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Gravity in three dimensions as a gauge theory.

The algebra Witten °88

3-d Gravity: gauge theory of is0(1,2) (Poincaré - isometry of M3)
e Presence of A: dS or AdS algebras, i.e. so(1,3),50(2,2)

Corresponding generators: P, Jop,a = 1,2,3 (translations, LT)

Satisfy the following CRs:
[Jab7 ch] = 4n[a[ch]b] s [Paa ch] = 277(1[ch] ) [Paa Pb] = AJap

CRs valid in arbitrary dim; particularly in 3-d:
[Janb] :Gachcv [Panb] :Eabcpcv [Paapb} :AGachC

After the redefinition: J* = %e“chbC



The gauging procedure

Intro of a gauge field for each generator: elf‘,wua(transl7 LT)
e The Lie-valued 1-form gauge connection is:

Ay =e M (z) Py 4w, (w) ],

Transforms in the adjoint rep, according to the rule:

0A, = 0ue+ (AL, €

The gauge transformation parameter is expanded as:

€ =&%z) Py + A (x)Jy

Combining the above — transformations of the fields:

66;;1 = 8u§a - eabc(fbwuc + )\be,uc)

0, = DA = € (Nywope + Adbee)



Clurvatures and_action

e Curvatures of the fields are given by:
R, (A) = 20, A, + [Au, AL
e Tensor R, is also Lie-valued:
Ruw(A)=1T,,°P,+ R,,"Ja
o Combining the above — curvatures of the fields:

T,,*= 28[Mey]“ + 26abCW[#bey]c

R Va — 26[ wy]a + ea,bc(wubul)yC + Aeubeyc)

1 n

e The Chern-Simons action functional of the Poincaré, dS or AdS
algebra is found to be identical to the 3-d E-H action:

A b

_ 1 v a a,,b  c c c) —
Scs =15 [ ¢ P(e, (Ovwpa — DpWya) + €abee,fw, /W, + Feance, e,’e,) = Spm

3-d gravity is a Chern-Simons gauge theory.



Remarks on 4-d gravity Utiyama °56, Kibble 61
MacDowell-Mansourt 77

Kibble-Stelle 85

e Vielbein formulation of GR: Gauging Poincaré algebra iso(1, 3)
e Comprises ten generators: Py, Jap,a =1,...4 (transl, LT)

e Satisfy the aforementioned CRs (for A = 0)

e Gauging in the same way leading to field transformations

e Curvatures are obtained accordingly

e Dynamics follow from the E-H action:

1
4 b d
Spra =g [ d'ze T eapeae,le, Ry

e Form of Einstein action: A%(dA + A?)
e Such action does not exist in gauge theories

e In that sense, 4-d gravity is not equivalent to a gauge theory.



Gauge theories on noncommutative spaces.

The nc framework Szabo 01

e Late 40’s: Nc structure of spacetime at small scales for an effective
ultraviolet cutoff — control of divergences in qfts Snyder 47

® Jgnored — success of renormalization programme
® Inspiration from qm: Operators instead of variables

® Nc spacetime defined by replacing coords x? by Herm generators X* of a nc
algebra of functions, A, obeying: [X*, X7] = 6% Connes 94, Madore ’99

® 80’s: nc geometry revived after the generalization of diff structure
Connes 85, Woronowicz 87

® Along with the definition of a generalized integration — Yang-Mills gauge
theories on nc spaces Connes-Rieffel ‘87



Operators X,, € A satisfy the CR: [X,, X,| = i0,,,, 6, arbitrary
Lie-type nc: [X,, X,] =1iC,, "X,

Natural intro of nc gauge theories through covariant nc
coordinates: XH = XH + A# Madore-Schraml-Schupp-Wess "00

Obeys a covariant gauge transformation rule: 6, = ife, X},

A, transforms in analogy with the gauge connection:
0A, = —i[X,, €] +ile, A,], (e - the gauge parameter)

Definition of a (Lie-type) nc covariant field strength tensor:
F, =[X,&]—iC,,° X,



Non-Abelian case

e Gauge theory could be Abelian or non-Abelian:
e Abelian if € is a function in A
e Non-Abelian if € is matrix valued (Mat(.A))

> In non-Abelian case, where are the gauge fields valued?

e Let us consider the CR of two elements of an algebra:

