cm diameter
 - ▶ Ar + 2% CH₄
- Single Electron detection
- Energy threshold < 50 eV</p>
 - Tested with single electrons extracted from Copper with UV lamp

Spherical Proportional Counter

First Spherical Proportional Chamber made out of LEP RF Cavities

I. Giomataris and G. Charpak

Plot by P. Gros

9

Plot by P. Gros

Plot by P. Gros

Plot by P. Gros

In reality: Observed Pulse = Induced Current \otimes Preamplifier Response Need to deconvolve the preamplifier response

Plot by P. Gros

UNIVERSITY^{OF} BIRMINGHAM **13**

Background Rejection: Rise Time

Plot by P. Gros

Background Rejection: Rise Time

 $\sigma(r) \sim 20 \ \mu s \ x \ (r/r_{sphere})^3$, e- drift time dispersion

Plot by P. Gros

UNIVERSITY^{OF} BIRMINGHAM **15**

Background Rejection: Rise Time

Plot by P. Gros

NEWS-G/LSM: SEDINE low background SPC

- A competitive detector and a testing ground for NEWS-G/SNO
 - Ultra pure Copper vessel (60cm diameter)
 - ▶ 6.3mm diameter sensor
 - Chemically cleaned several times for Radon deposit removal

UNIVERSITY^{OF} BIRMINGHAM **17**

SEDINE: Data taking conditions

- Target: Neon + 0.7% CH₄ at 3.1 bar (282 gr)
 Run time: Continuous data taking for 42.7 days
 Exposure: 34.1 live-days x 0.282 kg =9.6 kg.days
- Anode high voltage 2520 V, no sparks
 Absolute Gain ~3000.
 - ▶ Loss of gain 4% throughout the period
- Sealed mode, no recirculation.
- Read-out: Canberra charge sensitive preamplifier (TRC=50 μs)
- Calibration: ³⁷Ar gaseous source,8 keV Cu fluorescence line, AmBe neutron source

Astropart.Phys. 97 (2018) 54-62

SEDINE: Background simulation

Astropart.Phys. 97 (2018) 54-62

SEDINE: Event Selection

- Analysis threshold: 150 eVee (~720 eVnr)
- 100% trigger efficiency (threshold @ ~35 eVee)
- Optimised Signal Region determined with Boosted Decision Tree (8 candidate masses)
- 1620 events selected in preliminary ROI
 - Failed BDT
 - Pass 0.5 GeV BDT: 15 events
 - Pass 16 GeV BDT: 123 events
 - Pass BDT for other masses

NEWS-G/LSM Exclusion Limits

Astropart.Phys. 97 (2018) 54-62

Limit set on spin independent WIMP coupling with standard assumptions on WIMP velocities, escape velocity and with quenching factor of Neon nuclear recoils in Neon calculated from SRIM

NEWS-G current status & developments

Preparing for the He physics run at LSM

Gas quality

- Testing gas mixtures of He/CH₄
 - High pressure operation (Penning)
 - Hydrogen rich target
- Upgrading gas system
 - Tightness
 - Filtering
 - Gas recirculation
 - Monitoring with residual gas analyser

Quenching factor measurements

- Ion / electron beam (LPSC, France)
- Neutron beam (TUNL, USA)

Study of the detector response

- Solid state laser (213 nm)
 - monitoring of gain with time
 - drift time measurements
 - parametrization of the avalanche process

Single-anode Sensors

"Glass" sensor

Aims:

- High pressure operation
- Higher gain
- Larger volumes
- Increased Stability
- Low radioactivity

Techniques

- Resistive technologies
- 3D printing technologies
- FEM simulations

UNIVERSITY^{OF} BIRMINGHAM 23

K. Nikolopoulos / SM and Beyond, 8 Sep 2019 / Search for light Dark Matter with NEWS-G

20000

18000

16000 14000

12000

10000

8000

6000

4000

2000

0

oulse height (ADU)

Multi-anode sensors: Achinos

11-ball 3D printed

33-ball bakelite

- Achinos: Multiple anode balls place at equal distances on a sphere
 - Same gain but increased field at large radii
 - Decoupling Gain and Drift
 - Anodes can be read out individually
- Prototypes: 5, 11, 33 metal balls Ø 2mm successfully operated
- 3D printed Achinos sensors built and operated

UNIVERSITY^{OF} BIRMINGHAM 24

NEWS-G at SNOLAB

NEWS-G at SNOLab

- Copper vessel (Ø 140cm, 12mm thick)
 - Low activity copper (C10100)
 - ▶ 7 to 25 µBq/kg Th
 - ▶ 1 to 5 µBq/kg of U
 - Electropolishing & Electroplating
 - ▶ Gases: Ne, He, CH₄
 - High pressure operation (10 bar)

- Upgraded Shielding (35t):
 - 40cm Polyethylene + Boron sheet
 - 22cm Lead (1 Bq/kg ²¹⁰Pb)
 - 3cm archaeological Lead
 - Air-tight envelope to flush pure N (vs Rn)

Hemispheres built in France, stored at LSM before welding

Glove box for Radon-free rod installation

Predicted exclusion limits for NEWS-G SNOLAB

NEWS-SNO expected sensitivity assuming: 100 kg.days exposure @ 10 bar, threshold 1 electron (~40 eV), 200eVee ROI window

Versatile Detector

The NEWS-G Collaboration

UNIVERSITY OF

Queen's University Kingston – G Gerbier, P di Stefano, R Martin, T Noble, D Dunrford, S Crawford, A Brossard, P Vasquez de Sola, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier, A Ronceray, P. Gros, J. Morrison, C Neyron

IRFU/CEA Saclay – I Giomataris, M Gros, C Nones, I Katsioulas, T Papaevangelou, JP Bard, JP Mols, XF Navick,

Laboratoire Souterrain de Modane, IN2P3, U of Chambéry – F Piquemal, M Zampaolo, A Dastgheibi-Fard

Aristotle University of Thessaloniki – I Savvidis, A Leisos, S Tzamarias,

Laboratoire de Physique Subatomique et Cosmologie Grenoble - D Santos, JF Muraz, O Guillaudin Pacific National Northwest Lab – E Hoppe, D Asner

Royal Military College Canada, Kingston – D Kelly, E Corcoran

SNOLAB - Sudbury – P Gorel

University of Birmingham – K. Nikolopoulos, P Knights, R Ward

University of Alberta – M. Piro

Associated lab : TRIUMF – F Retiere

UNIVERSITY^{OF} BIRMINGHAM 29

NEWS-G aims to search for DM candidates the 0.1 – 10 GeV mass range

- First competitive results with gas detector in Dark Matter search
- Further He and H runs planned with NEWS-G/LSM
- SEDINE essential for @SNOLAB optimisation
- NEWS-G/SNOLAB
 - Larger detector and target mass
 - Improved shield /materials/procedure
 - Installation at SNOLAB in 2018
- R&D on-going: cleaning methods, underground electroformed sphere, "achinos" type sensor, multi channels sensor, low pressure operation, ... JINST 12 (2017) P12031

Many physics opportunities!

K. Nikolopoulos / SM and Beyond, 8 Sep 2019 / Search for light Dark Matter with NEWS-G

Astropart. Phys. 97 (2018) 54-62

Additional Slides

Pulse Treatment