1

[e, A] = [T, ABTP) = { A ABATA, TP+ 2[

APHTA,TP)

e Not possible to restrict to a matrix algebra:
last term neither vanishes in nc nor is an algebra element

e There are two options to overpass the difficulty:
e Consider the universal enveloping algebra

e Extend the generators and/or fix the rep so that the
anticommutators close

> We employ the second option



3-d fuzzy spaces based on SU(2) and SU(Z,Z)I

The Fuclidean case

® Euclidean case: 3-d fuzzy space based on SU(2)

® Fuzzy sphere, S%: Matrix approximation of ordinary sphere, S2

Hoppe ’82, Madore 92

For higher-dim Sp see:

Kimura ’02, Dolan - O’Connor 03,
Sperling - Steinacker ’17

2

® S2 defined by coordinates of R? modulo 23 Tax® =17

a=1
(] S% defined by three rescaled angular momentum operators, X; = AJ;, J; the
Lie algebra generators in a UIR of SU(2). The X;s satisfy:

3
(X, X;] = ideijuXn , ZXZ-Xi =2%j(j+1):=r2,A€R,2j €N
=1

e Allowing X; to live in reducible rep: obtain the nc Ri, viewed as direct sum
of 82 with all possible radii (determined by 2j) - a discrete foliation of R® by
multiple S% Hammou-Lagraa-Sheikh Jabbari "02

Vitale- Wallet ’13, Vitale ’14



The fuzzy space R

S

S¢

RS : Foliation of R by

fuzzy spheres .

(onion-like ) ] 3 )

construction) Maitriz (coordinate) of Ry as a block diagonal form -
each block is a fuzzy sphere




The Lorentzian case

e In analogy: Lorentzian case: 3-d fuzzy space based on SU(1,1)
Grosse - Presnajder ’93

Jurman-Steinacker 1/

e Fuzzy hyperboloids, dS%, defined by three rescaled operators,
X; = MJ;, (in appropriate irreps) satisfying:

(X0, X;] = iAC X Y 0T XX =M% - 1),
4]
e where Cijk are the structure constants of su(1,1)
e Again, letting X; live in (infinite-dim) reducible reps: Block
diagonal form - each block being a dSp?

e 3-d Minkowski spacetime foliated with leaves being dSp? of
different radii



Gravity as gauge theory on 3-d fuzzy spaces.

The Lorentzian case Aschieri-Castellani '09

o Consideration of the foliated M? with A > 0

e Natural symmetry of the space: SO(1,3) (SO(4) for the Eucl.)
Kovacik - Presnajder ’13

e Consider the corresponding spin group:
SO(1,3) = Spin(1,3) = SL(2,C)
e Anticommutators do not close — Fix at spinor rep generated by:

1 1
ZAB = 5’7143 = Z[’YA/YB]’A:]-MHZL

o Satisfying the CRs and aCRs:
[YaB;YeD] = 8MajcYpiB),  {YaB:YeDp} = 4nciBnajp1+2icaBcDYs

e Inclusion of v5 and identity in the algebra — extension of
SL(2,C) to GL(2,C) with set of generators: {vap, s, i1}



SO(8) notation

e In SO(3) notation: vy,4 = v, and 3* = €y, with a =1,2,3

e The CRs and aCRs are now written:

[7%,7°] = —4€"*c, [Yar o] = —4€abe¥®, [Yas 1] = €ave¥®, [V°,7*P] =0
{:Y ﬁb} - _877ab]1 {ryaa,y } - 426(175 5 {’Ylla’}/b} - 277(1})]1
(V7" = 70, {3°,7"} = —4iva

e Proceed with the gauging of GL(2,C)
o Determine the covariant coordinate: X, = X, + A,

A, = Al (X,) ® T the gl(2,C)-valued gauge connection
e Gauge connection expands on the generators as:

Ay =e,M(X) ® Y0+ w,M(X) ®Fa + Au(X) @il + A, (X) @75
See also: Nair ’03,’06, Abe - Nair 03
o Gauge parameter, €, expands similarly:
€=EUX) @70 + AUX) @ Ty + €0(X) @il + & (X) ® 75



Kinematics
e Covariant transf rule: 64X, = [¢, X,] — transf of the gauge fields:
de,0= —i[X,, + Ay, €] — 2{Ep, wpe}e™ — 20y, e ke +ileo, €,0] — 20[A%, A,] — 2i[é, w0
dw,t= =X+ A X+ 5 {6, e} e — 200, wucke®™ +ifeo, w, ] + 5[67, A,) + §[éo, ¢,
SAu= —i[X, + Ay, e0] — il€ar €8] + 4i[ g, w, 7] — i[é0, Ay

6Au= —i[ X, + Ay, @] + 2i[€a, w0, + 2i[Ma, €8] +ileo, 4]

e Commutative limit: inner derivation becomes [X,,, f] — —i0,, f:
56;;1: - “ga - 4§bwuc€abc - 4/\belweabc

(5wﬂa: -0\ + Ebeuce“bc - 4/\bwuceab”

e After the redefinitions: v, = 2P, ,5q — —4J, ,4\% — A2,

VA
a 2 _¢a La VA _a ,,a _1,.a _ :
3 VA - = €y T Tgp Cpy Wy T W, 3-d gravity



Curvatures

e Definition of curvature:
Rouw = [Xu, ] —iXC,, P X,
e Curvature tensor can be expanded in the GL(2,C) generators:
Ruw =T% @Yo+ R%, ®@Fa + Fluy @ i1+ Fly @75

e The expressions of the various tensors are:

Tt = ilXp + Ay ] = 11X + Ay €] = 2epun, wocke™ = 2wy, evcke™ = 2ilw,, ] + 2iw,*, Ay = iAC,, Pe

no 2
Re, = i[X, + Au,w,®] —i[X, + Ay, w,%] — 2{wup, woe ke + Few, evcte®® + i, A)] — Lle,®, Ay] —iAC,,, Pw,?
Fu=i[X, + Au, Xy + A = ile,?, epa] + 4i[w,®, wya] — i[Ay, 4] = iXC,, (X, + A,)

Fu=i[X, + A A — i[Xy + Ay, Ay + 2ile,® wya] + 20w, eva] —iAC,,,PA,

e Commutative limit: Coincidence with the expressions of 3-d
gravity after applying the redefinitions



The action Géré-Vitale-Wallet 1/

e The action we propose is Chern-Simons type:

1 U A
S = ?Trtr (30" XXX, — 2XMX“>
e Tr: Trace over matrices X; tr: Trace over the algebra

e The action can be written as:

1
S = @Trtr(iC“VpX#R,,p) + S)\
where Sy = —é’ﬁtr(XMX“)

e Using the explicit form of the algebra trace:

TrC*? (euaTy, — Awpa R, — (X + Au)Fyp + ALF,))



Variation of the action

e Two ways of variation lead to the (same) equations of motion:

e Variation with respect to the covariant coordinate, X,

e Variation with respect to the gauge fields

e The equations of motion are:



The Euclidean case

e Group of symmetries: SO(4) = Spin(4) = SU(2) x SU(2)
e Anticommutators do not close — Extension to U(2) x U(2)

e Each U(2): four 4x4 matrices as generators:

. (0. 0 r_ (0 0 L (10 R (00
Ja*(o 0)’Ja*<oca =00 ) =01

o Identification of the correct nc dreibein and spin connection fields:
1
=5 (e =Ja), M (JL+JR) 1= J5+Jg, 75 = Jo = Jg"

e Calculations give the CRs and aCRs

[Pay Pb} = ieabcMc ) [P(u Mb] = ieabcPc ’ [Ma» Mb] = ieabcMc )
{Pa, P} = 101, {Pa, My} = L6avs . {Ma, My} = 30031 .
['757Pa} = [75>Ma] =0 ) {75>Pa} *2Ma ) {WS;Ma}*QPa

e Gauging proceeds in the same way as before



3-d gravity described as C-S gauge theory

Translation to nc regime (gauge theories through cov. coord.)
3-d nc spacetimes built from SU(2) and SU(1, 1)

Gauge their symmetry groups

Transformations of fields - Curvatures - Action - E.o.M.

Future plans

Further analysis of the Lorentzian case space structure (algebra
of functions, differential calculus, etc.)

Move to the 4-d case of gravity as noncommutative gauge theory

Embed gauge group and space structure into a larger symmetry
Heckman- Verlinde 14, Madore-Buri¢ ’15



Thank you for your attention! I




